
ON A PROBLEM OF G. GOLOMB.

P. ERDOS

(received 3 August 1960)

In his paper on sets of primes with intermediate density Golomb *
proved the following theorem:

Let 2 < Px < P2 < • • • be any sequence of primes for which

(1) P§ ^ 1 (mod Pt)

for every i and j . Denote by A (x) the number of P's not exceeding x. Then

(2) lim inf A (x)/x = 0.
as=oo

It is not difficult to see that in some sense (2) is best possible since it is
easy to construct a sequence of primes satisfying (1) for which

lim sup A (x)/x > 0,

and in fact the lim sup can be as close to 1 as we wish. Golomb pointed out
that in some ways the most natural sequence satisfying (1) can be obtained
as follows: qx = 3, q2 = 5, q3 = 17, • • • qk is the smallest prime greater than
9*-i f°r which

qk ^ 1 (mod qt), 1 ^ * < k.

Henceforth we will only consider this special sequence satisfying (1). We
shall prove the following (as before A(x) denotes the number of qt ^x).

THEOREM.

x
A(x) = log x loglog x

logta; will denote the k times iterated logarithm, clt c2, • • • will denote
positive absolute constants.

Our method will be similar to the one used in our recent joint paper with
Jabotinsky 2, but we will also need Bran's method and the results on primes
in short arithmetic progressions.

1 S. Golomb, Math. Scand. 3 (1955), 264—74.
* P. Erdos and E. Jabotinsky, Indig. Math. 20 (1958), 115—128.
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2 P. Erdos [2]

LEMMA 1. Denote by n{x, k, 1) the number of primesp rg! x,p = I (mod k),
(I, k) = 1. Then (exp* = e")

(3) n{x, k, I) =
\\ogx) }

uniformly for all & < exp (cj loga;/logloga;), except possibly for the mul-
tiples of a certain k* = &* (a;) where k* > (log a;)"1 (4 is an arbitrary con-
stant, but the constant in 0(I/loga;) depends on A).

Lemma 1 is well known 3.

LEMMA 2. Let 2 = px < p2 < • • • be the sequence of consecutive primes,
and let r be a fixed integer, 0 5S r, < r. Denote by Nh(x) the number of
integers 1 5S z ^ x for which 2 = / (mod A), (/, k) = 1 and

z ̂  a<" (mod ̂ ) , 1 ^ ; ^ r,.

where the a^ are arbitrary residues and p{ ^ a;. Then

#*(*)< c. I IT (1-^/A)-
«i>( s */*

The proof follows immediately from Bran's method 4.
LEMMA 3. There exists a constant c8 so that

(4) log3 x — c3 < 2 !/?< < log3 * + c3.
•iSi

First we prove the upper bound. If the upper estimation in (4) would not
hold then for every c there would be arbitrarily large values of a; so that for
every z < x

(5) 2 logs x > 2 log3 z

and

(6) 2 - > log3 * + <••

Let a;1'2 < ^ ^ a;. Clearly by the definition of the q's qt^0 (mod p) for
all p < a;1/2 and ^ ^ 1 (mod qt) for ^ < a;1/2. Thus by lemma 2 (& = 1)

(7) A (*) < a;i/2 + c2a; TJ (1 -
1"

where r, = 2 if pi is a ^ and is 1 otherwise. From (7), (6) and from

(8)
x I 1 \

A(x)<cB- I J I 1 ) < cea;exp (— c)/log a: log2 a;.
log x <,t<xv* \ qj

* This is Theorem 2.3 p. 230 of Prachar's book Primzahlverteilung (Springer 1957) where
the literature of this question can be found.

« See e.g. P. Erdos, Proc. Cambridge Phi!. Soc. 34 (1957), 8.
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[3] On a problem of G. Golomb 3

The last inequality in (8) follows from IJa,<* (l — */?<) < ci e xP
( - lat<, */?<) and from (using (6))

1 - > 2 2 7 >log3x +c~c8.
"> q q V*H£ P

From (8) we have

1 2A (x)
(9) 2 - < — — < 2ce e xP (—0 A°g * loglog x.

But from (5) we have for z = x/2

1 x
2 — > log3 x — log3 - > c9/log x log2 x,

which contradicts (9) for sufficiently large c. Thus the upper bound in (4)
is proved.

