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Abstract

In this paper we provide the basis for new methods of inference for max-stable processes
ξ on general spaces that admit a certain incremental representation, which, in important
cases, has a much simpler structure than the max-stable process itself. A corresponding
peaks-over-threshold approach will incorporate all single events that are extreme in some
sense and will therefore rely on a substantially larger amount of data in comparison
to estimation procedures based on block maxima. Conditioning a process η in the max-
domain of attraction of ξ on being extremal, several convergence results for the increments
of η are proved. In a similar way, the shape functions of mixed moving maxima (M3)
processes can be extracted from suitably conditioned single events η. Connecting the
two approaches, transformation formulae for processes that admit both an incremental
and an M3 representation are identified.
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1. Introduction

The joint extremal behavior at multiple locations of some random process {η(t) : t ∈ T }, T

an arbitrary index set, can be captured via its limiting max-stable process, assuming that the
latter exists and is nontrivial everywhere. Then, for independent copies ηi of η, i ∈ N, the
functions bn : T → R and cn : T → (0, ∞) can be chosen such that the convergence

ξ(t) = lim
n→∞ cn(t)

(
n

max
i=1

ηi(t) − bn(t)
)
, t ∈ T , (1.1)
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holds in the sense of finite-dimensional distributions. The process ξ is said to be max-stable
and η is in its max-domain of attraction (MDA). The theory of max-stable processes is mainly
concerned with the dependence structure, while the marginals are usually assumed to be
known. Even for finite-dimensional max-stable distributions, the space of possible dependence
structures is uncountably infinite dimensional, and parametric models are required to find a
balance between flexibility and analytical tractability [8], [26].

A general construction principle for max-stable processes was provided in [7] and [31].
Let

∑
i∈N

δ(Ui ,Si ) be a Poisson point process (PPP) on (0, ∞) × S with intensity measure
u−2 du · ν(ds), where (S, S) is an arbitrary measurable space and ν is a positive measure on S.
Furthermore, let f : S × T → [0, ∞) be a nonnegative function with

∫
S f (s, t)ν(ds) = 1 for

all t ∈ T . Then the process ξ(t) = maxi∈N Uif (Si, t), t ∈ T , is max-stable and has standard
Fréchet margins. In this paper we investigate two specific choices for f and (S, S, ν), and
consider processes that admit one of the resulting representations. First, let {W(t) : t ∈ T } be a
nonnegative stochastic process with EW(t) = 1, t ∈ T , and W(t0) = 1 almost surely (a.s.) for
some point t0 ∈ T . The latter condition means that W(t) simply describes the multiplicative
increment of W with respect to the location t0. For (S, S, ν) being the canonical probability
space for the sample paths of W and with f (w, t) = w(t), w ∈ S, t ∈ T , we refer to

ξ(t) = max
i∈N

UiWi(t), t ∈ T , (1.2)

as the incremental representation of ξ , where the {Wi}i∈N are independent copies of W . Since
T is an arbitrary index set, the above definition covers multivariate extreme value distributions,
i.e. T = {t1, . . . , tk}, as well as max-stable random fields, i.e. T = R

d . For the second
specification, let {F(t) : t ∈ R

d} be a stochastic process with sample paths in the space C(Rd)

of nonnegative continuous functions such that

E

∫
Rd

F (t) dt = 1. (1.3)

With Si = (Ti, Fi), i ∈ N, in S = R
d × C(Rd), intensity measure ν(dt × dg) = dtPF (dg),

and f ((t, g), s) = g(s − t), (t, g) ∈ S, we obtain the large and frequently used class of mixed
moving maxima (M3) processes

ξ(t) = max
i∈N

UiFi(t − Ti), t ∈ R
d . (1.4)

These processes are max-stable and stationary on R
d (see, for instance, [32]). The function F

is called the shape function of ξ and can also be deterministic (e.g. in the case of the Smith
process). In Smith’s ‘rainfall-storm’ interpretation [31], Ui and Ti are the strength and center
point of the ith storm, respectively, and UiFi(t − Ti) represents the corresponding amount of
rainfall at location t . In this case, ξ(t) is the process of extremal precipitation. Throughout the
paper, we will assume that ξ admits representation (1.2) or (1.4).

When independent and identically distributed (i.i.d.) realizations η1, . . . , ηn of η in the MDA
of a max-stable process ξ are observed, a classical approach for the challenging problem of
parametric inference on ξ is based on generating (approximate) realizations of ξ out of the
data η1, . . . , ηn via componentwise block maxima and applying maximum likelihood (ML)
estimation afterwards. A clear drawback of this method is that it ignores all information
on large values that is contained in the order statistics below the within-block maximum.
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Furthermore, ML estimation needs to evaluate multivariate densities while, for many max-
stable models, only the bivariate densities are known in closed form. Thus, composite likelihood
approaches have been proposed [6], [25].

In this paper we present an alternative approach of inference that aims at using more of the
data by extracting realizations of the processes W and F , respectively, which uniquely determine
the max-stable process ξ . It is based on a peaks-over-threshold (POT) procedure known from
univariate [11], [21] and multivariate [4], [17], [28] extreme value theory, and recently also
applied in a functional setting [10], [15]. Contrasting the aggregation of multiple extreme
events in ML estimation, in our approach, all single extreme events, i.e. those of η1, . . . , ηn

that are extreme in some sense, can be used to estimate W and F . The specification of a single
extreme event will depend on the respective representations (1.2) and (1.4). From a statistical
point of view, a further major advantage of this method is that W and F often admit a much
simpler structure than the corresponding max-stable process itself. This facilitates parametric
inference since full multivariate densities are available and, thus, using composite likelihood
can be avoided. In [13], for instance, this concept is applied to derive estimators for the class of
Brown–Resnick processes [3], [20], which have the form (1.2) by construction. With a(n) being
a sequence with limn→∞ a(n) = ∞ and η being in the MDA of a Brown–Resnick process, the
convergence in distribution(

η(t1)

η(t0)
, . . . ,

η(tk)

η(t0)

∣∣∣∣ η(t0) > a(n)

)
d−→ (W(t1), . . . , W(tk)) (1.5)

for t0, t1, . . . , tk ∈ T , k ∈ N, is established, where W is the corresponding log-Gaussian
random field.

