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An Intertwining Result for p-adic Groups
Jeffrey D. Adler and Alan Roche

Abstract. For a reductive p-adic group G, we compute the supports of the Hecke algebras for the K-types for
G lying in a certain frequently-occurring class. When G is classical, we compute the intertwining between any
two such K-types.

0 Introduction

Let F denote a nonarchimedean local field of residual characteristic p, G a connected re-
ductive algebraic group defined over F, and G = G(F) the group of F-points of G.

Howe proposed and developed (in the case of G = GL(N)) the idea of studying the ad-
missible (complex) representations of G by examining their restriction to appropriate com-
pact open subgroups. (Such restrictions had already played a role in the work of Mautner
[12], Shalika [23], and Tanaka [27] on groups of type A1.) Later, Howe and Moy [9, 10, 11]
obtained much detailed information under various tameness hypotheses. In particular, if
p ≥ N , their work provides a classification of the irreducible representations of GL(N).
There has been recent progress on two fronts.

Let J be a compact open subgroup of G and (ρ,W ) a smooth irreducible representa-
tion of J. Write R for the category of smooth representations of G and Rρ for the full
subcategory consisting of all smooth representations that are generated by their ρ-isotypic
vectors. If Rρ is closed under subquotients, then Bushnell and Kutzko [3] call ρ a type. This
occurs if and only if Rρ is a finite sum of components of the Bernstein decomposition of
G. When ρ is a type, there is an equivalence of categories between Rρ and the category of
left modules over H(G, ρ). Here H(G, ρ) denotes the convolution algebra of ρ∨-spherical
functionsΨ : G→ EndC(W∨). The program of constructing a type for a given component
of the Bernstein decomposition and identifying the resulting Hecke algebra may be viewed
as a precise form of the philosophy of classifying representations in terms of compact-open
data. Bushnell and Kutzko [2, 4] have completed this program for G = GL(N).

Moy and Prasad [17, 18] define a class of “unrefined minimal K-types”, which has the
property (among others) that every admissible representation must contain one. These
K-types (“fundamental strata” in the language of Bushnell-Kutzko) provide an essential
first step in the work of Howe-Moy and Bushnell-Kutzko on GL(N). They arise roughly
as follows. Let B = B(G, F) be the Bruhat-Tits building of G, and let g and g∗ be the Lie
algebra of G and its dual, respectively. To each point x in B, one can associate a parahoric
subgroup Gx = Gx,0 of G, together with a filtration {Gx,r} of normal subgroups of Gx,
indexed by positive real numbers. Similarly, one has filtrations {gx,r} and {g∗x,r} of lattices
in g and g∗, respectively, indexed by real numbers. Write Gx,r+ =

⋃
s>r Gx,s, and define gx,r+

and g∗x,r+ similarly. If r > 0, then the quotient Gx,r/Gx,r+ is abelian, and (except in some
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cases not considered here) isomorphic to gx,r/gx,r+ . Its Pontryagin dual is isomorphic to
g∗x,−r/g∗x,(−r)+ . (This last isomorphism is non-canonical, but in a way that turns out not to
be relevant for us.)

Consider a pair (Gx,r, ρ), where ρ is an irreducible representation of Gx,r/Gx,r+ . Such a
pair is an unrefined minimal K-type of (positive) depth r if r > 0 and ρ corresponds to a coset
in g∗ containing no nilpotent elements. One can also define unrefined minimal K-types of
depth zero, using the fact that Gx,0/Gx,0+ is a finite reductive group.

One expects that every unrefined minimal K-type (Gx,r, ρ) is a type in the sense of
Bushnell-Kutzko (for a “large” sum of components of the Bernstein decomposition when
r > 0). For r = 0, this is known [13, 18]. Whenever this is so, we have an equivalence of
categories between Rρ and H(G, ρ)-Mod, as noted above. But even if ρ is not a type, we
still have a correspondence between irreducible smooth representations of G containing ρ
and simple H(G, ρ)-modules (see [5] or [2, 4.2.3 and 4.2.4]).

To determine the structure of H, one typically first determines its support, which is
defined to be the set

supp H = {g ∈ G | f (g) �= 0 for some f ∈ H}.

By an elementary argument (see the discussion preceding [7, Lemma 2.2], or [2, 4.1.1]),
the support of H is equal to the intertwining of the pair (K, ρ), which is defined to be the
set

IG(ρ) = {g ∈ G | HomK∩gKg−1 (ρ, gρ) �= 0}.

Here, gρ is the representation of gKg−1 given by gρ(gkg−1) = ρ(k) for all k ∈ K.
The purpose of this paper is to compute IG(ρ) for all ρ in a certain frequently-occurring

class. We summarize our results below.
Recall that, for r > 0, characters of Gx,r/Gx,r+ correspond to certain cosets in g∗. The

same is true (see [1, Section 1.7]) for characters of all subgroups of groups of the form
Gx,s/Gx,2s. Suppose ρ is such a character, andΥ ⊂ g∗ is the corresponding coset. Then

IG(ρ) = {g ∈ G | Ad∗(g)Υ ∩Υ �= ∅}.

This is proved in [1, Section 1.8], using an imitation of a proof of a more specialized re-
sult in [11]. Thus, for ρ arising in this way, the computation of IG(ρ) boils down to an
understanding of the coadjoint action of G on g∗.

Under certain mild conditions, one can establish a G-equivariant isomorphism g→ g∗.
One can then attach to each ρ (as above) a coset Υ in g. This coset is particularly easy to
compute in case our isomorphism takes each gx,r to g∗x,r. We include the details in Section 4.
Thus,

IG(ρ) = {g ∈ G | Ad(g)Υ ∩Υ �= ∅}.

We will also denote this set by IG(Υ).
Suppose (Gx,r, ρ) is an unrefined minimal K-type (with r > 0) and letΥ ∈ gx,−r/gx,(−r)+

be the corresponding coset (in g, not g∗). One can often pick an element a ∈ Υ having cer-
tain good properties (see Proposition 5.4). When this is the case, one can find a subgroup
J+ ⊂ Gx,(r/2)+ such that ρ extends in a trivial way to a character ρ̄ of J+, and such that every
representation of G that contains ρmust contain ρ̄. (This is all handled in Section 6.) Thus,
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for the purpose of studying representations of G, it is enough to consider H(G, ρ̄) instead
of H(G, ρ).

