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We investigate the equilibrium configurations of closed planar elastic curves of fixed length, whose
stiffness, also known as the bending rigidity, depends on an additional density variable. The under-
lying variational model relies on the minimisation of a bending energy with respect to shape and
density and can be considered as a one-dimensional analogue of the Canham–Helfrich model for
heterogeneous biological membranes. We present a generalised Euler–Bernoulli elastica functional
featuring a density-dependent stiffness coefficient. In order to treat the inherent nonconvexity of the
problem, we introduce an additional length scale in the model by means of a density gradient term.
We derive the system of Euler–Lagrange equations and study the bifurcation structure of solutions
with respect to the model parameters. Both analytical and numerical results are presented.
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1 Introduction

We investigate the equilibrium configurations of elastic curves featuring an additional scalar
density variable which influences the bending rigidity. Our interest is motivated by the variational
modelisation of the shapes of biological membranes, originally proposed by Canham [6] and
Helfrich [15] to explain the characteristic biconcave shape of a human red blood cell. According
to this model, the equilibrium membrane shape � minimises the bending energy

ECH(�) =
∫

�

(
β

2
(H − H0)2 + γ K

)
dS

under suitable constraints on membrane area and enclosed volume. Here, � is a smooth closed
surface embedded in R

3, H and K are the mean and the Gauss curvature of �, respectively,
and the material parameters comprise the stiffnesses (bending rigidities) β > 0, γ < 0 as well
as the spontaneous curvature H0 ∈R. The material parameters of heterogeneous biomembranes
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Bifurcation of elastic curves with modulated stiffness 29

are assumed to depend on the variable membrane composition, which is described by a scalar
function ρ : � →R which we interpret as a density of fixed total mass. On the other hand,
the geometry of the membrane influences the distribution of the density ρ, which originates
a coupling effect between curvature and composition. Indeed, the energy for heterogeneous
biomembranes has to be minimised with respect to both membrane geometry � and composition
ρ simultaneously. Configurations featuring this coupling have been experimentally observed,
e.g. by Baumgart et al. [3] in case of giant unilamellar vesicles. Furthermore, the coupling effect
also plays an essential role in the dynamic morphology changes of cells, where special curved
membrane proteins are involved, cf. McMahon & Gallop [21].

Results on the mathematical analysis of the variational problem for heterogeneous biomem-
branes have been obtained by Choksi et al. [7] as well as Helmers [17], who proved the existence
of multiphase minimisers in the axisymmetric regime. By dropping the symmetry restriction,
existence of multiphase minimisers has been recently obtained by [5] in the weak setting of vari-
folds. For a collection of recent results on both single- and multiphase Canham–Helfrich models,
the reader is referred to [2, 5, 10, 12, 13, 19, 22, 24, 26].

To the best of our knowledge, proving existence of minimisers for membranes featuring con-
tinuous phase densities and general material parameter models is an open problem. We move
a first step in this direction in the present paper, by focusing on the lower dimensional set-
ting of curves instead. A classical elastic curve in the plane, γ : [0, L] →R

2, minimises the
EULER–BERNOULLI elastic bending energy (also known as the WILLMORE energy)

E(γ ) = 1

2

∫
γ

κ2 ds,

where κ is the scalar curvature of γ . The stationary points are called elasticae and can be ana-
lytically described in terms of elliptic functions. As was already clear to Euler, the only closed
elasticae of fixed length in the plane are the circle and Bernoulli’s Figure 8 curve, the single cov-
ered circle being the unique global minimiser of E, see for example Truesdell [25] and Langer &
Singer [18].

We now modify the setting by taking the additional scalar density ρ into the picture. The den-
sity ρ modulates the elastic behaviour of the curve. For this purpose, we consider the following
elastic bending energy with density-modulated stiffness,

E0(ρ, γ ) = 1

2

∫
γ

β(ρ) κ2ds.

Our interest lies on the effects of the variable stiffness β and we dispense with the spontaneous
curvature H0, for simplicity. In order to take into account the coupling between shape and com-
position, we have to minimise E0 with respect to both γ and ρ. Admissible curves γ are asked
to be planar, regular, C1-closed, and have fixed length L, whereas admissible densities ρ are
required to have fixed mass

∫
γ

ρ ds = M .
The application of the Direct Method for the minimisation of E0 calls for checking lower

semicontinuity with respect to weak topologies, which in turn asks for the convexity of the inte-
grand of E0. Yet, if such convexity is imposed, only the trivial minimiser exists, namely the
constant density ρ0 = M/L on a circle with curvature κ0 = 2π/L. This however is insufficient for
describing the rich geometric morphologies that can be observed in biological membranes.

In the following, we will therefore not assume convexity of the integrand of E0. This lack of
convexity may however lead to nonexistence of minimisers, see Section 3 below. We are hence
forced to consider a regularised energy Eμ, featuring an additional length scale in terms of a
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gradient term in ρ, namely,

Eμ(ρ, γ ) = 1

2

∫
γ

(
β(ρ) κ2 + μ ρ̇2

)
ds, (1.1)

where ρ̇ := d
dsρ. The parameter μ may be physically interpreted as the diffusivity of the density,

cf. (2.5). For μ large, the only minimiser is the trivial one, see Proposition 3.3. By lowering μ,
one observes the onset of bifurcations from the trivial state. The main focus of this study is the
rigorous bifurcation analysis in terms of μ. We analytically classify the bifurcation behaviour of
solutions of the Euler–Lagrange equations of Eμ. Moreover, we provide an exhaustive suite of
numerical experiments, illustrating the distinguished patterning of minimisers of Eμ, depending
on μ.

A variational model for planar elastic curves with density has also been studied by Helmers
[16]. He focused on the effect of spontaneous curvature and established a �-convergence result
to the sharp interface limit. Let us mention also the recent work by Palmer & Pámpano [23], who
presented analysis and numerics for the shapes of elastic rods with anisotropic bending energies.

We conclude this introduction by presenting the outline of the study. In Section 2, we briefly
describe the mathematical setting and explain our notation. Section 3 is devoted to the justi-
fication of our model by existence and non-existence results for minimisers. In Section 4, we
analytically discuss the local bifurcation structure of solutions to the associated Euler–Lagrange
equations. Numerical results for the bifurcation branches as well as for the configurations of the
curves are presented in Section 5. Finally, Section 6 summarises our findings.

2 Mathematical setting

We devote this section to make the mathematical setting precise and fix notation.

2.1 Notation and preliminaries on curves

We collect some basic information on curves [11]. In the following, we will consider closed
planar curves γ ∈ H2(TL)2, where TL :=R/LZ is the one-dimensional torus with period L > 0.
The fact that H2(TL) ⊂ C1(TL) ensures that γ : [0, L] →R

2 represents a C1-closed curve and
γ (0) = γ (L) with γ̇ (0) = γ̇ (L). We systematically assume γ to be parametrised by arc length s,
namely, |γ̇ | = 1. This induces that γ̈ ∈ L2(TL)2 is orthogonal to γ̇ . The normal vector n to the
curve is defined pointwise by counterclockwise rotating γ̇ by π/2. That is, by denoting γ (s) =
(x(s), y(s)), n(s) = γ̇ (s)⊥ := (−ẏ(s), ẋ(s)). The rate of change of γ̇ in direction n is measured by
the scalar curvature κ = n · γ̈ = det(γ̇ , γ̈ ) ∈ L2(TL) of the curve, so that γ̈ = (n · γ̈ ) n = κ n.