In the literature, similar approaches based on conditioning on extreme values are considered
in various frameworks. For instance, Cooley et al. [5] proposed an approximation of the
conditional distribution given large observations via the angular measure. Basrak and Segers
[1] and Meinguet and Segers [23] respectively considered multivariate time series (Xt )t∈Z and
time series in general Banach spaces, rescaled and conditioned on ‖X0‖ being large. They
provided equivalent conditions for the existence of the corresponding tail processes and its
spectral decomposition, whereas in this paper, we explicitly calculate the limiting processes
in a different framework. We generalize the convergence result (1.5) in two different aspects.
Arbitrary nonnegative processes {W(t) : t ∈ T } with EW(t) = 1, t ∈ T , are considered,
and both convergence of the conditional increments of η in the sense of finite-dimensional
distributions and weak convergence in continuous function spaces are shown (Theorems 2.1
and 2.2). Similarly, in Section 3 we establish the main result for M3 processes (Theorem 3.1) by
considering realizations of η around their (local) maxima. Since one and the same max-stable
process ξ might admit both representations (1.2) and (1.4), we provide formulae for switching
between them in Section 4. In Section 5 we focus on statistical applications of our results in
spatial extreme value theory and give several important cases where explicit formulae of the
estimators can be derived.

2. Incremental representation

Throughout this section, we suppose that {ξ(t) : t ∈ T }, T an arbitrary index set, is
normalized to standard Fréchet margins and admits a representation

ξ(t) = max
i∈N

UiVi(t), t ∈ T , (2.1)
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where
∑

i∈N
δUi

is a PPP on (0, ∞) with intensity u−2 du, which we call the Fréchet Poisson
process in the following. The {Vi}i∈N are independent copies of a nonnegative stochastic
process {V (t) : t ∈ T } with EV (t) = 1, t ∈ T . Note that (2.1) is slightly less restrictive than
representation (1.2) in that we do not require that V (t0) = 1 a.s. for some t0 ∈ T .

For k ∈ N and t0, . . . , tk ∈ T , the vector � = (ξ(t0), . . . , ξ(tk)) follows a (k + 1)-variate
extreme value distribution and its distribution function G is given by

G(x) = exp[−μ([0, x]C)], x ∈ R
k+1, (2.2)

where μ is the exponent measure of G [26, Proposition 5.8], which is defined on E =
[0, ∞)k+1 \ {0}, and [0, x]C = E \ [0, x].

The following convergence result provides the theoretical foundation for statistical inference.
Indeed, it shows that, by conditioning a process η in the MDA of ξ on an extreme event at one
location t0, the incremental process V can be extracted asymptotically.

Theorem 2.1. Let {η(t) : t ∈ T } be nonnegative and in the MDA of some max-stable process
ξ that admits representation (2.1), and suppose that η is normalized such that (1.1) holds with
cn(t) = 1/n and bn(t) = 0 for n ∈ N and t ∈ T . Let a(n) → ∞ as n → ∞. For k ∈ N and
t0, . . . , tk ∈ T , we have the following convergence in distribution on R

k+1:(
η(t0)

a(n)
,
η(t1)

η(t0)
, . . . ,

η(tk)

η(t0)

∣∣∣∣ η(t0) > a(n)

)
d−→ (Z, �Ṽ ) as n → ∞. (2.3)

Here the distribution of �Ṽ is given by

P(�Ṽ ∈ dz) = P(�V ∈ dz)E(V (t0) | �V = z), z ≥ 0,

where �V denotes the vector of increments (V (t1)/V (t0), . . . , V (tk)/V (t0)) with respect to t0,
following the convention that x/0 = ∞ for all x ≥ 0, and Z is an independent Pareto variable.

Remark 2.1. The choice of norming functions in Theorem 2.1 is without loss of generality:
if ξ has standard Fréchet margins, any process η satisfying the convergence in (1.1) can be
normalized such that the norming functions in (1.1) are cn(t) = 1/n and bn(t) = 0, n ∈ N,
t ∈ T [26, Proposition 5.10].

Proof of Theorem 2.1. For X = (η(t0), . . . , η(tk)), which is in the MDA of the random
vector � = (ξ(t0), . . . , ξ(tk)), it follows from [26, Proposition 5.17] that

lim
m→∞ mP

(
X

m
∈ B

)
= μ(B) (2.4)

for all elements B of the Borel σ -algebra B(E) of E bounded away from {0} with μ(∂B) = 0,
where μ is defined by (2.2). For s0 > 0 and s = (s1, . . . , sk) ∈ [0, ∞)k , we consider the sets
As0 = (s0, ∞) × [0, ∞)k, s0 ≥ 1, and Bs = {x ∈ [0, ∞)k+1 : (x(1), . . . , x(k)) ≤ x(0)s} for s

satisfying P(�Ṽ ∈ ∂[0, s]) = 0. Since Bs satisfies Bs = cBs for any c > 0, we obtain

P

(
η(t0) > s0a(n),

(
η(t1)

η(t0)
, . . . ,

η(tk)

η(t0)

)
≤ s

∣∣∣∣ η(t0) > a(n)

)

= a(n)P(X/a(n) ∈ Bs ∩ As0)

a(n)P(X/a(n) ∈ A1)

→ μ(Bs ∩ As0)

μ(A1)
as n → ∞, (2.5)

where the convergence follows from (2.4), if μ(∂(Bs ∩ As0)) = 0.
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By definition, μ(A1) = − log P(ξ(t0) ≤ 1) = 1. At the same time, μ is the intensity
measure of the PPP

∑
i∈N

δ(UiVi (t0),...,UiVi (tk)) on E, and, hence, for s ∈ [0, ∞)k with P(�Ṽ ∈
∂[0, s]) = 0,

μ(Bs ∩ As0) =
∫ ∞

0
u−2

∫
[s0u−1,∞)

P(V (t0) ∈ dy, �V ≤ s) du

=
∫ ∞

0
u−2

∫
[0,s]

∫
[s0u−1,∞)

P(V (t0) ∈ dy | �V = z)P(�V ∈ dz) du

=
∫

[0,s]

∫
[0,∞)

ys−1
0 P(V (t0) ∈ dy | �V = z)P(�V ∈ dz)

= s−1
0

∫
[0,s]

E(V (t0) | �V = z)P(�V ∈ dz)

= P(Z > s0)P(�Ṽ ≤ s). (2.6)

Relations (2.6) and (2.5) imply (2.3), which completes the proof.

Remark 2.2. If V (t0) is stochastically independent of the increments �V , we simply have
P(�Ṽ ∈ dz) = P(�V ∈ dz). This is particularly the case if ξ admits a representation (1.2),
which shows that (1.5) is indeed a special case of Theorem 2.1.