The proof of the lower bound will be more complicated. Put y =
exp (log x\(loglog a;)10) and denote by Av(x) the number of primes p 5g x
satisfying

(10) p=£l (mod?,), Z^qt^y.

We evidently have

(11) Av(x)- 2 B(x,qj)<A(x)<Av(x)+y
V<Q,<X

where B(x, qt) denotes the number of primes p 5S x satisfying

P = 1 (modqt), p ^ l (modqt), 3 ^*qt<^y.

Now we estimate Av(x) by Brun's method.

LEMMA 4.

Ay{x) = (1 +
log

By the sieve of Eratosthenes we have

Av(x) =«(*) - 2 ^ ( 2 ; , ^ , 1) + 2 ^ ( ^ ?«!?<,. : )

where 3 ̂  qt ^y and i's are distinct. By the well known idea of Brun5 we
have QTr = 2 »(*. ?/t • ?yr ? v !))•

(12) 3r(a;)-i

We now choose k = [10 log2 »]. We distinguish two cases. In the first case
none of the numbers qt • • • qi , 1 ̂  r £S 2k are exceptional from the point

• See e.g. E. Landau, Zahlentheorie Vol. 1.
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of view of Lemma 1. In this case we can estimate Zr by Lemma 1 and
following say Landau's treatment of Brun's method5 we obtain from (12)
by a simple computation

By the upper bound of (4) we have

I I (l H r) < c10log2z and n I1 7) > c10jlog2x,

thus from (13) we obtain Lemma 4 in the first case.
In the second case let d = qi • qt • • • qir be the smallest exceptional

number (i.e. for which Lemma 1 does not hold). By Lemma 1 we can assume
that d > (log x)A. We estimate n (x, td, 1) from below by 0 and from above
by x/td. Since

a /* log*\
td \ d J

we can neglect this exceptional d and the proof of Lemma 4 is complete.
Now we complete the proof of Lemma 3. Assume that the lower bound in

(4) is false. Then for every c3 there are infinitely many integers x satisfying
for every z g a ;

(14) 2 ^-l0g3*< I ^

and

(15) 2 - = 1°g3*-c., cx>c3.

From (14) we have

(16) 2 ~ < logs * - log3 z.

By Lemma 4 and (16) (since log3x — log3y = o(l))

(17) Av(x)-A "loga;log2a;

Thus from (11) and (17)

(18) A(x)-A Q > cu * ™lC* -y- 2 B(x,q,).
\2/ log X lOgg X »<a,S»

Now we estimate 2»<«,£» B(x> 1i)- Write

5 See e.g. E. Landau, Zahlentheorie Vol. 1.
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(19) I B(x,qi)=Z1 + Zz +

whereiaFty < q, ^xexp (—loga^log^)1/2) ini^aexp(— loga;/(log2x)1/2)
< qt ±S x exp (—log x/(log2 a;)5/4) and in Z3 x exp (—log a;/(log2 a;)6/4) < q,
;S x. From Lemma 2 we have for the qt in Ex and 272 •

a; / 1\ a; / 1\
(20) B(x. ft) < c2 IE' (1 - - < H I I 1 ~ ~

ft log- ^ ^ ft l o g - ^ qJ

9i Is
where in J J ' qt < min (qjt x/q^. (20) holds since for the qt in Zx and 2"2

min (qt, xfa) > y. Now from (16) 2»<a<Sa. 1/?,- < log3 x — log3 j / =o(l) .
Thus from (15)

(21) 2 - = log3 * - c » - o ( l ) .

From (20) and (21) we have for the qf in 27X

aiexpc,,. arexpc,,
(22) B (x, ft) < clt ^ vlt — —- •

ft log - log2 a:

But from (16)

(23) Zx — ^ J - < loga * — !og3 y < cw logs */l°ga *

Thus from (22) and (23)

g exp cx 1 a; log3 a; exp cx _ ( a; exp cx \
x ( loga ; )V 2

2 ' 1 ^ < ^ " l o g a; (logz)3/* ~ ° l logxlog. / 'a;

