
London Mathematical Society ISSN 1461–1570

NOTE ON THE CONTRIBUTION OF LOW ZEROS TO WEIL’S
EXPLICIT FORMULA FOR MINIMAL DISCRIMINANTS

SAMI OMAR

Abstract

The bulk of this paper consists of tables giving lower bounds for dis-
criminants of number fields up to 48. The lower bounds are obtained
by using two different inequalities for the discriminant, one due to
Odlyzko, and the other due to Serre. These inequalities are derived
from Weil’s explicit formula by choosing suitable weight functions.
The bounds are compared with actual values of the discriminants,
and the relative errors are computed. The computations show that,
at least for the values computed, the bounds obtained via Odlyzko’s
inequality are better than those obtained via Serre’s inequality, and
are generally within a few percentage points of the true value. This
difference can be attributed to a difference in the weighting given to
the contribution of low zeros by the two inequalities.

1. Introduction

LetK be a number field of degreen and signature(r1, r2). We denote bydK the discriminant
of K. In 1890, Minkowski proved the inequality [9]

| dK | >
π

3

(
3π

4

)n−1

, (1)

which shows that the absolute values of discriminants grow to infinity with the degree.
Other mathematicians (for example, Mulholland; see [3]) improved this lower bound by
using geometric methods. Several years later, using analytic methods and more particularly
the Landau identity on the Dedekind zeta function, Stark and Odlyzko obtained better lower
bounds. All these identities, as Serre noticed, are only special cases of Weil’s explicit formu-
lae relative to the choice of positive functions,F . These formulae relate the discriminant of
a number field to two sums: the first sum is positive and runs over all the prime ideals of the
field, whereas the other sum runs over all the non-trivial zeros of the Dedekind zeta function
attached to the field. In the absence of any knowledge about the location of these zeros, we
make this sum positive in order to obtain a lower bound for the discriminant. Since non-
trivial zeros of the Dedekind zeta function appear in explicit formulae, it is not surprising
that the results obtained are better if we assume the generalised Riemann hypothesis (GRH).

Under (GRH), by considering the functionFy(x) = e−yx2
, wherey > 0 (used by Serre),

Poitou (see [7]) established the inequality:
1

n
ln(| dK |) > ln(8π)+ γ + r1

n

π

2
− 3

ln(n)
, (2)

whereγ = 0.57721566. . . is the Euler constant.
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The contribution of low zeros to Weil’s explicit formula

If we consider Odlyzko’s even function, defined forx > 0 by:

Fy(x) =
{

(1 − x
√

y) cos(πx
√

y) + 1
π

sin(πx
√

y), for x ∈ [0, 1/
√

y]
0, for x > 1/

√
y,

we obtain a better estimate (in 1/ln(n)2 instead of 1/ln(n)):
1

n
ln(| dK |) > ln(8π)+ γ + r1

n

π

2
− 2π2

(
λ(3)+ r1

n
β(3)

)
ln(n)2

, (3)

where
λ(3) = 1 + 1

33
+ 1

53
+ 1

73
+ · · · = 1.05179. . . ,

and
β(3) = 1 − 1

33
+ 1

53
− 1

73
+ · · · = π3

32
= 0.96894. . . .

An open problem (see [4]) is to compute, for each degree and signature, the fieldsKmin
having discriminantdKmin of minimal absolute value. For these fields, we can compare
the value ln| dKmin| to Odlyzko’s boundBo for the corresponding degree and signature.
For degrees less than or equal to 7, the fields of the minimal discriminants are known. At
this time, beyond degree 9, there is a table of the smallest known discriminants of totally
imaginary number fields of degree up to 80 (see [1]). We compute the error

e = | dKmin|1/n − exp(Bo/n)

exp(Bo/n)
,

and we notice that the relative error does not exceed 7% except for the totally real number
field of degree 7 of minimal discriminant, for which the error is 14.9%.