Remark 2.3. Engelke et al. [13] considered Hüsler–Reiss distributions (cf. [18] and [19]) and
obtained their limiting results by conditioning on certain extremal events A ⊂ E. They showed
that various choices of A are sensible in the Hüsler–Reiss case, leading to different limiting
distributions of the increments of η. In the case where ξ is a Brown–Resnick process and
A = (1, ∞) × [0, ∞)k , the assertions of Theorem 2.1 and [13, Theorem 3.3] coincide.

Example 2.1. (Extremal Gaussian process [29].) A commonly used class of stationary yet
nonergodic max-stable processes on R

d is defined by

ξ(t) = max
i∈N

UiYi(t), t ∈ R
d ,

where
∑

i∈N
δUi

is a Fréchet Poisson process, Yi(t) = max(0, Ỹi(t)), and the Ỹi are i.i.d.,
stationary, centered Gaussian processes with E(max(0, Ỹi(t))) = 1 for all t ∈ R

d [2], [29].
Note that, in general, a t0 ∈ R

d such that Yi(t0) = 1 a.s. does not exist, i.e. the process admits
representation (2.1) but not representation (1.2).

While the Hüsler–Reiss distribution is already given by the incremental representation (1.2),
cf. [19], other distributions can be suitably rewritten, provided that the respective exponent
measure μ is known.

Proposition 2.1. Let � = (ξ(t0), . . . , ξ(tk)) be a max-stable process on T = {t0, . . . , tk}
with standard Fréchet margins, and suppose that its exponent measure μ is concentrated on
(0, ∞) × [0, ∞)k . Define a random vector W via

P(W ≤ s) = μ(Bs ∩ A), s ∈ [0, ∞)k, (2.7)

where A = (1, ∞) × [0, ∞)k and Bs = {x ∈ [0, ∞)k+1 : (x(1), . . . , x(k)) ≤ x(0)s}. Then W

is the incremental process of � in (1.2).

Proof. With the measurable transformation

τ : (0, ∞) × [0, ∞)k → (0, ∞) × [0, ∞)k, (x0, . . . , xk) �→
(

x0,
x1

x0
, . . . ,

xk

x0

)
,
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τ(Bs ∩ A) = (1, ∞) × [0, s] and μτ (·) = μ(τ−1((1, ∞) × · )) defines a probability measure
on [0, ∞)k because μτ ([0, ∞)k) = μ(A) = 1. Since

μ(Bs ∩ A) = μ(τ−1((1, ∞) × [0, s])) = μτ ([0, s]),
the random vector W in (2.7) is well defined and has law μτ .

By the definition of the exponent measure, we have �
d= maxi∈N Xi , where � = ∑

i∈N
δXi

is a PPP on E with intensity measure μ. Then, the transformed point process τ� =∑
i∈N

δ
(X

(0)
i ,X

(1)
i /X

(0)
i ,...,X

(k)
i /X

(0)
i )

has intensity measure

μ̃((c, ∞) × [0, s]) = μ(Bs ∩ ((c, ∞) × [0, ∞)k)) = c−1μ(Bs ∩ A)

for any c > 0 and s ∈ [0, ∞)k , where we use the homogeneity property c−1μ(dx) = μ(d(cx)).
Thus, τ� has the same intensity as

∑
i∈N

δ(Ui ,Wi ), where
∑

i∈N
δUi

is a Fréchet Poisson process
and Wi , i ∈ N, are i.i.d. vectors with law μτ . Hence,

�
d= max

i∈N

τ−1
((

X
(0)
i ,

X
(1)
i

X
(0)
i

, . . . ,
X

(k)
i

X
(0)
i

))
d= max

i∈N

τ−1((Ui, Wi )) = max
i∈N

UiWi ,

which completes the proof.

Example 2.2. If P(V (t0) = 0) = 0 in construction (2.1), the exponent measure μ of any
finite-dimensional vector � = (ξ(t0), . . . , ξ(tk)), t0, . . . , tk ∈ T , k ∈ N, satisfies the condition
μ({0}× [0, ∞)k) = 0. Thus, by Proposition 2.1 and the proof of Theorem 2.1, the incremental
representation of � according to (1.2) is given by � = maxi∈N Ui · (1, �Ṽi )

�, where �Ṽi ,

i ∈ N, are independent copies of �Ṽ .

Example 2.3. (Symmetric logistic distribution; cf. [16].) For T = {t0, . . . , tk}, the symmetric
logistic distribution is given by

P(ξ(t0) ≤ x0, . . . , ξ(tk) ≤ xk) = exp[−(x
−q
0 + · · · + x

−q
k )1/q ] (2.8)

for x0, . . . , xk > 0 and q > 1. Hence, the density of the exponent measure equals

μ(dx0, . . . , dxk) =
( k∑

i=0

x
−q
i

)1/q−k−1( k∏
i=1

(iq − 1)

) k∏
i=0

x
−q−1
i dx0 · · · dxk.

Applying Proposition 2.1, the incremental process W in (1.2) is given by

P(W(t1) ≤ s1, . . . , W(tk) ≤ sk) =
(

1 +
k∑

i=1

s
−q
i

)1/q−1

.

While Theorem 2.1 relates to convergence in the sense of finite-dimensional distributions,
an analogous result can be formulated for weak convergence on suitable function spaces. In
particular, we consider processes with continuous sample paths. For a Borel set U ⊂ R

d , we
denote by C(U) and C+(U) the space of nonnegative and strictly positive continuous functions
on U , respectively, equipped with the topology of uniform convergence on compact sets.

Theorem 2.2. Let {η(t) : t ∈ R
d} be a C+(Rd)-valued process in the MDA of a max-stable

process {ξ(t) : t ∈ R
d} as in (1.2) in the sense of weak convergence on C(Rd). Without loss

of generality, assume that n−1 maxn
i=1 ηi(·) d−→ ξ(·) as n → ∞. Let W be the incremental
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process from (1.2), and let Z be a Pareto random variable, independent of W . Then, for any
sequence a(n) → ∞ as n → ∞, we have the following weak convergence on (0, ∞)×C(Rd):(

η(t0)

a(n)
,

η(·)
η(t0)

∣∣∣∣ η(t0) > a(n)

)
d−→ (Z, W(·)).