In this paper, we show that, under mild hypotheses on p,

IG(ρ̄) = JCG(a) J,

where J is a certain group slightly larger than J+, and CG(a) is the stabilizer of a in G. The
precise result is stated in Section 7. (We note that for K-types of depth zero, the structure
of the Hecke algebra has been described by Morris [15].)

Suppose (K1, ρ1) and (K2, ρ2) are two K-types. Using similar methods, one can some-
times compute the intertwining set

IG(ρ1, ρ2) = {g ∈ G | HomK∩gKg−1 (ρ1, gρ2 ) �= 0}.

This is equal to the support of

H(G, ρ1, ρ2) =

{
f : G→ Hom(ρ∨2 , ρ

∨
1 )

∣∣∣∣ f (k1gk2) = ρ∨1 (k1) f (g)ρ∨2 (k2) for all ki ∈ Ki

and g ∈ G, and f is compactly supported.

}
We pursue the matter in Section 9.

This work is a combined generalization of methods developed for use in [1] and [21].
Yu’s construction of supercuspidal representations [28] relies on a similar intertwining re-
sult, which he obtains in a way that does not require one to identify g∗ with g.

1 Notation, Conventions, and Some Primes to Avoid

Let Z and R denote the sets of integers and real numbers, respectively.
Let F be a nonarchimedean local field of residual characteristic p, O its ring of integers,

and P the prime ideal in O. Let F̄ be an algebraic closure of F. For any extension E of F, let
PE denote the prime ideal in the ring of integers OE of E.

Let G be a connected reductive group defined over F, let Z be the connected component
of the center of G, and let G ′ be the derived group of G. Let g, z, and g ′ denote the Lie
algebras of G = G(F), Z = Z(F), and G ′ = G ′(F), respectively.

There are several restrictions that we will need to impose on the characteristic and resid-
ual characteristic of F at various points in our argument. In order to describe them, we
must establish some more notation, some of which comes from [24].

For the rest of this section, fix a maximal torus T ⊂ G. There are associated lattices X =
X∗(T) = Hom(T,GL1) and X∨ = X∗(T) = Hom(GL1,T) of characters and cocharacters,
respectively, of T, and these lattices contain a root systemΦ = Φ(G,T) and a coroot system
Φ∨. There is a natural, nondegenerate pairing

〈 , 〉 : X⊗ X∨ → Z

given by (β ◦ α)(x) = x〈α,β〉 for all x ∈ GL1. This extends to a real-valued pairing between
X⊗ R and X∨ ⊗ R. Let

P∨ = {v ∈ ZΦ∨ ⊗ R | 〈v, α〉 ∈ Z for all α ∈ Φ},

X0 = {α ∈ X | 〈α, y〉 = 0 for all y ∈ Φ∨},

X∨0 = {y ∈ X∨ | 〈α, y〉 = 0 for all α ∈ Φ}.
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Φ z(Φ) bad(Φ) c(Φ)
An n + 1 { }
Bn,Cn 2 {2}
Dn 4 {2}

(
c(D4) ≤ 31

)
E6 3 {2, 3} ≤ 113
E7 2 {2, 3} ≤ 373
E8 1 {2, 3, 5} ≤ 1291
F4 1 {2, 3} ≤ 61
G2 1 {2, 3} 7

Table: Some data associated to root systems

Then ZΦ∨ ⊂ P∨, and P∨/ZΦ∨ is a finite group depending only on Φ. Let z(Φ) denote
the order of this group. This can be interpreted as the order of the center of the simply
connected cover G ′sc of G ′. For Φ simple, the values of z(Φ) are given in the table. In
general, it is clear that z(Φ) =

∏
z(Φi), where the product is taken over the irreducible

factors Φi of Φ.

Let Z̃Φ
∨

be the largest subgroup of X∨ that contains ZΦ∨ with finite index.

Then the center of G ′ has order |P∨/Z̃Φ
∨
|, which we denote by z(G), and |π1(G ′)| =

|Z̃Φ
∨
/ZΦ∨|. Define

k(G) = |X∨/(X∨0 + Z̃Φ
∨

)|.

Then k(G) may be interpreted as the order of the kernel of the canonical isogeny Z× G ′ →
G. Note that k(G) divides z(G), which in turn divides z(Φ). Moreover, k(G) · |π1(G ′)| is
the order of the kernel of the canonical isogeny Z× G ′sc → G.

We use an observation of Springer and Steinberg [25, Section I.4.3]. A subset Φ1 ⊂ Φ
is called a closed subsystem if ZΦ1 ∩ Φ = Φ1 and if whenever α and β are in Φ1, and sα
is the reflection corresponding to α, then sα(β) ∈ Φ1. Say that a prime q is “bad” for Φ if
ZΦ/ZΦ1 has q-torsion for some closed subsystem Φ1 of Φ. Let bad(G) = bad(Φ) denote
the set of bad primes for Φ. The sets bad(Φ) for the irreducible root systems are given in
the table. More generally, a prime is bad for Φ if it is bad for some irreducible factor of Φ.

Here is one role that bad primes will play for us. For any semisimple a ∈ g, let

CG(a) = {g ∈ G | Ad(g)a = a},

CG(a) = {g ∈ G | Ad(g)a = a},

Cg(a) = {b ∈ g | ad(b)a = 0}.

Then Cg(a) is the Lie algebra of CG(a), and CG(a) is the group of F-points of CG(a). Sup-
pose for the moment that the characteristic of F is not a bad prime for G. This implies,
for example, that the connected component of CG(a) is an E-Levi subgroup of G, for some
finite extension E/F. If we also assume that the characteristic does not divide |π1(G ′)|,
then the characteristic is not a “torsion” prime for G in the sense of [26]. Therefore, by [26,
Theorem 3.14], the group CG(a) is connected, and thus is an E-Levi subgroup of G.
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Finally, we let c(G) = c(Φ) be the smallest integer such that for any prime q > c(G), we
are guaranteed that X/Y has no q-torsion for any Y ⊂ X which has a set of Z-generators
each of which is either a root or a sum of two distinct roots. We will use one argument
where we have to assume that p > c(G). This argument is necessary only for exceptional
and triality groups, so we have only estimated c for the associated root systems, usually
obtaining a crude upper bound. However, we stress that the condition p > c(G) is not itself
a hypothesis of our main theorem; its purpose is to guarantee that the other hypotheses will
often be satisfied.

2 Some Results Concerning the Moy-Prasad Filtrations

Let T be an F-torus in G and t the Lie algebra of T = T(F). Then T and t have natural fil-
trations, defined as follows. Let E/F be a minimal splitting field for T and νE its normalized
valuation. For any r ∈ R, let

tr = {H ∈ t | νE

(
dχ(H)

)
≥ r for all χ ∈ X∗(T)}.

