ON A PROBLEM OF G. GOLOMB.

P. ERDOS
(received 3 August 1960)

In his paper on sets of primes with intermediate density Golomb 1!
proved the following theorem:
Let 2 < P, < P, < -+ - be any sequence of primes for which

(1) P;7= 1 (mod P,)
for every ¢ and j. Denote by 4 (x) the number of P’s not exceeding x. Then
2) lim inf 4 (z)/x = 0.

It is not difficult to see that in some sense (2) is best possible since it is
easy to construct a sequence of primes satisfying (1) for which

lim sup 4 (z)/z > 0,
Z=00

and in fact the lim sup can be as close to 1 as we wish. Golomb pointed out
that in some ways the most natural sequence satisfying (1) can be obtained
as follows: ¢, = 3, g3 = 5, g3 = 17, - - - g; is the smallest prime greater than
¢r—1 for which

¢ 2% 1 (mod ¢,), 1=si<k

Henceforth we will only consider this special sequence satisfying. (1). We
shall prove the following (as before A (x) denotes the number of ¢, < z).

THEOREM.

A =(1401)) —MmMM8—.

(@) = (1+ o)) log « loglog =
log,  will denote the % times iterated logarithm, ¢, ¢y, - - - will denote
positive absolute constants.

Our method will be similar to the one used in our recent joint paper with
Jabotinsky 2, but we will also need Brun’s method and the results on primes
in short arithmetic progressions.

1 S. Golomb, Math. Scand. 3 (1955), 264—174.

* P, Erdds and E. Jabotinsky, Indig. Math. 20 (1958), 115—128.
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LemMA 1. Denote by n(z, £, ) the number of primes p < #,p = (mod %),

(¢, ) = 1. Then (expz = )
7 1
(k) log = (1 +0 (log a:))

uniformly for all 2 < exp (c, log z/loglog z), except possibly for the mul-
tiples of a certain k* = k*(x) where £* > (log )4 (4 is an arbitrary con-
stant, but the constant in O(1/log ) depends on 4).

Lemma 1 is well known 3.

(3) n(x, k, 1) =

LEMMA 2. Let 2 = p, < p, << - - - be the sequence of consecutive primes,
and let » be a fixed integer, 0 = »;, < r. Denote by N,(z) the number of
integers 1 < z < x for which z =1/ (mod %), (/, ) = 1 and

e£af (modp), 1=j=r,

where the a{¥) are arbitrary residues and p, < z. Then

Nk(x)<02% II (1 —rdps).

= z/k

The proof follows immediately from Brun’s method 4.

LeEmMmA 3. There exists a constant ¢, so that
(4) loggz — ¢y < 3 /g, <logzz + cs

Gy

First we prove the upper bound. If the upper estimation in (4) would not
hold then for every ¢ there would be arbitrarily large values of « so that for
every z < &

1 1
) 5L lge> 3 L loge
w=z9q; gss9i
and
1
(8) > —>loggx + c.
a.ézqi

Let 212 < ¢, < z. Clearly by the definition of the ¢’s ¢, =2 0 (mod p) for
all p < 2¥2 and ¢,£ 1 (mod ¢;) for ¢; < #!/2. Thus by lemma 2 (k¥ =1)

(7) Ax) < a2+ cox T[ (1 —r,/p))

p, V3
where 7, = 2 if p, is a ¢ and is 1 otherwise. From (7), (6) and from
Hv<z“’ (l - 1/1’) < 04/10gx

(8) Ax) < r:.5

1
11 (1 — —) < cqx exp (— c)/log z log, .

log z ¢,<zi g:
3 This is Theorem 2.3 p. 230 of Prachar’s book Primzahlverteilung (Springer 1957) where

the literature of this question can be found.
¢ See e.g. P. Erdss, Proc. Cambridge Phil. Soc. 34 (1957), 8.

https://doi.org/10.1017/5144678870002632X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870002632X

[3] On a problem of G. Golomb 3

The last inequality in (8) follows from [T, .. (1 — 1/g;) < ¢;exp
(— Ze<s 1/g:) and from (using (6))
1 1

1
— > —_— —>loggx + ¢ —cq.
q<zl/t 4 aigc q; z‘l’gnsz ? 3 e

From (8) we have

®) e

zf2<q; sz Gy

<< 2¢4 exp (—c)/log z loglog .
But from (5) we have for z = z/2

1
> —>loggx — logag > cy/log z log, z,

zj2<qsz 9
which contradicts (9) for sufficiently large ¢. Thus the upper bound in (4)
is proved.
The proof of the lower bound will be more complicated. Put y =
exp (log z/(loglog )'°) and denote by A4, (x) the number of primes p < =z

satisfying
(10) p#1 (modg,), 3=¢,=y.
We evidently have
(11) A,x) — XY Bl q) <Alx) <4,(z)+y

y<g<z

where B(z, g;,) denotes the number of primes p < « satisfying

p=1(modg), pz*1(modg) 3=¢=y
Now we estimate A4,(z) by Brun’s method.