Proof. Analogously to [33, Theorem 5], weak convergence of a sequence of probability
measures Pn, n ∈ N, to some probability measure P on C(Rd) is equivalent to weak conver-
gence of Pnr

−1
j to Pr−1

j on C([−j, j ]d) for all j ≥ 1, where rj : C(Rd) → C([−j, j ]d)

denotes the restriction to the cube [−j, j ]d . Hence, it suffices to consider the processes η and
ξ restricted to a compact set K ⊂ R

d and to show weak convergence on (0, ∞) × C(K).
As the process ξ is max-stable and η ∈ MDA(ξ), similarly to the case of multivariate

max-stable distributions (cf. Theorem 2.1),

lim
u→∞ uP

(
η

u
∈ B

)
= μ(B) (2.9)

for any Borel set B ⊂ C(K) bounded away from 0K , i.e. inf{sups∈K f (s) : f ∈ B} > 0, and
with μ(∂B) = 0 [8, Corollary 9.3.2], where μ is the exponent measure of ξ , defined by

P(ξ(s) ≤ xj , s ∈ Kj , j = 1, . . . , m)

= exp
[
−μ

({
f ∈ C(K) : sup

s∈Kj

f (s) > xj for some j ∈ {1, . . . , m}
})]

for xj ≥ 0 and Kj ⊂ K compact. Thus, μ equals the intensity measure of the PPP∑
i∈N

δUiWi(·). For z > 0 and a Borel set D ⊂ C(K), we consider the sets

Az = {f ∈ C(K) : f (t0) > z}, BD =
{
f ∈ C(K) : f (·)

f (t0)
∈ D

}
,

and A = A1. Again, cBD = BD for any c > 0. Then, as W(t0) = 1 a.s., we have μ(Az) =∫ ∞
z

u−2 du = z−1. For s0 ≥ 1 and any Borel set D ⊂ C(K) with P(W ∈ ∂D) = 0, by (2.9),
analogously to (2.5), we obtain

P

{
η(t0)

a(n)
> s0,

η(·)
η(t0)

∈ D

∣∣∣∣ η(t0) > a(n)

}
n→∞−→ μ(BD ∩ As0)

μ(A)

=
∫ ∞

s0

u−2
P{uW(·) ∈ BD} du

= s−1
0 P{W(·) ∈ D},

which is the joint distribution of Z and W(·). This completes the proof.

3. Mixed moving maxima representation

Let
�0 =

∑
i∈N

δ(Ui ,Ti ,Fi )

be the PPP on (0, ∞)×R
d ×C(Rd) with intensity u−2 du dtPF (df ) corresponding to the M3

process (1.4). In the sequel, we denote M3 processes by

M(t) = max
i∈N

UiFi(t − Ti), t ∈ R
d . (3.1)
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For t0, . . . , tk ∈ R
d , s0, . . . , sk ≥ 0, and k ∈ N, the marginal distributions of M are

P(M(tl) ≤ sl, 0 ≤ l ≤ k) = exp

[
−

∫ ∫
Rd

k
max
l=0

f (tl − t)

sl
dtPF (df )

]
. (3.2)

In Section 2 we recovered the incremental process W from processes in the MDA of a
max-stable process with representation (1.2) or (2.1). In the case of M3 processes, although
an incremental representation might still exist, the shape function F from (3.1) usually has a
much simpler structure than the corresponding incremental process W (see also Section 4). In
all practically relevant M3 models, the shape function F has its unique maximum at the origin
(e.g. the Gaussian and t-extreme value process of Smith [31], M3 models in [9], and the M3
representation of Brown–Resnick processes [12], [20]). Hence, to reconstruct the distribution
of F from realizations of η, we consider η in the neighborhood of its own (local) maximum.
If the latter is large enough, a single shape function becomes visible in a certain surrounding
area. Thus, conditioning on the maximum provides an appropriate framework for statistical
inference; for further discussion and examples, we refer the reader to Section 5.2. A related
approach of reconstructing the parameter functions in a time-series M3 model is considered
in [22].

Let {η(t) : t ∈ R
d} be strictly positive and in the MDA of an M3 process M in the sense of

weak convergence in C(Rd). Let η be normalized such that the norming functions in (1.1) are
cn(t) = 1/n and bn(t) = 0, n ∈ N, t ∈ R

d . Suppose further that the shape function F of M

satisfies
F(0) = λ a.s., F (t) ∈ [0, λ) for all t ∈ R

d \ {0} a.s.

for some λ > 0. Note that F is sample continuous as M is (cf. [27]). Under these assumptions,
there is an analogous result to Theorem 2.2.

Theorem 3.1. Let Q, K ⊂ R
d be compact with ∂Q a Lebesgue null set, and let

τQ : C(Q) → R
d , f �→ inf

(
arg max

t∈Q

f (t)
)
,

where ‘inf’ is understood in the lexicographic sense. Then, under the above assumptions, for
any Borel set B ⊂ C(K) with P(F/λ ∈ ∂B) = 0, and any sequence a(n) with a(n) → ∞ as
n → ∞, we have

lim
{0}∈L↗R

d

compact

lim sup
n→∞

P

(
η(τQ(η|Q) + ·)

η(τQ(η|Q))
∈ B

∣∣∣∣ max
t∈Q

η(t) = max
t∈Q⊕L

η(t), max
t∈Q

η(t) ≥ a(n)

)

= P

(
F(·)
λ

∈ B

)
,

where ‘⊕’ denotes morphological dilation.
The same result holds if we replace lim supn→∞ by lim infn→∞.

Remark 3.1. In order to understand Theorem 3.1 intuitively, we assume that η is the M3
process M itself and that the shape function F has a compact support K ⊂ R

d . Then, for
L ⊃ K , the statement maxt∈Q⊕L η(t) = maxt∈Q η(t) implies that maxt∈Q η(t) is given by
Ui0Fi0(0) = Ui0λ for some i0 ∈ N. More precisely, we have (Ui0 , Ti0 , Fi0) = (maxt∈Q η(t)/λ,

arg maxt∈Q η(t), Fi0(t)). If maxt∈Q η(t) is large, and, hence, so is Ui0 , it is very likely that
η(·) coincides with Ui0Fi0(· − Ti0) in a neighborhood of Ti0 . This allows us to reconstruct Fi0

directly from the observed sample path.
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Proof of Theorem 3.1. First, we consider a fixed compact set L ⊂ R
d large enough such

that K ∪ {0} ⊂ L and define

AL =
{
f ∈ C(Q ⊕ L) : max

t∈Q
f (t) ≥ 1, max

t∈Q
f (t) = max

t∈Q⊕L
f (t)

}
,

CB =
{
f ∈ C(Q ⊕ L) : f (τQ(f |Q) + ·)

f (τQ(f |Q))
∈ B

}

for any Borel set B ⊂ C(K). Note that CB is invariant with respect to multiplication by any
positive constant. Thus, we obtain

P

{
η(τQ(η|Q) + ·)

η(τQ(η|Q))
∈ B

∣∣∣∣ max
t∈Q

η(t) = max
t∈Q⊕L

η(t) ≥ a(n)

}
(3.3)

= P

{
η

a(n)
∈ CB

∣∣∣∣ η

a(n)
∈ AL

}

= a(n)P{η/a(n) ∈ CB, η/a(n) ∈ AL}
a(n)P{η/a(n) ∈ AL} .

