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NOTE ON THE CONTRIBUTION OF LOW ZEROS TO WEIL'S
EXPLICIT FORMULA FOR MINIMAL DISCRIMINANTS

SAMI OMAR

Abstract

The bulk of this paper consists of tables giving lower bounds for dis-
criminants of number fields up to 48. The lower bounds are obtained
by using two different inequalities for the discriminant, one due to
Odlyzko, and the other due to Serre. These inequalities are derived
from Weil's explicit formula by choosing suitable weight functions.
The bounds are compared with actual values of the discriminants,
and the relative errors are computed. The computations show that,
at least for the values computed, the bounds obtained via Odlyzko’s
inequality are better than those obtained via Serre’s inequality, and
are generally within a few percentage points of the true value. This
difference can be attributed to a difference in the weighting given to
the contribution of low zeros by the two inequalities.

1. Introduction

Let K be a number field of degreeand signaturéry, r2). We denote byix the discriminant
of K. In 1890, Minkowski proved the inequality [9]

7 (3r\" !
ldg| > § <T) > 1)

which shows that the absolute values of discriminants grow to infinity with the degree
Other mathematicians (for example, Mulholland; s&p {mproved this lower bound by
using geometric methods. Several years later, using analytic methods and more particule
the Landau identity on the Dedekind zeta function, Stark and Odlyzko obtained better low
bounds. All these identities, as Serre noticed, are only special cases of Weil's explicit form
lae relative to the choice of positive functiors, These formulae relate the discriminant of
a number field to two sums: the first sum is positive and runs over all the prime ideals of tt
field, whereas the other sum runs over all the non-trivial zeros of the Dedekind zeta functi
attached to the field. In the absence of any knowledge about the location of these zeros,
make this sum positive in order to obtain a lower bound for the discriminant. Since nor
trivial zeros of the Dedekind zeta function appear in explicit formulae, it is not surprising
that the results obtained are better if we assume the generalised Riemann hypothesis (GF
Under (GRH), by considering the functidf) (x) = e‘—”z, wherey > 0 (used by Serre),

Poitou (see [7]) established the inequality:
1 rim 3
=1 > | —— - 2
" n(ldgl) =2 InBm) +y + 72 inm 2)

wherey = 0.57721566. . is the Euler constant.
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The contribution of low zeros to Weil's explicit formula

If we consider Odlyzko’s even function, defined foe> 0 by:

%uﬁ:{ﬂ—nﬁm%mw@+%§mm¢ﬂ for x € [0, 1/./71
0, forx > 1/./y,

we obtain a better estimate (in 1(in? instead of 1/liin)):

1 rir 2r%(A(3)+ 2B(3))
ZIn(|dk|) > In(8 =5 - — 3
“in(ldx D) > In@m) +y + -2 inG)? 3
where 1 1 1
and
1 1 1 s
B(3) 3 + 57 + 2 0.9689

An open problem (seel]) is to compute, for each degree and signature, the fi€ldg
having discriminant/g,,,, of minimal absolute value. For these fields, we can compare
the value Indk,..| to Odlyzko’s boundB, for the corresponding degree and signature.
For degrees less than or equal to 7, the fields of the minimal discriminants are known. .
this time, beyond degree 9, there is a table of the smallest known discriminants of total
imaginary number fields of degree up to 80 (see [1]). We compute the error

o — [dkmial " — exp(B, /)

exp(B,/n)

and we notice that the relative error does not exceed 7% except for the totally real numt
field of degree 7 of minimal discriminant, for which the error is3%4.

It should be noted that this error is due on the one hand to local corrections coming fro
the decomposition of ideals in the number field, and on the other hand to the contributic
of the zeros of the Dedekind zeta function. For the computation of low zeros, there is
formula of Friedman—Lavrik (se€]) implemented by Tollis (se€l]), but computations
are restricted to number fields of degree less than 7. In [5], we compute low zeros |
using Weil's explicit formula. More precisely, we reverse the construction that was use
by Serre and Odlyzko to bound discriminants, in order to use it when the discriminat
of the field is known. Therefore, we estimate the first zero of the Dedekind zeta functio
of totally imaginary fields of degree less than 30 having the smallest known discriminan
Unfortunately, this method is not efficient for computing high zeros, and in any case requir
the computation of the norms of many prime ideals. It is therefore easier to compute tl
norms of prime ideals by using efficient algorithms for factoring the minimal polynomial
modulo rational primes, and to obtain the contribution of the zeros by substitution in Weil’
explicitformula. Hence, one relevant question, asked by Odlyzko in [4], concerns the relatiy
contributions of prime ideals and zeros to the explicit formula for minimal discriminants
In the following section, Weil's explicit formula is stated, as is a lower bound for the
discriminant that is derived from this formula, which forms the basis of the numerica
computations.

’

2. Weil's identity

Consider functiong” : R — R, which are even and satisfy the following conditions.

(A) F iscontinuous and continuously differentiable everywhere except at a finite numbe
of pointsa;, whereF (x) and F’(x) have only a discontinuity of the first kind, such
thatF(a;) = 3(F(a; +0) + F(a; — 0)).
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(B) There is a number > 0 such thatF (x) and F'(x) are O (e~ /2011y as|x| — oo.
Then the Mellin transform of:

+0oo
Dd(s) = / F(x)e“ 2% gy
—00

is holomorphic in every strip-a < 0 < 1+ a where O< a < b anda < 1, and we
have the following result, established by Weil (see [7] and [8]).