The inclination angle θ ∈ L2(TL) is the angle between the x-axis and the tangent γ̇ , that is
γ̇ = (ẋ, ẏ) = (cos θ , sin θ ). Note that even for smooth γ , θ is discontinuous on TL. However, the
map s �→ θ (s) − 2π

L I s is an element of H1(TL), where the rotation index of the curve I ∈Z

counts the number of complete turns of γ̇ according to the standard orientation, see below. The
curvature function κ ∈ L2(TL) uniquely determines the curve γ ∈ H2(TL)2 up to translations and
rotations in R

2 [11, Sections 1–5, pp.19, 24, and Sections 1–7, p.36]. In particular, if |γ̇ | = 1,
then the following holds:

κ = θ̇ , θ (s′) = θ (0) +
∫ s′

0
κ(s′′) ds′′, γ (s) =

(
x(s)

y(s)

)
=
(

x(0)

y(0)

)
+
∫ s

0

(
cos θ (s′)

sin θ (s′)

)
ds′. (2.1)
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Identifying all curves whose images only differ by isometries in R
2, one may adapt the coordinate

system to x(0) = y(0) = θ (0) = 0, corresponding indeed to the choice γ (0) = (0, 0) and γ̇ (0) =
(1, 0). A curve γ ∈ H2(TL)2 parametrised by arc length satisfies the following identities:

0 = γ (L) − γ (0) =
∫ L

0
γ̇ (s)ds =

∫ L

0

(
cos θ (s)

sin θ (s)

)
ds =

∫ L

0

(
cos

(
θ (0) + ∫ s

0 κ(t) dt
)

sin
(
θ (0) + ∫ s

0 κ(t) dt
)
)

ds ,

0 = γ̇ (L) − γ̇ (0) = (cos θ (L) − cos θ (0), sin θ (L) − sin θ (0)) .

The latter is equivalent to θ (L) − θ (0) = ∫ L
0 κ(s) ds = 2π I . A curve γ : [0, L] →R

2 is called
simple if it is an injective map and regular, if it is C1 and γ̇ (t) 	= 0 for all t ∈ [0, L]. By the
Theorem of Turning Tangents [11, Sections 5–6, Theorem 2, p.396], a simple C1-closed regular
planar positively oriented C1 curve has rotation index I = 1. This allows us to represent a simple
C1-closed curve γ ∈ H2(TL)2 parametrised by arc length by its inclination angle θ , granted that
θ − 2π

L I s ∈ H1(TL) and

θ (0) = 0, θ (L) = 2π and
∫ L

0

(
cos θ (s)

sin θ (s)

)
ds = 0,

or by its curvature κ ∈ L2(TL), additionally satisfying∫ L

0
κ(s) ds = 2π and

∫ L

0

(
cos

(∫ s
0 κ(t) dt

)
sin
(∫ s

0 κ(t) dt
)
)

ds = 0.

Eventually, note that by requiring a planar curve to be closed restricts the possible curvature
functions. According to the Four Vertex Theorem [11, Sections 1–7, Theorem 2, p.37], a smooth
simple closed regular planar curve has either constant curvature (i.e. is a circle) or the curvature
function possesses at least four vertices, i.e. two local minima and two local maxima. The con-
verse statement is given in [9]: every continuous function which either is a non-zero constant or
has at least four vertices is the curvature of a simple closed regular planar curve.

2.2 Elastic energies with modulated stiffness

We consider planar curves γ ∈ H2(TL)2 parametrised by arc length. With no loss of general-
ity, we will assume from now on the length L of the curve to be 2π . The scalar density field
ρ : [0, 2π ] →R is considered to be a function of the arc length of the curve. Moreover, we are
given a density-modulated stiffness

β ∈ C2(R) with inf β =: βm > 0. (2.2)

In the following, we will assume (2.2) to hold throughout, without explicit mention. Note that
however some results in this section are valid under weaker conditions on β as well.

Admissible curves are defined as elements of the set

A :=

⎧⎪⎪⎨⎪⎪⎩γ ∈ H2(T2π )2 :

|γ̇ | = 1, γ (0) = γ (2π ) = (0, 0), γ̇ (0) = γ̇ (2π ) = (1, 0),∫ 2π

0
det(γ̇ (s), γ̈ (s)) ds = 2π

⎫⎪⎪⎬⎪⎪⎭ .
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In particular, admissible curves are planar, arc length parametrised and C1-closed. Note that we
are not enforcing injectivity of γ (i.e. γ being simple) and we just require the weaker condition
I = 1. This simplifies our tractation, having no effect on the bifurcation result (Section 4).

By the representation theorem for plane curves, any admissible curve γ ∈ A can be recovered
from its inclination angle θ or its curvature κ . Correspondingly, we can equivalently indicate
admissible curves as

A =
{

θ ∈ L2(T2π ) : θ − s ∈ H1(T2π ),
∫ 2π

0

(
cos θ (s)

sin θ (s)

)
ds =

(
0

0

)
, θ (0) = 0

}
(2.3)

or

A =
{

κ ∈ L2(T2π ) :
∫ 2π

0

(
cos

(∫ s
0 κ(t)dt

)
sin
(∫ s

0 κ(t)dt
)
)

ds =
(

0

0

)
,
∫ 2π

0
κ(s) ds = 2π

}
.

The abuse of notation in defining the set A is motivated by the above-mentioned equivalence of
the representations via γ , θ and κ , up to fixing γ (0) = (0, 0) and γ̇ (0) = (1, 0) or θ (0) = 0.

Admissible densities ρ are asked to have fixed total mass. By possibly redefining β, one may
assume such mass to be 2π , which simplifies notation. Given the parameter μ ∈ [0, ∞), we define

P :=
{
ρ ∈ L1(T2π ) : μρ ∈ H1(T2π ),

∫ 2π

0
ρ(s) ds = 2π

}
. (2.4)

For the sake of simplicity, we do not restrict the values of ρ to be non-negative, which would
however be sensible, for ρ is interpreted as a density. Note that this simplification has no
effect on the bifurcation results, which are actually addressing a neighbourhood of the triv-
ial state only, where ρ is constant and positive. The elastic energy with modulated stiffness is
defined as

Eμ(ρ, γ ) :=
∫ 2π

0

(
1

2
β(ρ)γ̈ 2 + μ

2
ρ̇2

)
ds. (2.5)

Note that the energy Eμ can be equivalently rewritten as Eμ(ρ, γ ) = Eμ(ρ, θ ) = Eμ(ρ, κ), again
by abusing notation.

We identify elastic curves with modulated stiffness as minimisers of Eμ. In particular, we
consider the following minimisation problem

min
(ρ,γ )∈P×A

Eμ(ρ, γ ). (2.6)

In contrast to the classical Euler–Bernoulli model for elasticae [18, 25], which is a purely geo-
metric variational problem, here the density plays an active role in the selection of the optimal
geometry.

3 Existence and nonexistence

As mentioned in the introduction, the minimisation of E0 turns out to be of limited interest.
Indeed, if the integrand


(ρ, κ) = 1

2
β(ρ)κ2
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is strictly convex, problem (2.6) for μ = 0 admits only the trivial solution

(ρ0, κ0) := (1, 1). (3.1)

This can be directly checked via Jensen’s inequality by computing, for any (ρ, κ) ∈ P × A ,

E0(ρ, κ) =
∫ 2π

0

(ρ, κ) ds

� 2π 


(
1

2π

∫ 2π

0
ρ ds,

1

2π

∫ 2π

0
κ ds

)
= 2π 
(1, 1) = E0(ρ0, κ0)

where the inequality is strict whenever ρ or κ are not constant, namely, whenever (ρ, κ) 	=
(ρ0, κ0). Let us mention that the integrand 
 is strictly convex if and only if

β ′′ > 0 and β ′′β > 2(β ′)2. (3.2)

In order to allow the complex geometrical patterning of biological shapes to possibly be
described by the minimisation problem (2.6), one is hence forced to dispense of (3.2), for in
that case the only minimiser of E0 (and, a fortiori Eμ) would be the trivial one (ρ0, κ0). In the
setting of our bifurcation results, our choices for β will then fulfill

β ′′(ρ) � 0 or β ′′(ρ)β(ρ) � 2(β ′(ρ))2 for some ρ � 0, (3.3)

at least in a neighbourhood of the trivial state ρ0.
On the other hand, lacking convexity of the integrand 
, the energy E0 fails to be weakly lower

semicontinuous on P × A , e.g. [14, Thm. 5.14], and existence of minimisers may genuinely
fail. We collect a remark in this direction in the following.