By [8, Corollary 9.3.2] and [26, Proposition 3.12] we have

μ(Do) ≤ lim inf
u→∞ uP

(
η

u
∈ Do

)
≤ lim sup

u→∞
uP

(
η

u
∈ D̄

)
≤ μ(D̄), D ∈ C(Q ⊕ L),

where D is bounded away from 0Q⊕L. Here μ is the intensity measure of the PPP∑
i∈N

δUiFi( · −Ti) restricted to C(Q ⊕ L). Thus, by adding or removing the boundary, we
see that all the limit points of (3.3), as n → ∞, lie in the interval[

μ(CB ∩ AL) − μ(∂(CB ∩ AL))

μ(AL) + μ(∂AL)
,
μ(CB ∩ AL) + μ(∂(CB ∩ AL))

μ(AL) − μ(∂AL)

]
. (3.4)

We note that AL is closed and the set

A∗
L =

{
f ∈ C(Q ⊕ L) : τQ(f |Q) ∈ Qo,

max
t∈Q

f (t) > max{1, f (t)} for all t ∈ Q ⊕ L \ {τQ(f |Q)}
}

is in the interior of AL. Hence, with (Q ⊕ L)c = R
d \ (Q ⊕ L), we can assess

μ(∂AL) ≤ μ
({

f ∈ C(Q ⊕ L) : max
t∈Q

f (t) = 1
})

+ μ
((

{f ∈ C(Q ⊕ L) : τQ(f |Q) ∈ ∂Q}
∪

{
f ∈ C(Q ⊕ L) : arg max

t∈Q⊕L

f (t) is not unique
})

∩
{
f ∈ C(Q ⊕ L) : max

t∈Q
f (t) = max

t∈Q⊕L
f (t) ≥ 1

})
≤ 0 +

∫
∂Q

∫ ∞

λ−1
u−2 du dt0 +

∫
(Q⊕L)c

∫ ∞

λ−1
u−2

P

(
u max

t0∈Q
F(t0 − x) ≥ 1

)
du dx.

(3.5)
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Here μ({f ∈ C(Q⊕L) : maxt∈Q f (t) = 1}) = 0 holds as maxt∈Q M(t) is Fréchet distributed
(cf. [9, Lemma 9.3.4]). Since ∂Q is a Lebesgue null set, the second term on the right-hand side
of (3.5) also vanishes. Thus,

μ(∂AL) ≤
∫

(Q⊕L)c

∫ ∞

λ−1
u−2

P

(
u max

t0∈Q
F(t0 − x) ≥ 1

)
du dx =: c(L). (3.6)

Now, let B ⊂ C(K) be a Borel set such that P(F/λ ∈ ∂B) = 0. The set

C∗
B =

{
f ∈ C(Q ⊕ L) : arg max

f ∈Q

f (t) is unique,
f (τQ(f |Q) + ·)

f (τQ(f |Q))
∈ Bo

}

is in the interior of CB and the closure of CB is a subset of

C∗
B ∪

{
f ∈ C(Q ⊕ L) : arg max

t∈Q

f (t) is not unique
}

∪
{
f ∈ C(Q ⊕ L) : f (τQ(f |Q) + ·)

f (τQ(f |Q))
∈ ∂B

}
.

Thus, by (3.6), we can assess

μ(∂(CB ∩ AL)) ≤ μ(∂AL) + μ(∂CB ∩ AL)

≤ c(L) +
∫

Rd\(Q⊕L)

∫ ∞

λ−1
u−2

P

(
u max

t0∈Q
F(t0 − x) ≥ 1

)
du dx

+
∫

Q

∫ ∞

λ−1
u−2

P

(
F

λ
∈ ∂B

)
du dt

= 2c(L). (3.7)

Furthermore, we obtain

μ(CB ∩ AL)

=
∫

Q

∫ ∞

λ−1
u−2

P

(
F(·)
λ

∈ B

)
du dt0

+
∫

(Q⊕L)c

∫ ∞

λ−1
u−2

P

(
u max

t0∈Q
F(t0 − x) ≥ 1,

F ((τQ(F (· − x)|Q)) + · − x)

maxt0∈Q F(t0 − x)
∈ B,

F(t − x)

maxt0∈Q F(t0 − x)
≤ 1 for all t ∈ Q ⊕ L

)
du dx. (3.8)

The second term in (3.8) is positive and can be bounded from above by c(L). Setting B = C(K),
μ(AL) can be expressed in an analogous way. Now, we substitute in the results of (3.6), (3.7),
and (3.8) into (3.4) to reveal that all the limit points of (3.3) are in the interval[

λ|Q|P(F (·)/λ ∈ B) − 2c(L)

λ|Q| + 2c(L)
,
λ|Q|P(F (·)/λ ∈ B) + 3c(L)

λ|Q| − c(L)

]
.

Finally, we note that c(L) ≤ ∫
(Q⊕L)c

E(maxt0∈Q F(t0 − x)) dx, which vanishes for L ↗ R
d

as the integral
∫

Rd E(maxt0∈Q F(t0 − x)) dx is finite because of the sample continuity of M

(cf. [27]). This completes the proof.

Remark 3.2. Whilst Theorem 3.1 requires full sample paths, for applications, it might be more
natural to consider a discrete grid as index space. If both the shape functions and the processes
η and M are restricted to Z

d , an analogous result to Theorem 3.1 holds, where Q = {t0} ⊂ Z
d
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and the process is evaluated at a set of k points t1, . . . , tk ∈ Z
d \ {0}, i.e.

lim
{0}∈L↗Z

d

compact

lim sup
n→∞

P

(
η(t0 + ti )

η(t0)
∈ Bi, 1 ≤ i ≤ k

∣∣∣∣ η(t0) = max
t∈L

η(t0 + t) ≥ a(n)

)

= P

(
F(ti)

λ
∈ Bi, 1 ≤ i ≤ k

)
for any Borel sets B1, . . . , Bk ⊂ [0, ∞) such that

P

((
F(t1)

λ
, . . . ,

F (tk)

λ

)
∈ ∂(B1 × · · · × Bk)

)
= 0.