For any r > 0, let

Tr = {t ∈ T | νE

(
χ(t)− 1

)
≥ r for all χ ∈ X∗(T)}.

Following [17], one can associate to any point x in the building B of G a parahoric
subgroup Gx = Gx,0 of G, a filtration {Gx,r}r≥0 of Gx, and a filtration {gx,r}r∈R of the Lie
algebra g of G. Moreover, these filtrations are compatible with the given filtrations of T and
t if x lies in the apartment of T(E) in B(G, E).

It will be convenient for us to normalize the filtrations as in [19] rather than as in [18].
The normalizations differ in the following way. Let K be a maximal unramified extension
of F, and let L be the minimal extension of K such that G is L-split. Let � = [L : K]. Moy
and Prasad normalize the filtrations with respect to a valuation normalized for L, while Pan
and Yu use a valuation normalized for F. In particular, what we call gx,r and Gx,r would be
called gx,r� and Gx,r� (respectively) according to the Moy-Prasad definition. Note that these
normalizations are the same if G splits over an unramified extension.

Suppose E/F is a finite Galois extension, and M is an E-Levi subgroup of G. Let M =
M(F) and m = Lie(M). Since every maximal E-split torus in M is also a maximal E-split
torus in G, one can embed B(M, E) in B(G, E), and the set of such embeddings is an affine
space. The group Gal(E/F) acts on this space, and must have a fixed point, which is a
Galois-equivariant embedding. All such embeddings have the same image.

If E/F is tame, then B(G, F) is the Gal(E/F) fixed point set in B(G, E) (see [22, Propo-
sition 5.1.1]). The image of B(M, F) lies in B(G, F). Given x lying in this image, we can
use this embedding to identify x with an element of B(M, F). The groups and lattices Mx,
Mx,r, mx,r are independent of the choice of embedding.

We list a few basic properties of the filtrations. (For a proof of Proposition 2.1, see [1].
For Proposition 2.2 and Lemma 2.3, see [1, 17, 20].)

Proposition 2.1 Let F�/F be a finite extension of ramification degree e, and let G� = G×F F�

be G regarded as an F�-group. Define G�, g�, etc., accordingly. Then for all r ∈ R and for all
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x ∈ B(G, F),

(G�x,r) ∩ Gx = Gx,r/e (r > 0),

(g�x,r) ∩ g = gx,r/e.

Note that g� is just g⊗ F�.

Proposition 2.2 The Moy-Prasad filtrations have the following properties:

(a) For any g ∈ G, let gx be the image of x under the action of G on B(G, F). Then Int(g)Gx,r =
Ggx,r and Ad(g)gx,r = ggx,r.

(b) [Gx,r,Gx,s] ⊂ Gx,r+s and [gx,r, gx,s] ⊂ gx,r+s.
(c) If m is the Lie algebra of M, and x ∈ B(M, F) ∩ B(G, F), then gx,r ∩ m = mx,r and

Gx,r ∩M = Mx,r.

Moy and Prasad also define filtration lattices {g∗x,r} in the dual g∗ of g by

g∗x,r = {χ ∈ g∗ | χ(gx,(−r)+ ) ⊂ P}.

These lattices satisfy statements analogous to those in Proposition 2.1 and Proposition 2.2
(except for Proposition 2.2(b), which makes no sense in this context).

As a notational convenience, we write Gx,r+ =
⋃

s>r Gx,s, gx,r+ =
⋃

s>r gx,s, and g∗x,r+ =⋃
s>r g∗x,s.
Suppose that G contains a maximal torus that splits over some tamely ramified exten-

sion. Then for all x ∈ B(G, F) and for all 0 < s ≤ t ≤ 2s, there is an isomorphism
gx,s/gx,t → Gx,s/Gx,t . One can define (in a non-canonical way) a filtration-preserving
homeomorphism ϕx : gx,0+ → Gx,0+ that is compatible with each of these isomorphisms
and that also has other desirable properties. For example (see [1] for a construction and
proofs):

Lemma 2.3 If X ∈ gx,r and Y ∈ gx,s with r, s > 0, then

Ad
(
ϕx(X)

)
Y ≡ Y + [X,Y ] mod gx,2r+s.

Lemma 2.4 Let f : G(1) → G(2) be a central isogeny with kernel of order k. Then d f : g(1) →
g(2) is an isomorphism if and only if the characteristic of F is zero or prime to k. Let x be a point
in the building B(G(1), F), which we identify with B(G(2), F), and let r ∈ R. If p is prime to
k, then d f (g(1)

x,r ) = g(2)
x,r .

Proof The first statement follows from [24, Section 2.6]. From Proposition 2.1, we may
assume that the G(i) are F-split. Let t(i) be the Lie algebra of a maximal split torus in G(i)(F),
chosen so that d f (t(1)) = t(2). The result then follows from the way in which the Moy-
Prasad filtrations of the t(i) are defined.
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3 Decomposition of the Lie Algebra

Proposition 3.1 If the characteristic of F does not divide k(G), then g = z⊕ g ′.

Proof This follows from Lemma 2.4, but here is a direct proof. It is enough to consider the
case where G is F-split. Let T = T(F) be a maximal F-split torus in G = G(F), let t be its
Lie algebra, and let Φ be the root system for G with respect to T. Then g and g ′ have root
space decompositions given by

g = t⊕
⊕
α∈Φ

gα and g ′ = t ′ ⊕
⊕
α∈Φ

g ′α,

where t ′ = t ∩ g, and gα and g ′α are the α-eigenspaces in g and g ′ coming from the adjoint
action of T. Then gα = g ′α, so it is enough to show that t = z⊕ t ′.

Let Z̃Φ
∨

and X∨0 be as in Section 1. Then X∨0 ⊗F and Z̃Φ
∨
⊗F may be naturally identified

with z and t ′, respectively. Our hypothesis implies

t = X∗(T)⊗ F = (X∨0 ⊗ F)⊕ (Z̃Φ
∨
⊗ F) = z⊕ t ′.

Proposition 3.2 If p does not divide k(G), then gx,r = zr ⊕ g ′x,r for all x ∈ B(G, F) and all
r ∈ R.

Proof This follows from Lemma 2.4.

4 Adjoint vs. Coadjoint Representations

When F has characteristic zero, one may use an extension of the Killing form to identify g

and g∗. However, this identification need not respect Moy-Prasad filtrations, and need not
exist at all if F has positive characteristic.