Proposition 3.1 (No minimisers for E0) Assume that

β(0) < β(ρ) ∀ρ > 0. (3.4)

Then, the minimisation problem (2.6) with μ = 0 admits no solution.

Before moving to the proof, let us point out that condition (3.4) implies in particular that 
 is
not convex. Indeed, if 
 were convex, one could take any ρ > 0 and λ ∈ (0, 1) and compute

1

2
β(ρ)κ2

0 = lim
λ→1



(
λ(0, κ0/λ) + (1 − λ)(ρ/(1 − λ), 0)

)
� lim

λ→1

(
λ
(0, κ0/λ) + (1 − λ)
(ρ/(1 − λ), 0)

)
= lim

λ→1
λ
(0, κ0/λ) = 1

2
β(0)κ2

0 ,

contradicting (3.4). Note that the role of the value κ0 in the latter computation is immaterial as
one can argue with any κ 	= 0.

Proof of Proposition 3.1. Let us show that E0 cannot be minimised on P × A . We firstly
remark that

E0(ρ, κ)
(3.4)
� E0(0, κ)

Jensen
� E0(0, κ0) ∀(ρ, κ) ∈ P × A . (3.5)
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In fact, the first inequality is strict as soon as ρκ 	≡ 0 almost everywhere while the second one is
strict as soon as κ is not constantly equal to κ0 (recall that β(0) > 0). For all λ ∈ (0, 1), we now
define

ρλ(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for s ∈ [0, λπ ]

ρ0/(1 − λ) for s ∈ (λπ , π ]

0 for s ∈ (π , (1 + λ)π ]

ρ0/(1 − λ) for s ∈ ((1 + λ)π , 2π ],

κλ(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κ0/λ for s ∈ [0, λπ ]

0 for s ∈ (λπ , π ]

κ0/λ for s ∈ (π , (1 + λ)π ]

0 for s ∈ ((1 + λ)π , 2π ].

We now check that (ρλ, κλ) ∈ P × A . Indeed,∫ 2π

0
ρλds = 2π (1 − λ)

ρ0

1 − λ
= 2πρ0 = 2π ,

∫ 2π

0
κλds = 2λπ

κ0

λ
= 2πκ0 = 2π .

Moreover, by letting Kλ(s) =
∫ s

0
κλ(r) dr, namely,

Kλ(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κ0s/λ for s ∈ [0, λπ ]

κ0π for s ∈ (λπ , π ]

κ0(s − (1 − λ)π )/λ for s ∈ (π , (1 + λ)π ]

κ02π for s ∈ ((1 + λ)π , 2π ],

we can compute∫ 2π

0
cos

(∫ s

0
κλ(r) dr

)
ds =

∫ 2π

0
cos(Kλ(s)) ds

=
∫ λπ

0
cos(κ0s/λ) ds +

∫ π

λπ

cos(κ0π ) ds

+
∫ (1+λ)π

π

cos(κ0(s − (1 − λ)π )/λ) ds +
∫ 2π

(1+λ)π
cos(2κ0π ) ds

= λ

κ0
sin (κ0π) − λ

κ0
sin 0 + cos(κ0π )(1 − λ)π

+ λ

κ0
sin (2κ0π) − λ

κ0
sin (κ0π) + cos(2κ0π )(1 − λ)π

= λ sin π − λ sin 0 + (cos π )(1 − λ)π + λ sin 2π − λ sin π + (cos 2π )(1 − λ)π = 0,
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and analogously∫ 2π

0
sin

(∫ s

0
κλ(r) dr

)
ds =

∫ 2π

0
sin(Kλ(s)) ds

= −λ cos π + λ cos 0 + (sin π )(1 − λ)π − λ cos 2π + λ cos π + (sin 2π )(1 − λ)π = 0.

The latter ensures in particular that (ρλ, κλ) ∈ P × A .
Let us now compute

E0(ρλ, κλ) = λE0(0, κ0/λ) + (1 − λ)E0(ρ/(1 − λ), 0) = λE0(0, κ0/λ)

and note that E0(ρλ, κλ) → E0(0, κ0) as λ → 1. Owing to (3.5), this entails that E0(ρλ, κλ) is an
infimising sequence on P × A . On the other hand, the value E0(0, κ0) cannot be reached in
P × A . Indeed, assume by contradiction to have (ρ, κ) ∈ P × A with E0(ρ, κ) = E0(0, κ0).
Recalling (3.5), we have that ρκ = 0 almost everywhere and κ = κ0. This entails that ρ = 0
almost everywhere so that necessarily (ρ, κ) = (0, κ0), which however does not belong to
P × A . �

Despite the lack of lower semicontinuity and the possible non-existence of minimisers of vari-
ational problems, in some cases information may still be retrieved by analysing the structure
of infimising sequences, see [1]. This perspective seems however to be of little relevance here.
Assume (ρ, κ) to be a minimiser of E0 in P × A and let (ρ#, κ#) denote its periodic extension
to R. Let the fine-scaled trajectories

ρn(s) = ρ#(ns), κn(s) = κ#(ns) ∀s ∈ [0, 2π ]

be defined. One may check that (ρn, κn) ∈ P × A as well and that E0(ρn, κn) = E0(ρ, κ), so
that all (ρn, κn) are minimisers (infimising, in particular). On the other hand, (ρn, κn) weakly
converges to its mean (ρ0, κ0). This shows that, the limiting behaviour of infimising sequences
may deliver scant information, for we recover the trivial state.

These facts motivate our interest for focusing on the case μ > 0 in the minimisation problem
(2.6). In contrast to the case μ = 0 of Proposition 3.1, energy Eμ can be minimised in P × A

for all μ > 0.

Proposition 3.2 (Existence for positive μ) Let μ > 0. Then, the minimisation problem (2.6)
admits a solution.

Proof. This is an immediate application of the Direct Method. Let (ρn, κn) ∈ P × A be an
infimising sequence for Eμ (such a sequence exists, for Eμ(ρ0, κ0) > −∞). We can assume with
no loss of generality that sup Eμ(ρn, κn) < ∞. In particular, as β � βm > 0 we have that ρn and
κn are uniformly bounded in H1(T2π ) and in L2(T2π ), respectively. This implies, at least for a not
relabeled subsequence, that ρn ⇀ ρ in H1(T2π ) hence strongly in C(T2π ) and κn ⇀ κ in L2(T2π ).
We can hence pass to the limit in the relations∫ 2π

0
ρn ds = 2π ,

∫ 2π

0

(
cos

(∫ s
0 κn(t)dt

)
sin
(∫ s

0 κn(t)dt
)
)

ds =
(

0

0

)
,

∫ 2π

0
κn ds = 2π
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and obtain that (ρ, κ) ∈ P × A as well. Moreover, β(ρn) → β(ρ) strongly in C(T2π ) as β

is locally Lipschitz continuous. This implies that (β(ρn))1/2κn ⇀ (β(ρ))1/2κ in L2(T2π ) and
lower semicontinuity ensures that Eμ(ρ, κ) � lim infn→∞ Eμ(ρn, κn) = inf Eμ, so that (ρ, κ) is
a solution of problem (2.6). �

The parameter μ is a datum of the problem and it is in particular related to the characteristic
length scale at which ρ changes along the curve. If μ is chosen to be large compared with the
length of the curve, the minimiser is again forced to be trivial. Let us make these heuristics
precise in the following.

Proposition 3.3 (Trivial minimiser for μ large) For μ large enough, the trivial state (ρ0, θ0) is
the unique solution of the minimisation problem (2.6).

Proof. We structure the proof into two steps. In Step 1 we show that, for μ large, the trivial
state u0 = (ρ0, θ0) with ρ0 = 1 and θ0(s) = s is a strict minimiser in a neighbourhood which is
independent of μ. In Step 2, we prove that all minimisers converge to u0 in the H1 norm as
μ → ∞. The combination of these two steps entails then that all minimisers necessarily coincide
with u0 for μ sufficiently large, for they are arbitrarily close to u0 (Step 2) which is locally the
unique minimiser (Step 1).