Again from (20), (21) and (16) we obtain as in the estimation

xexpcx _ / a; exp
0 ^

( 8 0 ) 2 . 2 < C l 4

To estimate Z3 denote by N (a, x) the number of primes^) < x\a, a <
for which a • p + 1 is also a prime. A well known consequence of Bran's
method implies that

(26»

(26) easily follows from Lemma 2. From (26) we have by interchanging the
order of summation (2 ' denotes that 1 ^ a < exp (log x/(log, g)*/
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^ 2 N(a>x) <ci * ^ -

The last inequality of (27) holds since it is well known that

(28)

((28) follows easily from the well known result ]5>-i TJ,,/0 (1 + \jp) <
2.1-1 a(a)l<*•= (! + o(l))ji2/61og2 by partial summation). From (24), (25)
and (27) we obtain

(29) 2 B(qi) ^

From (18) and (29) we have

(30) AW-
'loga;log2a;

(30) implies that

(31) 2 - > cw e x P c«Aog a: log2 a;.

On the other hand (16) implies that

1 x
Z - < log3 a; - log3 - < c20/log x log2 x)

(xli)<qt<x 9i *
an evident contradiction for sufficiently large c3 (cm > c3). Thus the upper
bound of (4) is proved and the proof of Lemma 3 is complete.

From the upper bound in (4), (19), (24), (25) and (27) we immediately
obtain (we now know that ca < c8)

m ^ (_
From (11), (32) and Lemmas 3 and 4 we obtain

A (x) = (1 + o(l)) -?- IT (l ^-r) + o I. -. )
V logar^V qi-V \loga:logax/

The last inequality of (33) follows, since by the lower bound in (4)
!!«,£» U — i/C^i — *)) > caJl°S»x- From (33) and the lower bound in (4)
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(34) A {x) < e22 a;/log x log2 x (since f j (1 71 <
«<<v x It — l'

Thus by a simple computation

(35) 2 - = o(l).

From (33) and (35) we finally obtain

To complete the proof of our Theorem we only have to show that

(37)

Assume that (37) does not hold. Assume first that

(38) limsuplog2a; I J I 1 1 = c > 1.

The limit of the expression in (38) cannot exist. For if it would exist it
would equal c > 1. But then by (36)

o r H m = < 1

x n log n log2 n c
which contradicts (38).

Since the limit in (38) does not exist it follows by a simple argument that
there exists a constant c', 1 < c' < c and two infinite sequences xk < zk so
that

(39) limim log, xk n ( l - - ^ - r ) = C

(40) lim log2 *,
* - o o

and for every xk < w < zk

From (34) we have for every a > 1

(42) n ( 1 - - -l = l + o ( l ) .
x<qi<ax \ Hi — *•'

Thus from (39), (40) and (42) zkjxk -» oo Cho^ • now «> = (l 4- t])xk < zk

where r\ > 0 is a sufficiently small constant. Put
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From (41) we have

U3) ***** < TT (l —)
V ; log, [arfc(l + ,)] . ,<.,U+,,. ,\ qt-V
From (36), (39) and (42) we have

*— °\ •)loga:jt.log2a;Jfc

Now by a simple computation

(45)
log2 [xk(l +

From (43), (44) and (45) we have

, l og (1 4

= i ^(l+q) | J l \
loS xk log* xk llog a;fc loga xj '

(46)
cfc log2 ^

( i )<(i L_y-
\log xk log2 xkf \ (1 + r\)xki

— y ° I 1 •
Dg xk log2 xk Mog xk log2 xkl

(1 + rj) log

But (46) is false for sufficiently small r\ (since c' > 1). This contradiction
shows that the lim in (38) equals 1. In the same way we can show that the
lim of the expression in (38) is 1. Thus (37) is proved, and (36) implies our
Theorem.

I do not know whether for infinitely many i's qi+1 is the least prime greater
than qt.

By similar arguments we can prove the following more general result:
Let r ^ 1, Qx > r + 1, Q\ prime. Qi+1 is the smallest prime greater than

Qi s o t h a t Q( = k t ( m o d Q , ) , l £ j ^ i , l ^ t ^ r .
Denote by BQ r(x) the number of (?'s not exceeding x, then

For Qx = 3, r = 1, A(x) = BQ r(x), (47) is thus a generalisation of our
Theorem.

Technion,
Haifa.
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