Proposition 4.1 Suppose that either of the following conditions is true:

1. G is a form of GLn;
2. the absolute Dynkin diagram of G has no bonds of order p, and p does not divide

2k(G)|π1(G ′)|.

Then there exists an F-valued, nondegenerate, G-invariant, symmetric, bilinear form B on
g such that, under the associated identification of g with g∗, each gx,r is identified with g∗x,r.

Proof We start by constructing B under the assumption that G is F-split. If G is a general
linear group, then identify g with a matrix algebra in the usual way, and take B to be the
trace form.

Now suppose instead that the second hypothesis holds. Continue to assume that G splits
over F. Then without loss of generality, we may assume that G is defined and split over Z.
Fix a maximal F-split F-torus T ⊂ G, let Φ be the corresponding root system, and let
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∆ ⊂ Φ be a system of simple roots. Proposition 3.1 implies that g = g ′ ⊕ z. Fix an O-basis
v1, . . . , vr of z0.

Define an F-valued bilinear form ( , ) on z by (vi , v j) = δi j . We take B = B ′ ⊕ ( , )
where B ′ is defined as follows.

Let (T, {Xα}) be a Chevalley splitting for G, defined over Z. That is, Xα = dxα(1)
where the α-th root group homomorphism xα is defined over Z. Let g ′Z be the Z-module
generated by a Z-basis for Φ∨ and {Xα}α∈Φ. Then we may write g ′Z = ZΦ∨ +

∑
α∈Φ ZXα.

Suppose Φ has irreducible factors Φ1, . . . ,Φr . Then

g ′Z =
∑

i

g ′Z(i)

where

g ′Z(i) = ZΦ∨i +
∑
α∈Φi

ZXα.

Let Bi : g ′Z(i)× g ′Z(i)→ Z be the restriction of the Killing form of g ′Z ⊗ C to g ′Z(i).
We define B ′i to equal �−1

i Bi where �i is the minimum value of Bi(α∨, α∨) as α∨ ranges
through Φ∨i .

Let B ′ = B ′1⊕ · · ·⊕B ′r . Note that B ′ takes values in Z[S], where S consists of 1/2 and all
reciprocals of integers which occur as ratios of squares of root lengths for roots in someΦ∨i
(i = 1, . . . , r). Indeed B ′(α∨, β∨) = 0 if α∨ ∈ Φ∨i , β∨ ∈ Φ∨j and i �= j. If α∨, β∨ ∈ Φ∨i
and �i = Bi(γ∨, γ∨) then

B ′(α∨, β∨) = �−1
i Bi(α

∨, β∨)

=
Bi(β∨, β∨)

Bi(γ∨, γ∨)

Bi(α∨, β∨)

Bi(β∨, β∨)

= 1
2 ri〈β, α

∨〉

where ri is a ratio of squares of root lengths in Φ∨i , so that B ′(α∨, β∨) ∈ Z[S]. Further,
B ′(Xα,Xβ) = 0 unless α + β = 0, and

2B ′(Xα,X−α) = B ′(α∨, α∨)

and hence B ′(Xα,X−α) belongs to Z[S].
It is clear that B ′ is nondegenerate, and can be extended to a nondegenerate form on

g̃ ′Z = Z̃Φ
∨

+
∑

ZXα with values in Z[S, |π1(G ′)|−1]. On tensoring with F, we obtain a
nondegenerate F-bilinear form on g̃ ′Z ⊗ F = g ′, which we also denote by B ′. As above we
define B to equal B ′ ⊕ ( , ). It is easy to check (e.g. by standard formulas for the adjoint
action of G on g) that B is G-invariant.

Now drop the assumption that G is F-split. Then G is E-split for some Galois extension
E of F. Fix an maximal E-split torus T ⊂ G. As appropriate, define or choose Φ, ∆,
{Xα}, and g̃ ′Z as above. Then the reasoning above gives us a nondegenerate E-bilinear form
B = B ′⊕( , ) on gE = g⊗E. It is clear that ( , ) is Gal(E/F)-invariant if ( , ) is defined with

https://doi.org/10.4153/CJM-2000-021-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-021-8


An Intertwining Result for p-adic Groups 457

respect to an O-basis for z0, as before. We show σ
(
B ′(X,Y )

)
= B ′
(
σ(X), σ(Y )

)
for X,Y ∈

g ′E and σ ∈ Gal(E/F). It will follow that B defines a nondegenerate G-invariant F-bilinear

form on g = g
Gal(E/F)
E . From our assumptions on p, {α∨}α∈∆ ∪ {Xα}α∈Φ determines an

E-basis for g̃ ′Z ⊗ E = g ′E, so we may restrict our attention to X and Y lying in this basis. Let
Hα denote the basis element corresponding to α∨. Then Hα = [Xα,X−α] = dα∨(1).

Fix σ ∈ Gal(E/F). We have σXα = εαXσ(α) where εα = ±1 (since xα is defined over Z, εi
must be a unit in Z). Since dα∨ is defined over Z, σ(Hα) = Hσ(α). Since σ(−α) = −σ(α),
we see that ε−α = εα. Using

2B ′(Xα,X−α) = B ′(Hα,Hα) = �−1
i

∑
β∈Φ

〈β, α∨〉

(where α ∈ Φi), we then obtain B ′(Xα,X−α) = B ′
(
σ(Xα), σ(X−α)

)
(since the canonical

pairing between characters and cocharacters is Gal(E/F)-invariant). It follows that the
form B ′ defined on g̃ ′Z is Gal(E/F)-invariant and hence that σ

(
B(X,Y )

)
= B
(
σ(X), σ(Y )

)
for X,Y ∈ gE.

Now that we have constructed B, we have an associated isomorphismΨB : g→ g∗ given
by
(
ΨB(X)

)
(Y ) = B(X,Y ). It remains to show that ΨB(gx,r) = g∗x,r . From Proposition 2.1,

it is enough to show this in the case where G is F-split.
It is clear from the construction of B that B(Xα,X−α) ∈ O× for any α ∈ Φ. Also,

note that {Hα} is an O-basis for Z̃Φ
∨
⊗ O; and for all α, β ∈ Φ, B(Hα,Hβ) ∈ O and

is a unit if α = β. It follows easily from these two observations and the definitions that
ΨB(gx,r) = g∗x,r.