Step 1: The trivial state is a strict local minimiser. Let us check that, for μ large enough, the
second variation δ2Eμ(u0) of Eμ = 1

2

∫ 2π

0 (β(ρ)θ̇2 + μρ̇2)ds is positive. Indeed, for the arbitrary
directions u1 = (ρ1, θ1) and ũ1 = (ρ̃1, θ̃1), we can compute

δ2Eμ(u0)(u1, ũ1)

=
∫ 2π

0

(
1

2
β ′′(ρ0) θ̇2

0 ρ1ρ̃1 + β ′(ρ0)θ̇0

(
θ̇1ρ̃1 + ρ1

˙̃
θ1

)
+ β(ρ0) θ̇1

˙̃
θ1 + μ2 ρ̇1

˙̃ρ1

)
ds, (3.6)

which is uniformly continuous around u0. In particular, with θ̇0 = 1 and rearranging terms,

δ2Eμ(u0)(u1, u1) =
∫ 2π

0

(
μρ̇2

1 + β(ρ0)θ̇2
1 + 2β ′(ρ0)ρ1θ̇1 + β ′′(ρ0)

2
ρ2

1

)
ds.

By integrating by parts and using the Cauchy–Schwarz inequality in the third term, we get

δ2Eμ(u0)(u1, u1) �μ

∫ 2π

0
ρ̇2

1 ds + β(ρ0)
∫ 2π

0
θ̇2

1 ds

−
(

4β ′(ρ0)2

Cβ(ρ0)

) 1
2

‖ρ̇1‖L2(0,2π) (Cβ(ρ0))
1
2 ‖θ1‖L2(0,2π) − |β ′′(ρ0)|

2

∫ 2π

0
ρ2

1 ds,

where C is the Poincaré constant on (0, 2π ). Using again Poincaré’s inequality to bound the
second and last term in the right-hand side above, and Young’s inequality for the third term we
are left with

δ2Eμ(u0)(u1, u1) �
(

μ − 2β ′(ρ0)2

Cβ(ρ0)
− |β ′′(ρ0)|

2C

) ∫ 2π

0
ρ̇2

1 ds + β(ρ0)

2

∫ 2π

0
θ̇2

1 ds,
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which is positive for

μ >
2β ′(ρ0)2

Cβ(ρ0)
+ |β ′′(ρ0)|

2C
.

As δ2Eμ(u0) is positive, u0 minimises Eμ on some neighbourhood Uμ ⊂ P × A for μ�μ0 and
for some μ0 > 0. Since Eμ is increasing in μ and Eμ(u0) does not depend on μ, Uμ may be taken
to be increasing in μ as well. Thus, u0 minimises Eμ on Uμ0 for all μ�μ0.

Step 2: Global minimisers converge to the trivial state. We next prove that, for any δ > 0 there
exists μc > 0 such that for any μ > μc, any global minimiser (ρ, θ ) of Eμ is such that

‖ρ − ρ0‖L2(0,2π) + ‖θ − θ0‖L2(0,2π) � ‖ρ̇‖L2(0,2π) + ‖θ̇ − θ̇0‖L2(0,2π) < δ (3.7)

where we use the sign � to indicate the implicit occurrence of a constant just depending on data.
In fact, we have that

Eμ(ρ0, θ0) � Eμ(ρ, θ ) =
∫ 2π

0

(
1

2
β(ρ)θ̇2 + μ

2
ρ̇2

)
ds

�
∫ 2π

0

(
1

2
βmθ̇2 + μ

2
ρ̇2

)
ds �

∫ 2π

0

(
1

2
βmθ̇2

0 + μ

2
ρ̇2

)
ds, (3.8)

since θ0 minimises the Dirichlet energy
∫ 2π

0 θ̇2 ds under the conditions θ (0) = 0, θ (2π ) = 2π .

Since Eμ(ρ0, θ0) = 1
2

∫ 2π

0 β(ρ0)θ̇2
0 = πβ(ρ0) < ∞, both terms in the above right-hand side are

bounded. We hence deduce that
∫ 2π

0 θ̇2 ds is bounded uniformly in μ and
∫ 2π

0 ρ̇2 ds = O(μ−1) =
o(μ−1/2), so that there exists μ1 > 0 such that for μ > μ1 we have

∫ 2π

0 ρ̇2 ds < δ/2. Now, ρ ∈ P

implies
∫ 2π

0 (ρ − ρ0)ds = 0 and by the Poincaré inequality as well as the continuous embedding
in L∞(0, 2π ),

‖ρ − ρ0‖L∞(0,2π) � ‖ρ̇‖L2(0,2π) = o(μ−1/4),

and, by the local Lipschitz continuity of β,

‖β(ρ) − β(ρ0)‖L∞(0,2π) = o(μ−1/4).

This allows us to refine estimate (3.8) as follows:

Eμ(ρ0, θ0) � Eμ(ρ, θ ) �
∫ 2π

0

(
1

2
β(ρ0)θ̇2

0 + μ

2
ρ̇2

)
ds + o(μ−1/4)

= Eμ(ρ0, θ0) + μ

2

∫ 2π

0
ρ̇2ds + o(μ−1/4), (3.9)

from which we get lim
μ→∞ μ

∫ 2π

0 ρ̇2 ds = 0, and then

lim
μ→∞ Eμ(ρ, θ ) = lim

μ→∞

∫ 2π

0

1

2
β(ρ)θ̇2 ds = Eμ(ρ0, θ0).
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Finally, we control∣∣∣∣∫ 2π

0

1

2
β(ρ)θ̇2 ds − Eμ(ρ0, θ0)

∣∣∣∣= ∣∣∣∣∫ 2π

0

β(ρ0)

2
(θ̇2 − θ̇2

0 )ds + o(μ−1/4)

∣∣∣∣ ,

so to prove that lim
μ→∞

∫ 2π

0 θ̇2 ds = lim
μ→∞

∫ 2π

0 θ̇2
0 ds = 2π . This is enough to conclude that

lim
μ→∞ ‖θ̇ − θ̇0‖L2(0,2π) = 0.

We can then choose μ2 such that, for μ > μ2, ‖θ̇ − θ̇0‖L2(0,2π) < δ/2 and set μc = max{μ1, μ2}
for which the second inequality in (3.7) holds. The first inequality follows from Poincaré’s
inequality. �

We present now a symmetry result which will turn out useful later on, when interpreting the
numerical findings.

Proposition 3.4 (Symmetry of Eμ) If (ρ, θ ) is a local minimiser of Eμ for β, then (2ρ0 − ρ, θ ) is
a local minimiser of Eμ for β̃, defined as β̃(ρ) = β(2ρ0 − ρ).

Proof. The integrand is unchanged by this transformation, so that the first and second variations
of Eμ at (ρ, θ ) and (2ρ0 − ρ, θ ) when considering respectively β and β̃ are identical. �

4 Bifurcation analysis

By Proposition 3.3, the circle with constant density is the global minimiser of the energy Eμ (1.1)
for large enough values of the diffusivity μ. In this section, candidates for nontrivial minimisers
are constructed by bifurcation from this trivial critical point with decreasing μ > 0 as bifurcation
parameter. The analysis will be based on the Euler–Lagrange equations of a suitable Lagrangian,
incorporating the constraints of closedness of the curve and of given total mass. Additional aux-
iliary conditions will eliminate symmetries resulting from arbitrary positioning of the curve in
the plane.