Example 3.1. Let {F(t) : t ∈ R
d} be a random shape function as in (1.3). For c, ε, κ > 0, let

�c,ε =
∑
i∈N

δ(Ui ,Ti ,Fi )

be a PPP on (0, ∞)×R
d ×C(Rd) with intensity c1{u≥ε}u−2 du dtPF (df ). Then, by tightness

considerations, it can be shown that the process M̃ = M̃c,ε,κ , defined by

M̃(·) = κ ∨ max
(u,t,f )∈�c,ε

uf ( · − t),

is in the MDA of M in the sense of weak convergence on C(Rd) and, thus, satisfies the
assumptions of Theorem 3.1.

The important feature of M̃ is that, in contrast to the M3 process M itself, it is constructed
from a (locally) finite number of shape functions. Thus, it can be perceived as (a composition of)
observable environmental events, as, for instance, in Smith’s [31] ‘rainfall-storm’interpretation.
This example therefore has the potential for various practical applications.

4. Switching between the different representations

In the previous sections we analyzed processes that admit an incremental representation
(1.2) or (2.1) and processes of M3 type as in (1.4). We will now show that, under certain
assumptions, we can switch from one representation to the other. For simulation of and
statistical inference for max-stable processes, these conversion formulae allow choosing the
more appropriate representation.

4.1. Incremental representation of mixed moving maxima processes

We distinguish between M3 processes with strictly positive shape functions, for which an
incremental representation (1.2) exists, and general nonnegative shape functions, for which
only the weaker representation (2.1) can be obtained.

4.1.1. Mixed moving maxima processes with positive shape functions.

Theorem 4.1. Let M be an M3 process on R
d as in (1.4) with a continuous shape function F

with F(t) > 0 for all t ∈ R
d . Then M admits a representation (1.2) with t0 = 0 and incremental

process W given by

P(W ∈ L) =
∫

C+(Rd )

∫
Rd

1{f (·−t)/f (−t)∈L}f (−t) dtPF (df ), L ∈ B(C+(Rd)), (4.1)

which defines a proper probability distribution because of condition (1.3).
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Proof. We consider the two PPPs on (0, ∞) × C+(Rd),

�1 =
∑
i∈N

δ(UiFi(−Ti),Fi (·−Ti)/Fi(−Ti)),

as a transformation of �0 from Section 3, and �2 = ∑
i∈N

δ(U ′
i ,Wi(·)), with Wi, i ∈ N, being

independent copies of W , and with
∑

i∈N
δU ′

i
being a Fréchet Poisson process (as defined at

the beginning of Section 2). Then the intensity measures of �1 and �2 satisfy

E�1([z, ∞) × L) =
∫

C+(Rd )

∫
Rd

∫ ∞

0
u−21{uf (−t)≥z}1{f (·−t)/f (−t)∈L} du dtPF (df )

= z−1
∫

C+(Rd )

∫
Rd

1{f (·−t)/f (−t)∈L}f (−t) dtPF (df )

= z−1
P(W ∈ L)

= E�2([z, ∞) × L)

for L ∈ B(C+(Rd)) and z > 0, and, hence, �1
d= �2. The assertion follows from the fact that

M is uniquely determined by �1 via the relation M(·) = max(v,g)∈�1 vg(·).
While the definition of W in (4.1) is rather implicit, in the following, we provide an explicit

construction of the incremental process W , which can also be used for simulation. To this end,
let the distribution of (S, G) ∈ R

d × C+(Rd) be given by

P((S, G) ∈ (B × L)) =
∫

C+(Rd )

∫
Rd

1{s∈B}1{f ∈L}
f (−s)∫
f (r) dr

ds

(∫
f (r) dr

)
PF (df )

=
∫

C+(Rd )

∫
Rd

1{s∈B}1{f ∈L}f (−s) dsPF (df ) (4.2)

for B ∈ Bd and L ∈ B(C+(Rd)). In other words, PG(df ) = (
∫

f (r) dr)PF (df ) and,
conditional on {G = f }, the density function of the shift S is proportional to f (−·). Putting
W(·) = G(· − S)/G(−S), (4.1) is satisfied.

Example 4.1. (M3 representation of Brown–Resnick processes; cf. [20].) We consider the
following two special cases of M3 processes.

1. Let � ∈ R
d×d be a positive definite matrix, and let the shape function be given by

F(t) = (2π)−d/2|�|−1/2 exp[− 1
2 t��−1t], t ∈ R

d . Then M becomes the well-known
Smith process. At the same time, by (4.2), we have S ∼ N(0, �) and G ≡ F . Thus,

Y (t) = exp
[− 1

2 (t − S)��−1(t − S) + 1
2S��−1S

] = exp
[− 1

2 t��−1t + t��−1S
]
.

Since E(t��−1S)2 = t��−1t , M is equivalent to the Brown–Resnick process in (5.1)
with variogram γ (h) = h��−1h.

2. For the one-dimensional Brown–Resnick process ξ in (5.1) with variogram γ (h) =
|h|, i.e. Y is the exponential of a standard Brownian motion with drift −|t |/2, Engelke
et al. [12] recently showed that the M3 representation is given by {F(t) : t ∈ R} =
{Y (t) | Y (s) ≤ 1 for all s ∈ R : t ∈ R}, i.e. the shape function is the exponential of
a conditionally negative drifted Brownian motion. Given these two representations, it
follows that the law of F , reweighted by

∫
F(t) dt and randomly shifted with density

F(−·)/ ∫
F(t) dt , coincides with the law of Y .
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4.1.2. Mixed moving maxima processes with finitely supported shape functions. Let M be an
M3 process on R

d as in (1.4). In contrast to Section 4.1.1, where the shape functions are
required to take positive values, here we allow for arbitrary shape functions with values in
[0, ∞). The main difference is that, now, the density of the shift variable (in the following
referred to as R) cannot be given by the shape function itself any more.

Theorem 4.2. The M3 process M as in (1.4) allows for an incremental representation of the
form (2.1), with incremental processes Vi , given by

Vi(·) = Fi(· − Ri)

g(Ri)
.

Here Ri, i ∈ N, are i.i.d. copies of a random vector R with arbitrary density g satisfying
g(t) > 0 for all t ∈ R

d , and Fi, i ∈ N, are i.i.d. copies of the random shape function F .