Theorem (Weil).  Let F satisfy the conditiongA) and(B) above. Then the suln @ (p)
running over the non-trivial zerog = g + iy of ¢x (s) with |y| < T tends to a limit ag’
tends to infinity, and this limit is given by the formula:

N
Y 0() =00 +d(1)—-2) N(( )(,f/)z)nm IN(N (p)))
P p.m
+F(O)[In(|dk|) —nIn2r)] — r1J (F) —nl(F), (4)
where
[T F) Y F(x) e

Consequences. Ifwe consider positive functiong depending on a positive parameger
suchthat# (0) = 1 and forwhich the Fourier transformis also positive, we getthe inequality:

In(ldg|) = —®(0) — ®(1) + n(n2r) + I(F)) + riJ (F). ®)

In the case wher€ is either Serre’s or Odlyzko's function, we determine the optimal value
of y that gives the best lower bound for(|@k |), obtaining inequalities (2) and (3).

3. Keyto Tablel

The values given in Tableare presented in the following way. We denoteiltlie degree
of an imaginary field of small discriminant, as given ij.[We compute the optimal values
of y that give the GRH Odlyzko bounds, and the Serre bounds, respectively. Note that
these bounds are slightly better than the published ones. We also compute the percen
E, of the root discriminanidy, . |/ above expB,/n), as well as,, the contribution of
the ideal primes, and’, the percentage above &xp, + v,)/n). Similarly, we compute
the percentagg, of the root discriminant above e&B,/n), the contribution of the ideal
primes, and the percenta@é above exp(B; + vs)/n).

4. Comments

The computational results in Tableindicate that the contribution of the zeros to the
explicit formulae for minimal discriminants is larger than the contribution of the prime
ideals, but that both of them seem to be of comparable magnitude. Evidently, by selecti
Odlyzko’s function, we obtain GRH bounds that are much closer to the discriminants c
existing fields than with Serre’s function. However, the contribution of the zeros to th
latter function is smaller than in the case of a function with bounded support, such as tf
of Odlyzko. Actually Serre’s function concentrates the sum over the zeros only on the ve
low zeros, which is roughly the main idea used for computing low zeroS§]inahd the
ordern, of a zero of an ArtinL-function at the central pointis equal to% (see [6]).
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Table 1: The contribution of zeros to the Odlyzko—Serre bounds

n=238
Yo

t
IS
i

I
S}
i

n=12

o
)
I

o
IS
I

0.09576
139766614
0.855589%
0.0211467
0.589344%

0.07544
19.0660226
0.939466%
0.0201688
0.736087%

0.06308
243415208
0.843225%
0.0115306
0.746373%

0.05477
29.7576430
0.581082%
0.0180307
0.451625%

0.04879
35.2848987
1.163917%
0.0468898
0.867879%

0.04427
40.9029186
1.377733%
0.0669201
0.981985%

0.04073
46.5969446
1.572763%
0.1166656
0.981985%

Us
’
E;

0.478
1379148
3.217392%
0.114526
1.750274%

0.379
1881308
3.525133%
0.151892
1.9645%

0.319
24.01669
3.610240%
0.180580
2.0627%

Q277
29.35786
3.494613%
0.212350
1.9366%

0.248
34.80769
4.226583%
0.281873
2.4064%

0.225
40.34632
4.561493%
0.347252
2.5636%

0.208
4595933
4.863109%
0.491621
2.3168%
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Table 1,continued
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n=26

0
S}
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n=28

o
S}
i nounn

0
S}
I

0.03787
523558796
1.853671%
0.2399226
0.748933%

0.03551
581711296
1.348998%
0.0784337
1.018323%

0.03352
64.0358757
5.788320%
0.6124699
3.325436%

0.03183
69.9446011
1.135052%
0.0904462
0.808890%

0.03036
758927614
1.720601%
0.0865725
1.427484%

0.02908
818765639
1.113499%
0.1139595
0.775468%

0.02694
93.9387309
1.709112%
0.1994260
1.147241%

Us
’
E;

0.194
5163586
5.242294%
0.525236
2.7759%

0.182
57.367554
4.799842%
0.468384
2.7743%

0.172
63147700
9.464547%
0.948136
5.5446%

0.164
68.970908
4.713863%
0.541031
2.7099%

0.156
74.832739
5.379056%
0.635029
3.1718%

0.150
80.729609
4.825654%
0.634821
2.7665%

0.139
92615850
5516104%
0.812826
3.1604%

https://doi.org/10.1112/51461157000000656 Published online by Carfbridge University Press

Continued on the following page


https://doi.org/10.1112/S1461157000000656

The contribution of low zeros to Weil's explicit formula

Table 1,continued

n =40

yo = 0.02521 Vs = 0131

B, = 106.110512 By, = 104609693

E, = 1543488% E, = 5.425825%

v, = 0.2045192 Vg = 0.867687

E! = 1.025623% E; = 3.1635%

n =48

v, = 0.02260 Vs = 0118

B, = 130724149 By, = 128.862258

E, = 1.005948% E; = 5.000888%

v, = 01173174 Vs = 0.942677

E, = 0.759379% E;, = 29588%
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