4.1 Euler–Lagrange equations

We introduce the Lagrange multipliers (λx, λy) ∈R
2 for the closedness constraint and λM ∈R for

the mass constraint (cf. the definitions (2.3) and (2.4) of admissible θ and ρ respectively), and
define the Lagrangian

L(ū) := 1

2

∫ 2π

0

(
β(ρ)θ̇2 + μρ̇2

)
ds +

∫ 2π

0
(λx cos θ + λy sin θ + λM (ρ − 1)) ds ,

with ū = (ρ, θ , λx, λy, λM ), where ρ, θ − s ∈ H1(T2π ). Critical points of the energy subject to the
constraints solve the Euler–Lagrange equations

μρ̈ − 1

2
β ′(ρ) θ̇2 = λM , (4.1)

d

ds

(
β(ρ) θ̇

)= −λx sin θ + λy cos θ , (4.2)
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along with the boundary conditions

ρ(2π ) − ρ(0) = 0 , ρ̇(2π ) − ρ̇(0) = 0 , θ (0) = 0 , θ (2π ) = 2π , (4.3)

and mass and closedness constraints∫ 2π

0
ρ ds = 2π ,

∫ 2π

0

(
cos θ

sin θ

)
ds =

(
0
0

)
, (4.4)

respectively. For every solution, new solutions can be produced by arbitrary shifts in s. In order
to eliminate this degree of freedom, we add the condition

ρ(0) = 1 , (4.5)

where we note that 1 is the average value of ρ by the mass constraint, which is assumed by
every continuous solution. One symmetry remains: the problem is still invariant under the flip
symmetry s ↔ −s (with θ ↔ −θ , λy ↔ −λy).

The trivial solution ū0 of (4.1)–(4.5) (and the minimiser for large enough μ) is the unit circle
with constant density:

θ0(s) = s , ρ0(s) = 1 , λx0 = λy0 = 0 , λM0 = −1

2
β ′(1) . (4.6)

For the stiffness coefficient β, we shall assume the following local behaviour close to the trivial
solution:

β(ρ) = 1 + m(ρ − 1) + h
(ρ − 1)2

2
+ O

(
(ρ − 1)5

)
as ρ → 1 . (4.7)

The bifurcation behaviour will be characterised in terms of the Taylor coefficients m, h ∈R. The
complexity of the bifurcation computations below have motivated the simplifying assumption
that the third- and fourth-order coefficients vanish. Including these higher order terms would
only alter the sub-/supercritical nature of the bifurcation, but not the critical values for the
parameter μ.

4.2 Linearisation around the trivial state

In terms of a small correction ū1 := ū − ū0, the linearisation of problem (4.1)–(4.5) reads (using
(4.7))

μρ̈1(s) − m θ̇1(s) − h

2
ρ1(s) − λM1 = f (s) , (4.8)

d

ds

(
θ̇1(s) + m ρ1(s)

)+ λx1 sin s − λy1 cos s = g(s) , (4.9)

subject to the boundary conditions

ρ1(2π ) − ρ1(0) = 0 , ρ̇1(2π ) − ρ̇1(0) = 0 , θ1(0) = 0 , θ1(2π ) = 0 , (4.10)

the constraints ∫ 2π

0
ρ1(s) ds = 0 ,

∫ 2π

0

(− sin s

cos s

)
θ1(s)ds =

(
αx

αy

)
, (4.11)
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and the auxiliary condition

ρ1(0) = 0 . (4.12)

The inhomogeneities f (s), g(s), αx, αy can be interpreted as non-linear corrections.

Proposition 4.1 (Solution of the homogeneous linearised system) A nonzero solution of (4.8)–
(4.12) with f = g = αx = αy = 0, μ > 0, m, h ∈R, only exists in the following cases:

Case 1: There exists j ∈N, j � 2, such that μ = μj(m, h) := 1
j2

(
m2 − h

2

) 	= − h
2 . The space of

solutions is one-dimensional and given by

ρ1(s) = a1 sin(js) , θ1(s) = a1m

j
(cos(js) − 1) ,

λx1 = λy1 = λM1 = 0 , a1 ∈R . (4.13)

Case 2: μ = μ1(h) := − h
2 	= 1

j2

(
m2 − h

2

)
for all j ∈N, j � 2. The space of solutions is one-

dimensional and given by

ρ1(s) = b1 sin s , θ1(s) = 0 , λx1 = λM1 = 0 , λy1 = b1m , b1 ∈R . (4.14)

Case 3: There exists j ∈N, j � 2, such that μ = μj(m, h) = μ1(h). The space of solutions is
two-dimensional and given by

ρ1(s) = a1 sin(js) + b1 sin s , θ1(s) = a1m

j
(cos(js) − 1) ,

λx1 = λM1 = 0 , λy1 = b1m , a1, b1 ∈R .

Remark 4.2

(1) As expected, bifurcations only occur under the condition (see (3.3))

2m2 − h = 2β ′(1)2 − β(1)β ′′(1) > 0 .

(2) For Case 1 solutions, the curvature correction κ1 = θ̇1 satisfies κ1 = −mρ1. This means that
the sign of m = β ′(1) decides if curvature maxima coincide with density maxima (m < 0)
or with density minima (m > 0), which is not a surprising result. The condition j � 2 is a
manifestation of the Four Vertex Theorem (see Section 2).

(3) Case 2 solutions exhibit only one maximum and one minimum of the density without any
effect on the circular shape of the curve. The numerical computations reported in Section 5
show, however, that these solutions initiate bifurcating branches strongly deviating from the
circular shape far enough from the bifurcation point.

(4) Whereas Cases 1 and 2 correspond to codimension-one bifurcations, Case 3 represents
a bifurcation of codimension two, whose nonlinear structure will not be analyzed in the
following.

(5) In a bifurcation scenario, where the values of m and h are fixed and the value of μ is
decreased, there are several situations. For h � 2m2 no bifurcations occur by convexity (see
above). For 0 � h < 2m2 an infinite series of Case 1 bifurcations occurs at the bifurcation
values μj, j � 2, with the first one at μ = μ2. For h < 0, apart from the bifurcations at
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FIGURE 1. Regions of different bifurcation behaviour in the (m,h)-plane according to Proposition 4.1: No
bifurcations above the parabola h = 2m2. Only Case 1 bifurcations between the parabola and the m-axis.
Case 1 and Case 2 bifurcations below the m axis, with codimension-two bifurcations on the parabolas
h = −2m2/(j2 − 1), j � 2. The first bifurcation is a Case 2 bifurcation below the parabola h = −2m2/3, and
a Case 1 bifurcation with j = 2 otherwise.

μ = μ2, μ3, . . ., there is also a Case 2 bifurcation at μ = μ1. There are two subcases
concerning the question, which bifurcation occurs first, determined by the criterion

μ1 > μ2 ⇐⇒ h < −2

3
m2 .

Codimension-two bifurcations occur whenever μ1 = μj, i.e. h = −2m2/(j2 − 1) for some
j � 2. These observations are illustrated in Figure 1 in the (m,h)-plane and in Figure 2 in
the (h-μ)-plane.

Proof. By the smoothness of solutions of ordinary differential equations, we can employ Fourier
representation and write

ρ1(s) =
∑
k∈Z

ρ̂1,keiks , θ1(s) =
∑
k∈Z

θ̂1,keiks .

We keep the inhomogeneities for the moment, since this will be useful for the proof of the
following result, and we use their Fourier series

f (s) =
∑
k∈Z

f̂keiks , g(s) =
∑
k∈Z

ĝkeiks .

The constraints (4.11) imply

ρ̂1,0 = 0 , θ̂1,±1 = 1

2π
(αy ± iαx) . (4.15)

Comparing Fourier coefficients for k = 0 in (4.8), (4.9) implies

λM1 = −̂f0 and ĝ0 = 0 , (4.16)
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FIGURE 2. Critical values of μ for Case 1 (thin) and Case 2 (bold). The intersections correspond to (the
degenerate) Case 3 which is not studied in this paper. The dashes indicate the value of j: — — for j = 1,
— - — for j = 2, etc.

where the latter has to be seen as a solvability condition for the inhomogeneous problem.
Coefficients for k = ±1 in (4.8) and (4.9) give

− (μ − μ1) ρ̂1,±1 = f̂±1 − m

2π
(αx ∓ iαy) , (4.17)

± miρ̂1,±1 ∓ i

2
λx1 − 1

2
λy1 = ĝ±1 + 1

2π
(αy ± iαx) . (4.18)

For coefficients with |k|� 2, we obtain

−
(

μk2 + h

2

)
ρ̂1,k − ikmθ̂1,k = f̂k , −k2θ̂1,k + ikmρ̂1,k = ĝk ,

implying

− k2(μ − μ|k|)ρ̂1,k = f̂k − im

k
ĝk , θ̂1,k − im

k
ρ̂1,k = − 1

k2
ĝk . (4.19)