Proof. With
∑

i∈N
δUi

a Fréchet Poisson process, we consider the process

M̃(t) = max
i∈N

UiFi(t − Ri)

g(Ri)
, t ∈ R

d ,

which is clearly of the form (2.1). Then,

P(M̃(tl) ≤ sl, 0 ≤ l ≤ k) = exp

(
−

∫
C(Rd )

∫
Rd

k
max
l=0

f (tl − t)

g(t)sl
g(t) dtPF (df )

)
.

The right-hand side coincides with the marginal distribution of M , which is given by (3.2). This
concludes the proof.

For t0 = 0, the conditional increments �Ṽ in Theorem 2.1 are given by

P(�Ṽ ∈ dz) =
∫ ∞

0
yP(V (0) ∈ dy, �V ∈ dz)

=
∫

C(Rd )

∫
Rd

f (t)1{(f (tl+t)/f (t))kl=1∈ dz} dtPF (df ).

The asymptotic conditional increments of η ∈ MDA(M) can hence be seen as a convolution
of the shape function’s increments with a random shift, whose density is given by the shape
function itself. The distribution is, in particular, independent of the choice of the density g in
Theorem 4.2.

Remark 4.1. In Section 4.1.1 we consider the subclass of M3 processes with strictly positive
shape functions and provided an incremental representation as in (1.2), which is nicely related
to the conditional increments of η due to the property W(0) = 1. Section 4.1.2 applies to
arbitrary M3 processes, i.e. has less restrictive assumptions, but it only yields an incremental
representation as in (2.1), for which the incremental process V does not directly represent the
conditional increments of η.

4.2. Mixed moving maxima representation of the incremental construction

In this section we provide an explicit formula to derive the shape function of an M3 process if
only the incremental process in representation (2.1) is given. For instance, simulation methods
based on the M3 construction are usually much faster than those based on the incremental
representation (cf. [12] and [29]).

The following lemma has been proved in [20] and it states sufficient conditions for the
existence of an M3 representation.
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Lemma 4.1. (cf. Theorem 14 of [20].) Let
∑

i∈N
δUi

be a Fréchet Poisson process, and let
Wi, i ∈ N, be i.i.d. copies of a nonnegative, sample-continuous process {W(t), t ∈ R

d},
satisfying lim||t ||→∞ W(t) = 0 a.s., EW(t) = 1 for all t ∈ R

d , and E(maxt∈K W(t)) < ∞ for
any compact set K ⊂ R

d . Furthermore, let W be such that the process ξ(·) = maxi∈N UiWi(·)
is stationary. Then the random variables τi = inf{arg supt∈Rd Wi(t)} and γi = supt∈Rd Wi(t)

are well defined. Furthermore,
∑

i∈N
δ(Uiγi ,τi ,Wi(·+τi )/γi ) is a PPP on (0, ∞)×R

d ×C(Rd) with
intensity measure �(du, dt, df ) = cu−2 du dtP

F̃
(df ) for some c > 0 and some probability

measure P
F̃

.

Theorem 4.3. Under the assumptions of Lemma 4.1, ξ has an M3 representation with
PF (df ) = P

F̃
(c df ) being the probability measure of the shape function F . The constant

c > 0 is given by c−1 = ∫
Rd

∫
C(Rd )

f (t)P
F̃
(df ) dt and the probability measure P

F̃
is defined

by

P
F̃
(A) =

∫ ∞
0 yP(W(· + τ)/y ∈ A, τ ∈ K | γ = y)Pγ (dy)∫ ∞

0 yP(τ ∈ K | γ = y)Pγ (dy)
, A ∈ B(C(Rd)),

for any compact set K ⊂ R
d . Here Pγ is the probability measure belonging to γ, and τ and

γ are defined as τi and γi , respectively, with Wi being replaced by W .

Proof. From Lemma 4.1, it follows that the PPP

�0 =
∑
i∈N

δ(Uiγi/c,τi ,c·Wi(·+τi )/γi )

has intensity �0(du, dt, df ) = u−2 du × dt × PF (df ), where PF (df ) = P
F̃
(c df ). Hence,

�0 is of the same type as �0 from the beginning of Section 3 and

ξ(t) = max
(y,s,f )∈�0

yf (t − s), t ∈ R
d ,

is an M3 representation. The integrability condition (1.3) follows from the fact that ξ has
standard Fréchet marginals. Thus,

∫
Rd

∫
C(Rd )

cf (t)P
F̃
(df ) dt = 1. In order to calculate P

F̃
,

let A ∈ B(C(Rd)) and K ∈ Bd be compact. Lemma 4.1 implies that �([1, ∞) × K × A) =
c|K|P

F̃
(A). Thus,

P
F̃
(A) = �([1, ∞) × K × A)

�([1, ∞) × K × C(Rd))
, (4.3)

and both the numerator and denominator are finite. The numerator equals∫ ∞

0
u−2

∫ ∞

u−1
P

(
W(· + τ)

γ
∈ A, τ ∈ K

∣∣∣∣ γ = y

)
Pγ (dy) du

=
∫ ∞

0
yP

(
W(· + τ)

y
∈ A, τ ∈ K

∣∣∣∣ γ = y

)
Pγ (dy).

Thus, by (4.3),

P
F̃
(A) =

∫ ∞
0 yP(W(· + τ)/y ∈ A, τ ∈ K | γ = y)Pγ (dy)∫ ∞

0 yP(τ ∈ K | γ = y)Pγ (dy)
,

which completes the proof.
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5. Outlook: statistical applications

In univariate extreme value theory, a standard method for estimating the extreme value
parameters fits all data exceeding a high threshold to a certain Poisson point process. This
peaks-over-threshold approach has been generalized to the multivariate setting in [4], [17], and
[28], and also to spatial processes [15]. Conditioning on the event that at least one component
of a random vector is large, the recent contribution [14] analyzes the asymptotic distribution of
exceedance counts of stationary sequences.

Here, we have suggested conditioning a stochastic process {η(t) : t ∈ T } in the MDA of
a max-stable process {ξ(t) : t ∈ T } such that it converges to the incremental processes W in
(1.2) or to the shape functions F in (1.4). In this section we provide several examples how
these theoretical results can be used for statistical inference. The approach is a multivariate
peaks-over-threshold method for max-stable processes, though the definition of extreme events
differs from that in [14] and [28].