LEMMA 4.

A,(x)=(1+o(1))in(1— ! )

log z ¢,5y g, — 1
By the sieve of Eratosthenes we have
Ay(@) = n(x) - T ¢, 1) + @ g0, 9,5 1) — -
where 3 < ¢, < y and ¢’s are distinct. By the well known idea of Brun® we
have (3, =3 (2, ¢, - q;, - - 4;,. 1))
(12) m(x) -2+ 2y —Zy+ - —Zp 1 <A, (@) <m(zx)—2Z,+Zy— -+ Zy.

We now choose £ = [10 log, ]. We distinguish two cases. In the first case
none of the numbers ¢, - - -¢,,, 1 =7 =< 2k are exceptional from the point

¢ See e.g. E. Landau, Zahlentheorie Vol. 1.
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of view of Lemma 1. In this case we can estimate Z, by Lemma 1 and
following say Landau’s treatment of Brun’s method® we obtain from (12)
by a simple computation

x 1 x 1 T
19) o) = T (1= 501+ Ol JL (14 2 55) +ol o)
13) 46 = o L\ = 51 T Nogaph ILN + 277 T \iogaye
By the upper bound of (4) we have

1 1
) < ¢y logyz and I (1 — ———) > ¢o/log, x,
e—1 g;,—1

Qsy

nf
sy
thus from (13) we obtain Lemma 4 in the first case.

In the second case let d =g, -¢q, - ¢, be the smallest exceptional
number (i.e. for which Lemma. 1 does not hold). By Lemma 1 we can assume
that d > (log z)4. We estimate x(z, ¢4, 1) from below by 0 and from above

by z/td. Since
z z log x z
2= () = ()
2. d *\log )?

we can neglect this exceptional d and the proof of Lemma 4 is complete.

Now we complete the proof of Lemma 3. Assume that the lower bound in
(4) is false. Then for every cg there are infinitely many integers z satisfying
for every z =«

1 1
(14) 2 ——loggz < 3 — —logzz
u=z9q; os29
and
(15) z _— == logax o Cz > 03.
4s29;
From (14) we have
1
(16) > — <loggz — log, 2.
s<q<aqs

By Lemma 4 and (16) (since logsz — logs ¥ = o(1))
Z eXp ¢,

1) a,0-4,(2) = (1+o ())2logxq‘s,(1—q71—_—1)>cnm‘

Thus from (11) and (17)

' z Z eXp C,
18 A — 4 (—) ———— Y — B(z, q,).
(18) (=) 2 >0y jog # log, & Y v<§,$z (=, 95)

Now we estimate 3, <, B(z, ¢;). Write

5 See e.g. E. Landau, Zahlentheorie Vol. 1.
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5] On a problem of G. Golomb 5

(19) S Blrg)=4+2+ 2,
y<q=z

wherein 2 y < ¢, < zexp (—log z/(log, z)'/2) in X, x exp (—log z/ (log, x)/?)
< gy < z exp (—log x/(log, z)5/%) and in X z exp (—log z/(log, x)%/4) < ¢,
< 2. From Lemma 2 we have for the ¢, in X, and Z, .

z 1

’ 1 -
cr(-g)<a

1
()
g,log = i g, log _f o<y q:

! q; ’ q;

where in J]’ ¢; < min (g,, 2/g;). (20) holds since for the ¢, in X and %,
min (g;, z/q;) > y. Now from (16) 2v<a,sz 1/g, < log; ¢ — logs y =o(1).
Thus from (15)

(21) > 1_ logs 2 — ¢, — o(1).

o<y qi

From (20) and (21) we have for the ¢, in X

(20) Bz, q;) <c,

(22) Bz, g;) < ¢1z P < C12 2EED % 73"
z gq; log = (log, z)/
g;log ; log,
i
But from (16)
1 1
(23) 2-= 3 —<loggz —logyy < c¢y5log; zflog, z

9; v<qys29;

Thus from (22) and (23)

zexpec, 1 zlog; xexpe, ( Z exp ¢, )
24) X — " 3 faiond S Al R Whefbciic.shi 2 §
(24) 2 <en log z (log, )2 " g, < ‘1201 log z (log, x)3/2 logzlog,x
Again from (20), (21) and (16) we obtain as in the estimation
z(log, )Vt expc, _ 1 z exp ¢, ( Zz exp c, )
25) X il TP (ZEEEP% )
(28) 23 <ox log qu, <1 log z(log, x)5/4 0 logzlog,

To estimate 2, denote by N (a, z) the number of primes p < z/a, a < x1/2,
for which @-p -+ 1 is also a prime. A well known consequence of Brun’s
method implies that

z 1
(26) N(a, x) <c"(l_o§z—)’n(l -}—5)

p/a

(26) easily follows from Lemma 2. From (26) we have by interchanging the
order of summation (3’ denotes that 1 < a < exp (log z/(log, z)%/4))
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n(+5) :
(27) Z3<23'N(a, z) <y (log z)? > 2 < lp7 log # (log; 2)°% "
The last inequality of (27) holds since it is well known that
1+
(28) ..21 ’% < ¢4 log 2.