The results follow immediately from the homogeneous (f = g = αx = αy = 0) versions of (4.15)–
(4.19), using the auxiliary conditions (4.12). �

Lemma 4.3 (Solvability conditions) Case 1. Problem (4.8)–(4.12) with 0 < μ = μj 	= μ1, j � 2,
has a solution if and only if

j

∫ 2π

0
f (s) cos(js) ds = m

∫ 2π

0
g(s) sin(js) ds ,

j

∫ 2π

0
f (s) sin(js) ds = −m

∫ 2π

0
g(s) cos(js) ds ,

∫ 2π

0
g(s) ds = 0 . (4.20)
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Case 2. Problem (4.8)–(4.12) with 0 < μ = μ1 	= μj, ∀ j � 2, has a solution if and only if∫ 2π

0
f (s) cos s ds = mαx ,

∫ 2π

0
f (s) sin s ds = mαy ,

∫ 2π

0
g(s) ds = 0 . (4.21)

Proof. For Case 1, the solvability conditions follow from (4.16), (4.19), and for Case 2 from
(4.16), (4.17). �

4.3 Asymptotic expansion around bifurcation points

For the codimension-one bifurcations identified above (Cases 1 and 2 in Proposition 4.1), the
existence of bifurcating solution branches is guaranteed by general results on bifurcations from
simple eigenvalues [8]. The local shape of these branches will be analysed by perturbation expan-
sions. By the presence of a flip symmetry in problem (4.1)–(4.5), pitchfork bifurcations can be
expected, at least generically. For the bifurcation at μ = μj, j ∈N, we therefore introduce

μ = μj − σA2 , 0 < A � 1 , σ ∈ {1, −1} .

The small parameter A measures the distance from the bifurcation point, whereas the sign σ ,
to be determined by the analysis, tells us whether the bifurcation is supercritical for σ > 0 or
subcritical for σ < 0. This convention is in line with the scenario of decreasing μ (see Remark
4.2, 5.). The solution ū = (ρ, θ , λx, λy, λM ) of (4.1)–(4.5) will be approximated by an asymptotic
expansion

ū = ū0 + Aū1 + A2ū2 + A3ū3 + O(A4) , (4.22)

where the reason for going up to third order will become apparent below.

Remark 4.4 (Bifurcation diagram for classical elasticae) The expectation of pitchfork bifurca-
tions and, thus, the ansatz (4.22) can also be motivated by the bifurcation diagram for classical
elasticae (e.g. [20, Ch.7]). The diagram shows an infinite series of bifurcations similar to the
series of Case 1 bifurcations in (4.1)–(4.5). In the classical elastica problem all these bifurcations
are supercritical pitchforks.

The notation in (4.22) is consistent with the above. The trivial rotationally symmetric solution
of (4.1)–(4.5) is denoted by ū0, and the first correction ū1 has to satisfy the homogeneous ver-
sion (f = g = αx = αy = 0) of the linearised problem (4.8)–(4.12) with μ = μj, whose solution
is unique up to a scalar constant (a1 in Case 1 and b1 in Case 2). The problems for ū2 and ū3

are determined by substituting the ansatz (4.22) into (4.1)–(4.5), expanding the nonlinearities
and comparing coefficients of A2 and A3. Both ū2 and ū3 solve inhomogeneous versions of the
linearised problem (4.8)–(4.12) with μ = μj and with the inhomogeneities

f2 = m

2
θ̇2

1 + hρ1θ̇1 , g2 = − d

ds

(
mρ1θ̇1 + h

2
ρ2

1

)
− θ1(λx1 cos s + λy1 sin s) , (4.23)

(
αx2

αy2

)
= 1

2

∫ 2π

0
θ2

1

(
cos s

sin s

)
ds , (4.24)
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for ū2, and

f3 = σ ρ̈1 + mθ̇1θ̇2 + h

2

(
2ρ2θ̇1 + 2ρ1θ̇2 + ρ1θ̇

2
1

)
,

g3 = − d

ds

(
mρ1θ̇2 + mρ2θ̇1 + h

2ρ2
1 θ̇1 + hρ1ρ2

)
− θ1(λx2 cos s + λy2 sin s) − θ2(λx1 cos s + λy1 sin s) (4.25)

+1

2
θ2

1 (λx1 sin s − λy1 cos s) , (4.26)

(
αx3

αy3

)
=
∫ 2π

0

⎛⎜⎜⎝θ1θ2 cos s − 1

6
θ3

1 sin s

θ1θ2 sin s + 1

6
θ3

1 cos s

⎞⎟⎟⎠ ds , (4.27)

for ū3. Note that the inhomogeneities depend on lower order terms. So the terms in the asymptotic
expansion (4.22) can be computed recursively. However, this comes with two problems, which
are connected: the solution of the linearised problem is not unique (see Proposition 4.1), and
it does not have a solution for arbitrary inhomogeneities (see Lemma 4.3). The strategy is to
recover the lacking information for uniqueness from the solvability conditions for higher order
problems. It will turn out (as a consequence of the above mentioned flip symmetry) that the
inhomogeneities (4.23), (4.24) of the second-order problem satisfy the solvability conditions, no
matter what the value of the missing first-order constant (a1 in Case 1 and b1 in Case 2) is. This
is the reason why the third-order problem has to be considered, whose solvability condition will
provide an equation for the missing first-order constant. In the following, the essential results
of these straightforward but lengthy computations will be given. They have been carried out
manually and checked with the help of MATHEMATICA.

Case 1 bifurcations

The goal is to determine the value of the constant a1 in the first-order correction ū1 of the
expansion (4.22), given in (4.13). The first step is the computation of the second-order terms.

Lemma 4.5 (Case 1: second-order solution) Let j � 2 and ū1 be given by (4.13). Then every
solution of (4.8)–(4.12) with 0 < μ = μj 	= μ1 and with the inhomogeneities given by (4.23),
(4.24) can be written as

ρ2(s) = a2 sin(js) + a2
1(m(m2 − h))

2(2m2 − h)
(cos(2js) − cos(js)) ,

θ2(s) = a2
m

j
(cos(js) − 1) − a2

1(6m4 − 6m2h + h2)

8j(2m2 − h)
sin(2js) , a2 ∈R ,

λx2 = λy2 = 0, λM2 = −a2
1m(m2 − 2h)

4
. (4.28)

Lemma 4.6 (Case 1: the missing constant) Let j � 2, 0 < μj 	= μ1, and ū1, ū2 be given by (4.13),
(4.28). Then the inhomogeneities given by (4.25)–(4.27) satisfy the solvability conditions (4.20),
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if and only if

a1

(
j2σ − a2

1

Z(m, h)

8(2m2 − h)

)
= 0 , with Z(m, h) := −14m6 + 36m4h − 18m2h2 + h3 .

(4.29)

This shows that Case 1 bifurcations are pitchforks if and only if Z(m, h) 	= 0. The amplitude
of the first-order term along the bifurcating branch is determined by the nontrivial solutions of
(4.29):

a2
1 = 8j2σ (2m2 − h)

Z(m, h)
, (4.30)

which shows for the criticality σ = sign Z(m, h) that the bifurcation is supercritical for
Z(m, h) > 0 and subcritical for Z(m, h) < 0. Writing Z(m, h) = m6(z3 − 18z2 + 36z − 14) with
z := h/m2 < 2 shows that Z(m, h) > 0 and 2m2 > h are equivalent to

z1 < z < z2 with z1 ≈ 0.52 and z2 ≈ 1.71. (4.31)

Consequently, a supercritical pitchfork bifurcation occurs in the parabolic region

{(m, h) ∈R
2 : z1m2 < h < z2m2}.

Conversely, if (m,h) is such that Z(m, h) < 0, which holds for h < z1m2 or 2m2 > h > z2m2, then
the bifurcation is subcritical. The situation is illustrated in Figure 3. Note that the criticality is
independent from j. For a fixed pair (m,h), the whole series of Case 1 bifurcations has the same
criticality.