In the sequel, suppose that η1, . . . , ηn, n ∈ N, are independent observations of the random
process η, already normalized to standard Pareto margins.

5.1. Incremental representation

For a max-stable process ξ that admits an incremental representation (1.2), the statistical
merit of the convergence results in Theorem 2.1 and Theorem 2.2 is the ‘de-convolution’ of U

and W , which allows us to substitute estimation of ξ by estimation of the process W . As only
the single extreme events converge to W , we define the index set of extremal observations as

I1(n) = {i ∈ {1, . . . n} : ηi(t0) > a(n)}

for some fixed t0 ∈ T . The set {ηi(·)/ηi(t0) : i ∈ I1(n)} then represents a collection of
independent random variables that approximately follow the distribution of W . Thus, once the
representation in (1.2) is known, both parametric and nonparametric estimation for the process
W is feasible.

Note that, as usual in extreme value statistics, there is a trade-off between the number I1(n)

of observations that is used for estimation and the threshold a(n) which has to be large in order
that the limit results approximately hold.

Example 5.1. (Symmetric logistic distribution; cf. Example 2.3.) The dependence parameter
q ≥ 1 of the symmetric logistic distribution (2.8) can be estimated by perceiving the conditional
increments of η in the MDA as realizations of W and maximizing the likelihood

P(W(t1) ∈ ds1, . . . , W(tk) ∈ dsk | q)

=
(

1 +
k∑

i=1

s
−q
i

)1/q−(k+1)( k∏
i=1

(iq − 1)

) k∏
i=0

s
−q−1
i ds1 · · · dsk.

Example 5.2. (Brown–Resnick processes; cf. [3] and [20].) Let {Y (t) : t ∈ R
d} be a centered

Gaussian process with stationary increments and Y (t0) = 0 for some t0 ∈ R
d . Let γ (t) =

E(Y (t) − Y (0))2, t ∈ R
d , denote the variogram of Y . Then, with a Fréchet Poisson process∑

i∈N
δUi

and independent copies Yi of Y , i ∈ N, the Brown–Resnick process for the variogram
γ is given by

ξ(t) = max
i∈N

Ui exp
[
Yi(t) − 1

2γ (t − t0)
]
, t ∈ R

d . (5.1)
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Its distribution depends only on γ . Here W from representation (1.2) is the log-Gaussian
process. Hence, standard estimation procedures for Gaussian processes can be applied for
statistical inference. Engelke et al. [13] explicitly constructed several new estimators of
the variogram γ based on the incremental representation, which also covers Hüsler–Reiss
distributions.

5.2. Mixed moving maxima representation

Similarly, if M is an M3 process as in (3.1), the convergence results of Theorem 3.1 can
be used to estimate F (or F1 = F/λ) on some compact domain K instead of estimating M

directly. Here the index set T of the observed processes {ηi(t) : t ∈ T }, i = 1, . . . , n, can
be identified with Q ⊕ L from Theorem 3.1. The set L should be sufficiently large such that
it is reasonable to assume that the components {UiFi(· − Si) : Si /∈ Q ⊕ L} hardly affect
the process M on Q ⊕ K (that is, μ(CB ∩ AL)/μ(AL) ≈ P(F (·)/λ ∈ B) in the proof of
Theorem 3.1). At the same time, a large set Q leads to a rich set of usable observations
F̃

(i)
1 = ηi(τQ(ηi) + ·)/ηi(τQ(ηi)), i ∈ I2(n), where

I2(n) =
{
i ∈ {1, . . . , n} : max

t∈Q
ηi(t) = max

t∈Q⊕L
ηi(t) ≥ a(n)

}
.

The resulting processes F̃
(i)
1 , i ∈ I2(n), can be interpreted as independent samples from an

approximation to F1. This approach can be expected to be particularly promising in the case
of F having a simple distribution.

Our approach is flexible and versatile as it allows for parametric inference (Example 5.3
below gives estimators for the parametric family of processes considered in [9]), but also for
nonparametric estimation methods (cf. Example 5.4 below).

Example 5.3. (M3 processes with deterministic shape functions.) Some examples of M3
processes have already been analyzed for statistical inference by de Haan and Pereira [9],
who used normal, exponential, and t densities as shape functions:

F1(t) = exp

[
−β2t2

2

]
, λ = β√

2π
, (5.2)

F1(t) = exp[−β|t |], λ = β

2
, (5.3)

and F1(t) = (1 + ν−1β2t2)−(ν+1)/2, λ = β�((ν + 1)/2)√
πν�(ν/2)

, ν > 0, (5.4)

all parameterized by β > 0. De Haan and Pereira [9] introduced consistent and asymptotically
normal estimators based on the interpretation of β as a dependence parameter.

From the samples F̃
(i)
1 , i ∈ I2(n), we obtain a new estimator for F1:

F̂1 = |I2(n)|−1
∑
i∈I2

F̃
(i)
1 .

Applying this estimator, β can be estimated by a least squares fit of (5.2)–(5.4) to F̂1 at some
locations t1, . . . , tm ∈ K .

Example 5.4. (Brown–Resnick processes.) The M3 representation can also be employed for
estimation of Brown–Resnick processes, although W has a much simpler form than F in this
case (cf. [12] and [24]). A relation between the shape function F and the variogram γ of
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the Brown–Resnick process can be obtained via the extremal coefficient function θ(·). For a
stationary, max-stable process ξ with identically distributed marginals, Schlather and Tawn [30]
defined the extremal coefficient function θ via the relation P(ξ(0) ≤ u, ξ(h) ≤ u) = P(ξ(0) ≤
u)θ(h), h ∈ R

d . For M3 processes, we have

θ(h) = E

∫
Rd

{F(t) ∨ F(t + h)} dt = E
∫

Rd {F1(t) ∨ F1(t + h)} dt

E
∫

Rd F1(t) dt
(5.5)

and, at the same time, for Brown–Resnick processes [20],

θ(h) = 2�
( 1

2

√
γ (h)

)
, (5.6)

where � is the standard Gaussian distribution function. Identifying (5.5) with (5.6) and plugging
in the samples F̃

(i)
1 , i ∈ I2(n), we obtain the variogram estimator

γ̂ (h) =
{

2�−1
(∑

i∈I2(n)

∫
K̃

F̃
(i)
1 (t) ∨ F̃

(i)
1 (t + h) dt

2
∑

i∈I2(n)

∫
K̃

F̃
(i)
1 (t) dt

)}2

,

where K̃ is a large set such that K̃, K̃ + h ⊂ K .
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