It should be noted that this error is due on the one hand to local corrections coming from
the decomposition of ideals in the number field, and on the other hand to the contribution
of the zeros of the Dedekind zeta function. For the computation of low zeros, there is a
formula of Friedman–Lavrik (see [2]) implemented by Tollis (see [10]), but computations
are restricted to number fields of degree less than 7. In [5], we compute low zeros by
using Weil’s explicit formula. More precisely, we reverse the construction that was used
by Serre and Odlyzko to bound discriminants, in order to use it when the discriminant
of the field is known. Therefore, we estimate the first zero of the Dedekind zeta function
of totally imaginary fields of degree less than 30 having the smallest known discriminant.
Unfortunately, this method is not efficient for computing high zeros, and in any case requires
the computation of the norms of many prime ideals. It is therefore easier to compute the
norms of prime ideals by using efficient algorithms for factoring the minimal polynomial
modulo rational primes, and to obtain the contribution of the zeros by substitution in Weil’s
explicit formula. Hence, one relevant question, asked by Odlyzko in [4], concerns the relative
contributions of prime ideals and zeros to the explicit formula for minimal discriminants.
In the following section, Weil’s explicit formula is stated, as is a lower bound for the
discriminant that is derived from this formula, which forms the basis of the numerical
computations.

2. Weil’s identity

Consider functionsF : R → R, which are even and satisfy the following conditions.

(A) F is continuous and continuously differentiable everywhere except at a finite number
of pointsai , whereF(x) andF ′(x) have only a discontinuity of the first kind, such
thatF(ai) = 1

2(F (ai + 0) + F(ai − 0)).
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(B) There is a numberb > 0 such thatF(x) andF ′(x) areO(e−(1/2+b)|x|) as|x| → ∞.
Then the Mellin transform ofF :

8(s) =
∫ +∞

−∞
F(x)e(s−1/2)xdx

is holomorphic in every strip−a 6 σ 6 1 + a where 0< a < b anda < 1, and we
have the following result, established by Weil (see [7] and [8]).

Theorem (Weil). LetF satisfy the conditions(A) and(B) above. Then the sum
∑

8(ρ)

running over the non-trivial zerosρ = β + iγ of ζK(s) with |γ | < T tends to a limit asT
tends to infinity, and this limit is given by the formula:

∑
ρ

8(ρ) = 8(0) + 8(1)− 2
∑
p,m

ln(N(p))

N(p)m/2
F(m ln(N(p)))

+F(0) [ln(| dK |) − n ln(2π)] − r1J (F ) − nI (F ), (4)

where

J (F ) =
∫ +∞

0

F(x)

2 ch(x/2)
dx and I (F ) =

∫ +∞

0

(
F(x)

2 sh(x/2)
− e−x

x

)
dx.

Consequences. If we consider positive functionsF depending on a positive parametery,
such thatF(0) = 1 and for which the Fourier transform is also positive, we get the inequality:

ln(| dK |) > −8(0) − 8(1)+ n(ln(2π) + I (F )) + r1J (F ). (5)

In the case whereF is either Serre’s or Odlyzko’s function, we determine the optimal value
of y that gives the best lower bound for ln(| dK |), obtaining inequalities (2) and (3).

3. Key to Table1

The values given in Table1are presented in the following way. We denote byn the degree
of an imaginary field of small discriminant, as given in [1]. We compute the optimal values
of y that give the GRH Odlyzko boundsBo and the Serre boundsBs , respectively. Note that
these bounds are slightly better than the published ones. We also compute the percentage
Eo of the root discriminant|dKmin

|1/n above exp(Bo/n), as well asvo, the contribution of
the ideal primes, andE′

o, the percentage above exp((Bo + vo)/n). Similarly, we compute
the percentageEs of the root discriminant above exp(Bs/n), the contributionvs of the ideal
primes, and the percentageE′

s above exp((Bs + vs)/n).

4. Comments

The computational results in Table1 indicate that the contribution of the zeros to the
explicit formulae for minimal discriminants is larger than the contribution of the prime
ideals, but that both of them seem to be of comparable magnitude. Evidently, by selecting
Odlyzko’s function, we obtain GRH bounds that are much closer to the discriminants of
existing fields than with Serre’s function. However, the contribution of the zeros to the
latter function is smaller than in the case of a function with bounded support, such as that
of Odlyzko. Actually Serre’s function concentrates the sum over the zeros only on the very
low zeros, which is roughly the main idea used for computing low zeros in [5], and the
ordernχ of a zero of an ArtinL-function at the central points is equal to1