Case 2 bifurcations

Lemma 4.7 (Case 2: second-order solution) Let ū1 be given by (4.14). Then every solution of
(4.8)–(4.12) with 0 < μ = μ1 	= μj, ∀j � 2, and with the inhomogeneities given by (4.23), (4.24)
can be written as

ρ2(s) = b2 sin s + b2
1mh

2(2m2 + 3h)
(cos(2s) − cos s) , b2 ∈R ,

θ2(s) = b2
13h2

8(2m2 + 3h)
sin(2s) , (4.32)

λx2 = − b2
1m2h

2(2m2 + 3h)
, λy2 = b2m , λM2 = 0 .

Lemma 4.8 (Case 2: the missing constant) Let 0 < μ1 	= μj, ∀j � 2, and ū1, ū2 be given by (4.14),
(4.32). Then the inhomogeneities given by (4.25)–(4.27) satisfy the solvability conditions (4.21),
if and only if

b1

(
σ + b2

1

3h3

8(2m2 + 3h)

)
= 0 . (4.33)
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FIGURE 3. Contour plot of Z(m,h) given by (4.29). The solution in Case 1 has the structure of a supercritical
pitchfork bifurcation whenever Z(m, h) > 0 and h < 2m2. These conditions define the crosshatched region
z1m2 < h < z2m2 below the parabola h = 2m2 (black line); z1 ≈ 0.52 and z2 ≈ 1.71, see (4.31). Conversely,
if Z(m, h) < 0 which is true when h < z1m2 or in the narrow white region given by z2m2 < h < 2m2, then the
bifurcation is subcritical.

This shows that Case 2 bifurcations are pitchforks, since

b2
1 = −8σ (2m2 + 3h)

3h3

is finite by μ1 = −h/2 > 0 and nonvanishing by 2m2 + 3h = 8(μ2 − μ1) 	= 0. The bifurcation is
subcritical for 2m2 + 3h < 0, i.e. when the Case 2 bifurcation is the first one for decreasing μ

(see Remark 4.2, 5.). It is supercritical for 2m2 + 3h > 0. It is also noteworthy that the circular
shape of the trivial solution curve is now perturbed at the order of A2 with the perturbation given
in (4.32). The leading order density perturbation ρ1 has both its extrema coinciding either with
the maxima of the curvature perturbation θ̇2 (in the subcritical case) or with its minima (in the
supercritical case). This can be verified numerically, see Cases (iv) and (v) in Section 5.3 and
Figure 6 for j = 1.

4.4 Energy and stability

As an indicator for the stability of bifurcating solutions, we investigate the changes of the
energy (1.1) along bifurcating branches. For this purpose, we substitute μ = μj − σA2 and the
asymptotic expansion (4.22) of the bifurcating solution into the energy and re-expand:

Eμ(ρ, θ ) = 1

2

∫ 2π

0
(β(ρ) θ̇2 + μρ̇2) ds = E0 + AE1 + A2E2 + A3E3 + A4E4 + O(A5) .
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For the coefficients, we obtain (all computations of this section were again verified with
MATHEMATICA)

E0 = 1

2

∫ 2π

0
ds = π = Eμj (ρ0, θ0) , E1 = 1

2

∫ 2π

0

(
mρ1 + 2θ̇1

)
ds = 0 , (4.34)

E2 = 1

2

∫ 2π

0

(
2mρ1θ̇1 + h

2ρ2
1 + θ̇2

1 + μjρ̇
2
1

)
ds , (4.35)

E3 = 1

2

∫ 2π

0

(
2mρ1θ̇2 + 2mρ2θ̇1 + mρ1θ̇

2
1 + hρ1ρ2 + hρ2

1 θ̇1 + 2θ̇1θ̇2 + 2μjρ̇1ρ̇2
)

ds , (4.36)

E4 = 1

2

∫ 2π

0

(
2mρ1θ̇3 + 2mρ3θ̇1 + mρ2θ̇

2
1 + 2mρ2θ̇2 + 2mρ1θ̇1θ̇2 + h

2
ρ2

2 + hρ1ρ3

+ 2hρ1ρ2θ̇1 + h

2
ρ2

1 θ̇
2
1 + hρ2

1 θ̇2 + 2θ̇1θ̇3 + θ̇2
2 + μjρ̇

2
2 + 2μjρ̇1ρ̇3 − σ ρ̇2

1

)
ds . (4.37)

Lemma 4.9 (Energy expansion) Let j ∈N, let ū1, ū2 be given by (4.13), (4.28) in Case 1, j � 2, or
by (4.14), (4.32) in Case 2, j = 1. Let the constants a1 in Case 1 or b1 in Case 2 be chosen such
that the third-order inhomogeneities (4.25)–(4.27) satisfy the solvability conditions of Lemma 4.6
in Case 1 and Lemma 4.8 in Case 2. Let ū3 be a corresponding solution of the linearised problem
(4.8)–(4.12) with μ = μj. Then the coefficients in the energy expansion above satisfy E1 = E2 =
E3 = 0 in both cases, as well as

E4 = −2π j4(2m2 − h)

Z(m, h)
(4.38)

in Case 1 with the notation of Lemma 4.6. In Case 2, we have

E4 = 2π (3h + 2m2)

3h3
.

As expected, the sign of E4 goes with criticality of the bifurcating branch. Stability is gained
(E4 < 0) along supercritical branches and lost (E4 > 0) along subcritical branches. In particular,
this can be expected to decide the stability of the branch corresponding to the first bifurcation for
decreasing μ.

5 Numerical continuation of bifurcation branches

5.1 Discretisation

The Euler–Lagrange equations (4.1) and (4.2) are discretised by finite differences as follows.
For N ∈N, we discretise the interval [0,L] by introducing �s = L(N − 1)−1 and si = i�s, 0 � i �
N − 1, which naturally leads to the (abuse of) notation ρ = (ρi)

N−1
i=1 , θ = (θi)

N−1
i=1 with ρi = ρ(si),

θi = θ (si). This can be thought of as considering a polygonal approximation of the curve γ , where
θi is the angle of the ith side and where ρi is a piecewise constant approximation of ρ on that side
(i.e. ρi is not associated to a vertex).
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Using the notation u = (ρ, θ ) and � = (λx, λy, λM ), we propose the following natural finite
differences approximation for (4.1) and (4.2), respectively:

ELρ(u, �) = μ

(
ρi−1 − 2ρi + ρi+1

�s2

)
− 1

2
β ′(ρi)

(
ρi+1 − ρi−1

2�s

)2

− λM = 0 , (5.1)

ELθ (u, �) = 1

�s

(
β

(
ρi+1 + ρi

2

)(
θi+1 − θi

�s

)
− β

(
ρi + ρi−1

2

)(
θi − θi−1

�s

))
+ λx sin θi − λy cos θi = 0 , (5.2)

for 0 � i � N − 1.
To remove the degree of freedom associated to solid rotations, we can set θ (0) = 0 at the

continuous level. This is reflected by the choice θ0 = 0 at the discrete level. We also need to
provide values for indices i = −1, N . Again by periodicity we set ρ−1 = ρN−1, ρN = ρ0, θ−1 =
θN−1 − 2π , and θN = θ0 + 2π . Thus, we only consider (5.1) for 0 � i < N − 1 and (5.2) for 0 <

i < N − 1.
The mass and closedness constraints can be naturally approximated as

CM (u, �) = �s
N−1∑
i=0

ρi − M = 0 ,

(
Cx

Cy

)
(u, �) = �s

N−1∑
i=0

(
cos θi

sin θi

)
= 0 .

We are left with a system of 2N + 1 nonlinear equations which we propose to solve using
a damped Newton method. If we assume ūk = (

uk , �k
)

to be known, we look for ūk+1 as a
solution to

J (ūk) (ūk+1 − ūk) = −η r(ūk) , (5.3)

where r(ūk) = (
ELρ , ELθ , Cx, Cy, CM

)
, J is the Jacobian of r with respect to ū, and η � 1 is the

damping parameter with η = 1 corresponding to the standard Newton’s method.