Remark 4.2 If G is the almost-direct product (
∏

Gi)/C where each Gi satisfies some hy-
pothesis of Proposition 4.1, then it is clear from the proof that we can construct a bilinear
form B having the desired properties if p does not divide |C|.

5 The K-Types Under Consideration

A given representation of G will contain many unrefined minimal K-types, some of which
will have better properties than others. The problem of determining in general which prop-
erties are most useful is still open. But for our purposes, it is convenient to restrict to unre-
fined minimal K-types that, after field extension, look like they are contained in a principal
series representation.

Definition 5.1 Say that a set Υ ⊂ g is good if Υ ∈ gx,r/gx,r+ for some x ∈ B and some
r ∈ R, and there is some maximal F-torus T ⊂ G such that Lie

(
T(F)
)

intersectsΥ, T splits
over a tamely ramified extension E of F, and x belongs to the apartment of T(E) in B(G, E).

For example, in the work of Howe [8], Corwin [6], Moy [16], Roche [21], and (appar-
ently) Morris [14] on (respectively) GLn, division algebras, GSP4, the principal series, and
classical groups, always in the tame case, the positive depth representations that arise all
contain characters parametrized by good cosets.

It is clear from the definition that any semisimple a that splits over a tame extension lies
in some good coset. From [1, Lemma 1.9.5], any good coset is free of nilpotent elements.
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Call an unrefined minimal K-type of positive depth good if it corresponds to a good coset
in g.

Suppose a ∈ g belongs to the Lie algebra t of some split maximal torus T(F). Then there
is some r ∈ Z such that a ∈ tr \ tr+1. Call a a T-good element of depth r if for every root α of
G with respect to T, dα(a) either is zero or has valuation r. Here, dα denotes the derivative
of α.

Suppose T ′ is another split maximal torus with Lie algebra t ′, and a ∈ t∩ t ′. Then there
is some g ∈ G such that Ad(g)a = a and Ad(g)t = t ′. This implies that a is T-good if and
only if it is T ′-good, and its depth is independent of the choice of split torus.

Suppose that T is an arbitrary maximal F-torus, split over some tame Galois extension
E/F. Clearly, Gal(E/F) preserves the set of T-good elements of t ⊗ E of any given depth.
This allows us to make the following definition.

Definition 5.2 A semisimple element a ∈ g is good if for some (hence any) tamely ram-
ified Cartan F-subgroup T satisfying a ∈ t, where t = Lie

(
T(F)
)

, and some (hence any)
E/F over which T splits, for every root α of G with respect to T, dα(a) either is zero or has
E-normalized valuation r, where a ∈ (t⊗ E)r \ (t⊗ E)r+1. If this is also true whenever α is
a sum of two roots, then we will call a very good.

Roughly, good elements of a coset in tr/tr+ are maximally singular among all elements
of the coset. They play the same role as Howe’s “standard” coset representatives [8]. More
precisely, the definition is exactly what is necessary in order to make Lemma 6.2 work. Very
good elements are only used in the proof of Lemma 5.12, where we establish the existence
of good F-points while descending to F from a splitting field.

While good cosets will typically contain good elements, one can cook up some coun-
terexamples. Therefore, it is useful to know under what circumstances one can guarantee
the existence of good elements. That is, we are particularly interested in pairs (G,T) such
that the following statement holds for t = Lie

(
T(F)
)

:

For every r ∈ R, every coset in tr/tr+ contains a good element.(5.3)

This is not a severe restriction:

Proposition 5.4 Let T be a tamely ramified maximal F-torus in G. Then Statement (5.3)
holds for G and T under any of the following conditions:

1. G is an inner form of GLn;
2. G is a form of GLn, Spn, or SOn (non-triality), and p is odd;
3. G is a form of SLn and T has F-split rank zero;
4. G has no factors of exceptional or triality type and p does not divide 2 · z(Φ), where Φ is

the root system of G with respect to T;
5. T is F-split, p /∈ bad(G), and p does not divide z(G);
6. p > c(G).

This result will follow from a series of overlapping lemmata. Lemma 5.7 will handle
the first three cases. The fourth case will then follow from the second, Lemma 5.8, and
Lemma 5.9. The fifth case will follow from Lemma 5.9, Lemma 5.10, and the fact that k(G)
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divides z(G). The last case will follow from the fifth and Lemma 5.12. Note that the last
hypothesis trumps all of the previous hypotheses on p. Thus, when p > c(G), we have a
statement (and proof) that works uniformly for all G.

Remark 5.5 The fourth hypothesis of the proposition is too strong, particularly for some
groups containing factors of type An. For any particular group, one can piece together
Lemma 5.9, Lemma 5.8, and the first three parts of the proposition to get a sufficient, but
possibly weaker, hypothesis on p.

Fix a uniformizer � for F. For every tamely ramified extension E/F, choose a uni-
formizer�E for E such that�e

E = �, where e is the ramification degree of E/F. We can do

this in a coherent way, so that if E ⊃ E ′ ⊃ F, then �e(E/E ′)
E = �E ′ . For k ∈ Z, let CE,k be

the set containing zero and all elements of E of the form ε�k
E, where ε is a root of unity of

order prime to p.
If E/F is Galois, then Gal(E/F) preserves CE,k. When p �= 2, multiplication by −1 also

preserves CE,k.

Definition 5.6 Suppose G is a form of GLn, SLn, Spn, or SOn. Choose a faithful repre-
sentation of g⊗ F̄ in gln ⊗ F̄. Let G denote the set of semisimple elements a of g such that
for some tame extension E of F, and some k, all eigenvalues of a under this representation
lie in CE,k.

Note that the definition of G does not depend on the choice of representation, and the
set G is invariant under conjugation by G. If t is any tamely ramified Cartan subalgebra of
g then it is clear that each coset in tr/tr+ can contain at most one element of G.

Lemma 5.7 Suppose that G and T satisfy any of the first three hypotheses of Proposition 5.4.
Then Statement (5.3) holds for G and T.

Proof In each of these cases, the Lie algebra g ⊗ F̄ has a standard representation as a set
of matrices, and we may concretely realize t ⊗ F̄ as the subalgebra of diagonal matrices.
Assume that tr �= tr+ , since otherwise the only coset in tr/tr+ contains 0, which is good.
Let E be the splitting field of T, and e the ramification degree of E/F. Then er ∈ Z, and
given a coset ā = a + tr+ ∈ tr/tr+ , ā ⊂ āE = a + (t ⊗ E)er+1 ∈ (t ⊗ E)er/(t ⊗ E)er+1.
Consider the character of t⊗ F̄ that picks out a particular diagonal entry. The collection of
such characters forms a Z-basis for the weight lattice of t ⊗ E, so the coset āE has a unique
element a ′ lying in G.