((28) follows easily from the well known result 3%, TT,. (1 + 1/p) <
Sa-10(a)/a = (1 + o(1))n?/6 log z by partial summation). From (24), (25)
and (27) we obtain

(29) 3 Bg)=o (I—————x XP % )

y<¢zz og z log, x

From (18) and (29) we have

z Z exp ¢,
30 —alz _T%%P%
(30) A=) —4 (2) = o log z log,
(30) implies that

1
(31) > — > ¢y expc,/log z log, x.
@) <e,<zJs

On the other hand (16) implies that
1
— < loggz — loga < Cypflog x log, x)
(=/2) <qy<z s

an evident contradiction for sufficiently large ¢, (¢, > ¢;). Thus the upper
bound of (4) is proved and the proof of Lemma 3 is complete.

From the upper bound in (4), (19), (24), (25) and (27) we immediately
obtain (we now know that ¢, < ¢;)

z
32) ,s%s, Bz g) = o (log z log, x) )

From (11), (32) and Lemmas 3 and 4 we obtain

@) = (14 o) 2 1T (1- ) + o (75)

— (o) 1T (1~ =)

O8% ¢,y g;—1

The last inequality of (83) follows, since by the lower bound in (4)
ITe.sy (1 — 1/(g:— 1)) > cy/logg z. From (33) and the lower bound in (4)

(33)
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1
1) < Cygflog, ).

(34) A(x) < cyy zflog x log, z (since [T (1 —

@<y g

Thus by a simple computation

1
(35) >~ =o(u.
ysa;s29:
From (33) and (35) we finally obtain
x 1
36 Az) = (1 1)) — ( 1-— )
(36) @ = (1 + o) o T {1 -
To complete the proof of our Theorem we only have to show that
1 1+ o(1)
a (1ot )=t
®7) q:‘[gz g:.—1 log, =
Assume that (37) does not hold. Assume first that
(38) lim sup log, z T] (1 - ) =c> 1
[ 75-% ] ql' - 1

The limit of the expression in (38) cannot exist. For if it would exist it
would equal ¢ > 1. But then by (36)
9n 1

limA(x)logxlogzx:c' or lim— % 1 _,
z nlognlog,m ¢
which contradicts (38).

Since the limit in (38) does not exist it follows by a simple argument that
there exists a constant ¢/, 1 < ¢’ < ¢ and two infinite sequences z, < z, so

that
1
(39) lim log, z, T] (1 — ) =c
k=00 @Sz, q; — 1
1
(40) limlog, z, ] (l — ) =
k=00 [FE1 Y q: — 1

and for every o, < w < 2,

(41) logsz, 11 (1—

‘11)<log2wH(l— ! )

QST - Qsw q9;— 1
From (34) we have for every « > 1
1
(42) 11 (1— ) =1+ o(1).
z<q<ax g;—1

Thus from (39), (40) and (42) z,/z, — co0. Chor:onovwrw = (1 + )z, < z
where 7 > 0 is a sufficiently small constant. Put
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Up = A[(1 + )] — A(zs)-
From (41) we have

log, =, ( 1 ) ( 1 )Un
43) ——————— < 1— <f{l—— 1} .
(43) log, [z, (1 + )] z,,<a,-1—!1+q)z, g, —1 (1 4+ n)=,

From (36), (39) and (42) we have

¢ (1+n)x, 'z (1 +o(1))c 7y
44 = (1 1)) —m——— — (1 1 = .
(44) Up=(1+0(1)) log z, - log, x, (1+o(1)) log z, log, x, logz, log, z,
Now by a simple computation
log (1 1
() g, leltw (i)
log, [#(1 + 7)] log z; log, z; log x; log,
From (43), (44) and (45) we have
1 1 1 Us
_log(l+m) 0(___) < (1___)
(46) log z; log, log ; log, ; (1 + )=,

=1-— °n 4 o0 (—1—) .
(1 4+ ) log =, log, x;, log z, log, «;

But (46) is false for sufficiently small % (since ¢’ > 1). This contradiction
shows that the lim in (38) equals 1. In the same way we can show that the
lim of the expression in (38) is 1. Thus (37) is proved, and (36) implies our
Theorem.

I do not know whether for infinitely many ¢’s g, , is the least prime greater
than g¢;.

By similar arguments we can prove the following more general result:

Letr =1, Q, > r + 1, Q, prime. Q,,, is the smallest prime greater than
Q;sothat Q,=Z¢t(mod Q)), 1 =57 <, 1=t =7

Denote by By, ,(z) the number of Q’s not exceeding x, then

z
= (1 1 .
(47) BQl,r(x) ( + 0( )) IOg . 10g2 .- 108‘,+1 x
For @, = 3,7 =1, A(x) = Bg_,(z), (47) is thus a generalisation of our
Theorem.
Technion,
Haifa.
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