2 (see [6]).
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Table 1: The contribution of zeros to the Odlyzko–Serre bounds

n = 8
yo = 0.09576 ys = 0.478
Bo = 13.9766614 Bs = 13.79148
Eo = 0.855589% Es = 3.217392%
vo = 0.0211467 vs = 0.114526
E′

o = 0.589344% E′
s = 1.750274%

n = 10
yo = 0.07544 ys = 0.379
Bo = 19.0660226 Bs = 18.81308
Eo = 0.939466% Es = 3.525133%
vo = 0.0201688 vs = 0.151892
E′

o = 0.736087% E′
s = 1.9645%

n = 12
yo = 0.06308 ys = 0.319
Bo = 24.3415208 Bs = 24.01669
Eo = 0.843225% Es = 3.610240%
vo = 0.0115306 vs = 0.180580
E′

o = 0.746373% E′
s = 2.0627%

n = 14
yo = 0.05477 y_s = 0.277
Bo = 29.7576430 Bs = 29.35786
Eo = 0.581082% Es = 3.494613%
vo = 0.0180307 vs = 0.212350
E′

o = 0.451625% E′
s = 1.9366%

n = 16
yo = 0.04879 ys = 0.248
Bo = 35.2848987 Bs = 34.80769
Eo = 1.163917% Es = 4.226583%
vo = 0.0468898 vs = 0.281873
E′

o = 0.867879% E′
s = 2.4064%

n = 18
yo = 0.04427 ys = 0.225
Bo = 40.9029186 Bs = 40.34632
Eo = 1.377733% Es = 4.561493%
vo = 0.0669201 vs = 0.347252
E′

o = 0.981985% E′
s = 2.5636%

n = 20
yo = 0.04073 ys = 0.208
Bo = 46.5969446 Bs = 45.95933
Eo = 1.572763% Es = 4.863109%
vo = 0.1166656 vs = 0.491621
E′

o = 0.981985% E′
s = 2.3168%

Continued on the following page
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Table 1,continued
n = 22
yo = 0.03787 ys = 0.194
Bo = 52.3558796 Bs = 51.63586
Eo = 1.853671% Es = 5.242294%
vo = 0.2399226 vs = 0.525236
E′

o = 0.748933% E′
s = 2.7759%

n = 24
yo = 0.03551 ys = 0.182
Bo = 58.1711296 Bs = 57.367554
Eo = 1.348998% Es = 4.799842%
vo = 0.0784337 vs = 0.468384
E′

o = 1.018323% E′
s = 2.7743%

n = 26
yo = 0.03352 ys = 0.172
Bo = 64.0358757 Bs = 63.147700
Eo = 5.788320% Es = 9.464547%
vo = 0.6124699 vs = 0.948136
E′

o = 3.325436% E′
s = 5.5446%

n = 28
yo = 0.03183 ys = 0.164
Bo = 69.9446011 Bs = 68.970908
Eo = 1.135052% Es = 4.713863%
vo = 0.0904462 vs = 0.541031
E′

o = 0.808890% E′
s = 2.7099%

n = 30
yo = 0.03036 ys = 0.156
Bo = 75.8927614 Bs = 74.832739
Eo = 1.720601% Es = 5.379056%
vo = 0.0865725 vs = 0.635029
E′

o = 1.427484% E′
s = 3.1718%

n = 32
yo = 0.02908 ys = 0.150
Bo = 81.8765639 Bs = 80.729609
Eo = 1.113499% Es = 4.825654%
vo = 0.1139595 vs = 0.634821
E′

o = 0.775468% E′
s = 2.7665%

n = 36
yo = 0.02694 ys = 0.139
Bo = 93.9387309 Bs = 92.615850
Eo = 1.709112% Es = 5.516104%
vo = 0.1994260 vs = 0.812826
E′

o = 1.147241% E′
s = 3.1604%

Continued on the following page
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Table 1,continued
n = 40
yo = 0.02521 ys = 0.131
Bo = 106.110512 Bs = 104.609693
Eo = 1.543488% Es = 5.425825%
vo = 0.2045192 vs = 0.867687
E′

o = 1.025623% E′
s = 3.1635%

n = 48
yo = 0.02260 ys = 0.118
Bo = 130.724149 Bs = 128.862258
Eo = 1.005948% Es = 5.000888%
vo = 0.1173174 vs = 0.942677
E′

o = 0.759379% E′
s = 2.9588%
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