In the first and third cases, for every root α, dα(a ′) is a difference of two elements of
CE,er. When p �= 2, two times an element of CE,er is also a difference of elements of CE,er.
Thus, in all three cases under consideration, for each α, dα(a ′) is an element of CE,er or
a difference of two such elements. Therefore, dα(a ′) either is zero or has E-normalized
valuation er (and thus F-normalized valuation r).

Let γ ∈ Gal(E/F). In the first two cases, the Galois group permutes our chosen basis
for the character lattice (up to factors of±1 in the second case), so γ(a ′) also has its entries
lying in CE,er. (In general, the Galois action need not have this property, even when G =
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SLn. However, in the third case, the good elements we will construct for gln(E) happen to
lie in sln(E).) Since

γ(a ′) ≡ γ(a) = a ≡ a ′ mod (t⊗ E)er+1,

the uniqueness of a ′ implies that a ′ is fixed by the action of Gal(E/F). Therefore, a ′ lies in
ā.

Lemma 5.8 Let f : G(1) → G(2) be a central isogeny, T(i) ⊂ G(i) a Cartan subgroup, and
f (T(1)) = T(2). Assume that p does not divide the order of the kernel of f . Then State-
ment (5.3) holds for G(1) and T(1) if and only if it holds for G(2) and T(2).

Proof From Lemma 2.4, the map d f : t(1) → t(2) is an isomorphism and preserves the
filtration lattices. Therefore, d f and its inverse send good elements to good elements.

Lemma 5.9 Let T ⊂ G be a Cartan subgroup, and T ′ = G ′ ∩ T. Suppose p does not divide
k(G). Then Statement (5.3) holds for G and T if and only if it holds for G ′ and T ′.

Proof The statement is trivial if G = Z × G ′. The general case follows from Lemma 5.8.

Lemma 5.10 Suppose that G is F-split and semisimple and let t ⊂ g be the Lie algebra of
a split Cartan subgroup T. Suppose that p does not divide z(G) and does not lie in bad(G).
Then Statement (5.3) holds for G and T.

Proof Let ā ∈ ti/ti+1. It is enough to consider the case where i = 0. Let Φā = {α ∈ Φ |
dα(a1) ∈ P for any (hence all) a1 ∈ ā}. It is easy to check that Φā is a closed subsystem
of Φ.

Since p /∈ bad(G), the quotient (ZΦ ⊗ O)/(ZΦā ⊗ O) is torsion free. In particular,
ZΦā ⊗ O has a complement in ZΦ⊗ O. Hence any Z-basis α1, . . . , αr of Φā extends to an
O-basis α1, . . . , αr, β1, . . . , βs of ZΦ ⊗ O. For any such basis, consider the isomorphism
t0
∼
→ Or+s given by

t �→
(
dα1(t), . . . , dαr(t), dβ1(t), . . . , dβs(t)

)
.

Our first hypothesis on p is equivalent to X/ZΦ having no p-torsion, so this isomorphism
identifies t1 with a product of r + s copies of P. For any a1 ∈ ā, let a ∈ t0 be the element
corresponding to

(
0, . . . , 0, dβ1(a1), . . . , dβs(a1)

)
. Then a ∈ ā is good.

Lemma 5.11 Suppose that G is F-split and semisimple and let t ⊂ g be the Lie algebra of
a split Cartan subgroup T. Suppose that p > c(G). Then Statement (5.3) holds for G and T
with “good” replaced by “very good.”

Proof Use the proof of Lemma 5.10 and the definition of c(G).

Lemma 5.12 Suppose p > c(G). Then Statement (5.3) holds for G and T.
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Proof Note that c(G) is always greater than the largest prime divisor of k(G), so from
Lemma 5.9, it is enough to consider the case where G is semisimple. Let E be a tamely
ramified splitting field of T. Let e be the ramification degree of E/F. Suppose that a coset
ā ∈ (t⊗ E)er/(t⊗ E)er+1 contains an F-point a0. Then it remains to show that ā contains a
good F-point.

From Lemma 5.11, ā contains a very good E-point a. Let γ ∈ Gal(E/F). Then γa ≡
γa0 = a0 ≡ a mod t(E)er+1, so for all α ∈ Φ

(
G(E),T(E)

)
, dα(a) ≡ dα(γa) = γ−1dα(a)

modulo Per+1
E . The fact that a is very good then implies that dα(a) = dα(γa).

Since F does not have characteristic two and G is semisimple, we may conclude that
a = γa. Thus, a is a good F-point in the coset ā.

6 Slightly Refined Minimal K-Types

From now on, let r > 0, let Υ ∈ gx,−r/gx,(−r)+ be a good coset, and let a ∈ Υ be a good
element such that x lies in the building of the centralizer of a. Thus, there is some F-torus
T and some tame extension E/F such that T is E-split and x lies in the apartment of T(E)
in B(G, E).

For any subset s ⊂ g, let s⊥ be the perpendicular of s with respect to the bilinear form B
defined in Section 4. We need to see when the Moy-Prasad filtrations are compatible with
the decomposition of g into perpendicular summands:

Proposition 6.1 Suppose M ⊂ G is an E-Levi subgroup for some finite extension E/F,
and m is the Lie algebra of M(F). If x ∈ B(M, F) ∩ B(G, F), then for all r ∈ R, gx,r =
mx,r ⊕ (m⊥ ∩ gx,r).

Proof This follows from Proposition 2.1.
Let m = ker ad(a). For each s ∈ R, let m⊥x,s = gx,s ∩m⊥.
Fix an additive character Λ of F with conductor P. Let

J+ = mx,r ⊕m⊥x,(r/2)+

J = mx,r ⊕m⊥x,(r/2).

Let J+ = ϕx(J+) and J = ϕx(J). These are groups. The element a corresponds by duality
to a character ρ on gx,r/gx,r+ , defined by

ρ(X) = Λ
(
B(a,X)

)
.

Note that ρ is trivial on m⊥x,r . Thus, we may extend ρ to a character ρ̄ of J+ by letting it be

trivial on m⊥x,(r/2)+ .

Lemma 6.2 The map

ad(a) : m⊥x,s/m⊥x,s+ → m⊥x,−r+s/m⊥x,(−r+s)+

is an isomorphism.
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Proof In view of Proposition 2.1, we may assume that a belongs to the Lie algebra of an
F-split maximal torus, in which case the result follows directly from the fact that a is good.