5.1.1 Continuation of branches

To follow numerically the bifurcation branches, one can pick some μ close to the critical value
μj and take as initial value a perturbation of the trivial solution (corresponding to the circle
with homogeneous ρ). The position of μ relative to the critical value and the amplitude of
the bifurcation are given precisely by the results of Section 4. Solving (5.3) yields a numeri-
cal approximation of a critical point, which can be used as initial condition for neighbouring
values of μ. By iterating this process, one can move along the branch, provided that

(1) the branch is locally smooth (for example, this is not the case when ρ hits zeros of β, where
one could expect the branch to terminate),

(2) the features of the solution can be resolved by the discretisation with the chosen value of N .
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FIGURE 4. The different sets of model parameters (m,h) represented on the parameter space. The grey
region corresponds to parameters which have no critical points except the trivial solution. The crosshatched
region corresponds to supercritical bifurcations (Case 1 for h > 0, Case 2 for h < 0), and the plain white
region to subcritical bifurcations. The dashed parabolas indicate where Case 3 occurs, for j up to 8.

5.2 Choice of parameters

In what follows we will consider a number of different situations, depending on the choice of
parameters (m, h) for the function β, which will be of the form (4.7) with β0 = 1, namely

β(ρ) = 1 + m (ρ − ρ0) + h

2
(ρ − ρ0)

2 .

As before we will take M = L = 2π , so that ρ0 = 1. We consider six sets of parameters:

(i) (m, h) = (1, 1.85) corresponding to Case 1 with σ = −1 (subcritical bifurcation),

(ii) (m, h) = (1, 1) corresponding to Case 1 with σ = 1 (supercritical bifurcation),

(iii) (m, h) = (1, 1/4) corresponding to Case 1 with σ = −1 (subcritical bifurcation),

(iv) (m, h) = (1, −1/2) corresponding to Case 1 with σ = −1 (subcritical bifurcation) and
supercritical Case 2,

(v) (m, h) = (1, −2) corresponding to Case 1 with σ = −1 (subcritical bifurcation) and subcrit-
ical Case 2,

(vi) (m, h) = (0, −1), which is similar to (v) in the special choice m = 0. At first order, γ should
remain a circle, including for Case 1, as the correction coefficient θ1 ≡ 0 for m = 0, see
(4.13).

For the definition of the different cases, we refer to Proposition 4.1. The parameters in (i)–(vi)
are represented in Figure 4. The corresponding results are presented in Figures 5 and 6.
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FIGURE 5. Numerical results for Cases (i) to (vi), in columns, for j = 1, 2, 3. The first column shows the
amplitude in ρ, where the lower and greatest values of ρ are represented. The horizontal grey line corre-
sponds to the trivial solution, for which ρ ≡ 1. The second column shows the energy Eμ, with the horizontal
grey line again corresponding to the trivial solution, for which Eμ = π . The dashes indicate the value of j
for each branch: — — for j = 1 (absent in (i) to (iii)), — - — for j = 2, — - - — for j = 3. The grey vertical
lines indicate the theoretical critical values for μ. In Cases (i) to (iii), the secondary bifurcation branch is
plotted in gray. As detailed in (4.22), at a supercritical (resp. subcritical) bifurcation point, the branch will
appear for values of μ greater (resp. lower) than the critical value.
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FIGURE 6. The shapes corresponding to each case, with j = 1, 2, 3 increasing with each column. These
correspond to the last point computed on the branches shown in Figure 5. In Cases (i) to (iii), the shapes in
the first column are in grey, as they do not correspond to branches bifurcating from the trivial state, and j is
not defined in this case. They are placed in the first column due to their resemblance to shapes obtained for
h < 0, in Cases (iv) to (vi). Thicker lines denote larger values of ρ.
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5.3 Results

The method described above (Section 5.1) was implemented in Julia [4]. Figure 5 presents the
bifurcating branches both in terms of the amplitude of the density ρ and in terms of the energy
Eμ. It offers a partial confirmation of the results of Section 4 in that:

• For Case (ii), j � 2 and (iv), j = 1, the bifurcation appears supercritical, i.e., the branch bifur-
cates to the left of the critical μ. Additionally, the energy decreases close to the trivial state.
These branches offer critical points of Eμ which are candidates to be global minimisers.

• For all other cases, the bifurcation is subcritical, i.e., the branch bifurcates to the right of the
critical μ, and the energy initially increases as one gets further from the trivial state.

Interestingly, Cases (i) and (iv) feature turning points, where the derivative of Eμ along the
branch seems to change sign. In Case (i) it becomes negative, leading to critical points of lower
energy with respect to the trivial state, and potentially global minimisers. This fact precludes
uniqueness of minimisers of Eμ in general.

We were able to track an additional branch in Cases (i) to (iii), which seems to bifurcate
from the j = 2 branch. No analytical results are available at this point, but we can make the
following observations. The corresponding shapes, presented in grey in Figure 6, look like the
ones obtained for j = 1 in Cases (iv) to (vi). This justifies the placement in the first column,
although j has no meaning for this branch. In Cases (i) and (iii), it bifurcates from the j = 2
branch with decreasing energy for the choice of parameter considered. Case (ii) is a bit different,
in that the bifurcation leads to critical points of higher energy, although the branch features a
turning point, after which Eμ starts decreasing and eventually becomes smaller than for the j = 2
branch, for a given value of μ.

Other features of the critical points further along the branch can be seen in Figure 6. For
Cases (i) to (v) and j > 1, one can identify the value of j with the number of flatter sections in
each closed curve. These correspond to higher values of ρ, which agree with the fact that for all
choices of parameters presented here, m � 0. This can be roughly thought as higher values of ρ

penalising higher values of the curvature θ̇ . For j = 1 or in Case (vi), the situation is different,
since the first-order correction θ1 ≡ 0. If one goes further in the expansion, one can expect that the
next-order correction θ2 have the form cos(2js), that is half the period of ρ1. This could explain
that in these cases, ρ seems to have j maxima when θ̇ has 2j.

Additionally, far from the bifurcation point and after potential turning points, one can distin-
guish Cases (i) and (ii) from Cases (iii) to (vi). For the former, μ decreases along the branch, Eμ

decreases and ρ seems to concentrate on flat sections. For the latter, the situation is the opposite:
μ increases along the branch, Eμ increases and ρ stays rather smooth.

Remark 5.1 In Proposition 3.3 it is stated that for β bounded away from 0, only the trivial state
(ρ0, θ0) is a minimiser of Eμ. The branches in Figure 5 which seem to continue far to large
values of μ have an energy clearly larger than π = Eμ(ρ0, θ0). We also recall that for the results
presented here, the choice of β is quadratic, and thus not bounded away from 0. There is then
no contradiction of our analysis.

A systematic study of the stability in terms of the energy would be interesting, although prob-
ably necessarily limited to numerics, as it would help identifying local minimisers. Such an
investigation is however out of the scope of this paper.
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6 Conclusion

To describe elastic curves in the plane, we introduced a regularised Canham–Helfrich type
functional which includes a density-modulated stiffness β. We proved that the associated min-
imisation problem has a solution if the regularisation parameter is positive. If not, the problem
has no solution in general. Conditions on the first derivatives of β were derived so that the prob-
lem has non-trivial solutions. In this case, a bifurcation analysis around the trivial solution was
performed, the regularisation parameter playing the role of the bifurcation parameter. A family of
both subcritical and supercritical pitchfork bifurcations was found, depending on the choice of β.
This contrasts with the classical elastic curves, which display supercritical bifurcations only. An
expansion of the energy confirmed that subcritical (resp. supercritical) solutions correspond to a
gain (resp. a loss) of energy compared to the trivial state. This analysis was completed by numeri-
cal continuation of the bifurcating branches, which confirmed the theoretical findings. Secondary
bifurcations and turning points – found numerically – testify of the intricate mathematical struc-
ture of the model. In particular, no uniqueness should be expected for the minimisation problem,
except for large regularisation.
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