Lemma 6.3 Let b ∈ Υ = a + gx,(−r)+ , and suppose that b ∈ m + gx,s for some s > −r. Then
b is conjugate under Gx,s+r to an element of a + mx,(−r)+ .

Proof (This proof, taken from [1], mimics arguments in [11, Lemma 2.4.3] and [16,
Lemma 4.4].) We may assume that m⊥x,s �= m⊥x,s+ . From Proposition 6.1, we may write

b = b1 + b⊥, with b1 ∈ a + mx,(−r)+ and b⊥ ∈ m⊥x,s. From Lemma 6.2, there exists

c⊥ ∈ m⊥x,s+r such that ad(b)(c⊥) ≡ b⊥ mod gx,s+ . Let g0 = ϕx(c⊥). From Proposition 2.3,

Ad(g0)(b) ≡ b− ad(b)(c⊥) ≡ b1 mod gx,s+ .

Thus,

Ad(g0)(b) ∈ b1 + gx,s+ ⊂ a + mx,(−r)+ + m⊥x,s1

for some s1 > s. Continuing by induction, we obtain an increasing sequence s, s1, s2, . . .
such that

⋂
i∈N m⊥x,si

= {0}, and a collection gi ∈ Gx,si +r such that for all t ∈ N,

Ad(gt · · · g1g0)(b) ∈ a + mx,(−r)+ + m⊥x,si
.

Let g ∈ Gx,s+r be the (convergent) infinite product (· · · g1g0). Then Ad(g)(b) ∈ a + mx,(−r)+ .

Lemma 6.4 All extensions of ρ to J+ are Gx-conjugate.

Proof Characters of J+/gx,r+ correspond (via the bilinear form B defined in Section 4 and
the duality between g and g∗) to cosets in gx,−r/J•+, where J•+ = mx,(−r)+ ⊕m⊥x,−r/2. Let ρ ′

be an extension of ρ to J+. Then ρ ′ is given by the formula

ρ ′(b) = Λ
(

B(a + a1, b)
)
,

where a1 ∈ m⊥x,−r/2. From Lemma 6.3, there is some g ∈ Gx,r/2 such that Ad(g)(a + a1) ≡
a mod mx,(−r)+ . Thus, for all b ∈ J+,

ρ ′(g−1b) = Λ
(

B(a + a1, g
−1b)
)
= Λ
(

B(a, b)
)
= ρ̄(b),

where ρ̄ is our trivial extension of ρ to J+.
Now regard ρ̄ as a character of J+ via the bijection between J+ and J+.

Corollary 6.5 Any admissible representation of G that contains (Gx,r, ρ) also contains
( J+, ρ̄).
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7 Main Theorem

Assume that the characteristic of F is not in bad(G) and does not divide |π1(G ′)|. Then,
as remarked in Section 1, the centralizer in G of any semisimple element of g is an E-Levi
subgroup of G for some extension E/F. As in Section 6, let Υ ∈ gx,−r/gx,(−r)+ be a good
coset, and let a ∈ Υ be a good element such that x lies in the building of CG(a). Define J+,
J, J•+, and ρ̄ as in Section 6. Suppose B is as in Proposition 4.1, and ρ̄ corresponds via B to
Ῡ ∈ gx,−r/J•+.

Theorem 7.1 Assume that p /∈ bad(G), and that the characteristic of F does not divide
|π1(G ′)|. Assume further that at least one of the following holds:

1. G is a form of GLn or SLn, or is almost simple and not of type An.
2. G is a product of such groups and possibly a torus.
3. There is a group H of the form above, and G and H are isogenous via central isogenies

(possibly to or from a third group), both of which have kernels of order prime to p.
4. p does not divide k(G) · |π1(G ′)|.

Then

IG(ρ̄) = JCG(a) J.

Remark 7.2 Given our assumption that p /∈ bad(G), the third hypothesis of the theorem
is weaker than the fourth. The only reason for going to the trouble of stating it is to handle
more groups with factors of type An.

Corollary 7.3 Suppose K is a compact subgroup of G containing J+, and σ is a representation
of K whose restriction to J+ is a multiple of ρ̄. Then, assuming the hypotheses of the Theorem,

IG(σ) ⊂ J IG ′(σ|G ′∩K ) J,

where G ′ = CG(a).

The theorem is immediate from the following:

Proposition 7.4 Assuming the hypotheses of the Theorem, IG(Ῡ) = JCG(a) J.

If g ∈ IG(Ῡ), then Ad(g)X1 = X2 for some Xi ∈ Ῡ. From Lemma 6.3, there exist
elements ki in J such that Ad(ki)Xi ∈ Cg(a). Thus Ad(g ′)X ′1 = X ′2, where X ′i = Ad(ki)Xi

and g ′ = k2gk−1
1 .

The key step is therefore the following:

Proposition 7.5 Let a and Ῡ be as above. Suppose X and Ad(g)X lie in Ῡ ∩ Cg(a). Then,
assuming the hypotheses of the theorem, g ∈ CG(a).

This is proved in Section 8, and implies Proposition 7.4.
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8 Proof of Proposition 7.5

Write Y = Ad(g)X.
From Remark 7.2, we may ignore the fourth hypothesis of Theorem 7.1.
Suppose that f : G→ G(1) is a central isogeny whose kernel has order prime to p. From

Lemma 2.4, the map d f : g → g(1) is an isomorphism. Write the images of X, Y , a, and
g under these maps as X(1), etc. Then Ad(g(1))(X(1)) = Y (1). Note that [X(1), a(1)] =
[Y (1), a(1)] = 0, and X(1),Y (1) ∈ Ῡ(1) (in the obvious notation). Suppose that g(1) ∈
CG(1)(F̄)(a(1)). Then g ∈ CG(F̄)(a) and hence g ∈ CG(a), as required.

Similar reasoning holds when we have a central isogeny f : G(1) → G whose kernel has
order prime to p (and we let g(1) be any preimage of g). Thus, we may replace G by a group
satisfying the second hypothesis of Theorem 7.1, and it is a trivial matter to reduce to the
case where G is one of the groups listed in the first hypothesis of the theorem.

If G is an almost simple group with root system Φ not of type An, then, since our as-
sumptions on p already imply that p does not divide z(Φ), we may use the reasoning above
to replace G with any group in its central isogeny class. Thus, we may restrict our attention
to forms of the following groups: GLn, SLn, SOn, Sp2n, the simple exceptional groups.

For these groups, we will show that the proposition is a consequence of the existence of
a rational representation (ρ,V ) of G(F̄) having certain good properties. We first describe
these properties and then explain why this implies the proposition. We then produce such
a representation for each of the groups that we need to consider.

Required Properties of (ρ,V ) We assume that ρ : G(F̄) → GL(V ) is faithful. We also
write ρ : g ⊗ F̄ → gl(V ) for the associated representation of Lie algebras. Let ( , ) denote
the trace form on gl(V ). We assume that ( , ) is nondegenerate when restricted to g ⊗ F̄.
Thus, gl(V ) = (g⊗ F̄)⊕ (g⊗ F̄)⊥, and each summand is G(F̄)-stable.

Fix a maximal F-torus T ⊂ G such that a ∈ t = Lie
(

T(F)
)

. Then a ∈ t−r \ t(−r)+ .
Having fixed a basis of V , we may assume that ρ maps t ⊗ F̄ into the corresponding diag-
onal subalgebra d of gl(V ). The trace form ( , ) is nondegenerate on d. Since the form is
nondegenerate on restriction to g ⊗ F̄, it remains nondegenerate on restriction to t ⊗ F̄.
Therefore d = (t⊗ F̄)⊕ s where s = (t⊗ F̄)⊥ ∩ d.

We assume that d contains an O-structure d0 which is compatible with the decomposi-
tion d = (t⊗ F̄)⊕ s, i.e., d0 = (t0 ⊗OF̄)⊕ s0 where s0 = (t⊗ F̄)⊥ ∩ d0. Fix a uniformizer
� for some splitting field of T having minimal ramification degree e, and let di = �

id0.
It then follows that di = (ti/e ⊗ OF̄) ⊕ si for all i ∈ Z (in the obvious notation). The de-
composition d0 = (t0⊗OF̄)⊕ s0 holds provided the discriminants of the O-bilinear forms
( , )|d0×d0 and ( , )|t0×t0 belong to O×. (This is the condition we verify when we specify
(ρ,V ) below.)

Finally, we need that the decompositions gl(V ) = (g⊗ F̄)⊕(g⊗ F̄)⊥ and d = (t⊗ F̄)⊕s

are compatible in the sense that s ⊂ (g⊗ F̄)⊥.

Proof of the Proposition Assuming the Existence of (ρ,V ) For any M ∈ gl(V ) and any
λ ∈ F̄, let Vλ(M) denote its generalized λ-eigenspace. Note that ρ(a) ∈ d−er. The eigen-
values of a (viewed as an element of gl(V ) via ρ) lie in P−er

E , but they need not be distinct
mod P1−er

E . Let a ′ be any element of d−er such that a ≡ a ′ mod d1−er and such that the
distinct eigenvalues of a ′ are distinct mod P1−er

E . Suppose λ is an eigenvalue of X (or Y ).
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Then λ ≡ µ mod P1−er
E for a unique eigenvalue µ of a ′.

It is not hard to check that Vµ(a ′) =
⊕

Vλi (X), where the sum is taken over the set of
all eigenvalues λi of X such that λi ≡ µ mod P1−er

E . Replacing X by Y , a similar statement
holds. The relation Ad(g)X = Y implies Ad(g)Vλ(X) = Vλ(Y ). Hence Ad g preserves the
eigenspaces of a ′ and thus Ad(g)a ′ = a ′. Now write a ′ as a1 + a2, where a1 ∈ t−r ⊗ F̄ and
a2 ∈ s−er . We have

Ad(g)a1 + Ad(g)a2 = a1 + a2.

Since a2 ∈ s ⊂ (g ⊗ F̄)⊥, this implies Ad(g)a1 = a1 (and Ad(g)a2 = a2). In particular,
g ∈ CG(F̄)(a1).

Note

a ′ − a = (a1 − a) + a2 ∈ d1−er = (t−r+ ⊗ F̄)⊕ s1−er.

Hence a2 ∈ s1−er, so a1 ≡ a mod d1−er.
Our hypotheses imply that the characteristic of F is not a torsion prime for G. Therefore,

as observed in Section 1, the group CG(F̄)(a1) is connected, and is thus generated by T
and the root groups Uα for all α such that dα(a1) = 0. The goodness of a implies that
CG(F̄)(a1) ⊂ CG(F̄)(a). Thus, g ∈ CG(F̄)(a), and we are done.

Description of (ρ,V ) If G(F̄) is isomorphic to GLn(F̄), SLn(F̄), SOn(F̄), or Sp2n(F̄), then
we use the standard representations of these as classical groups. It is not hard to verify that
these ρ have the required properties.

For the exceptional groups, let ρ be the adjoint representation on the Lie algebra g ⊗
F̄. We observe that the only primes dividing the discriminant of the Killing form with
respect to a Chevalley basis are the bad primes for the corresponding root system (see [25,
Corollary I.4.9]). This implies that ρ has all the required properties.

Proposition 7.5 and Theorem 7.1 now follow.

9 Intertwining Between Different K-Types

Suppose that the hypotheses of Theorem 7.1 are satisfied.
For i = 1, 2, letΥi ∈ gxi ,−ri/gxi ,(−ri )+ be a good coset, and let ai ∈ Υi be a good element.

Let ρi be the corresponding character of Gxi ,ri . Using the methods of Section 6, one can
form subgroups Ji and Ji+, extend ρi to a character ρ̄ of Ji+, and show that a representation
of G contains (Gxi ,ri , ρi) if and only if it contains ( Ji+, ρ̄i). As before, let Ῡi ⊂ Υi be the
coset corresponding to ρ̄i .

If g ∈ IG(ρ̄1, ρ̄2), then Ad(g)X1 = X2 for some Xi ∈ Ῡi . From Lemma 6.3, there exist
elements ki ∈ Ji such that Ad(ki)Xi ∈ Cg(ai). Thus, Ad(g ′)X ′1 = X ′2, where X ′i = Ad(ki)Xi

and g ′ = k2gk−1
1 . The following immediate consequence of Proposition 7.5 will be useful

elsewhere.

Proposition 9.1 Suppose that a1 = a2 = a. Then IG(ρ̄1, ρ̄2) = J2CG(a) J1.
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More generally, suppose we do not assume any relationship between a1 and a2. Let the Xi

and X ′i be as above. Since we may take the Xi (and thus the X ′i ) to be regular and semisim-
ple, we conclude that there exist Cartan subalgebras ti such that ai ∈ ti and Ad(g ′)t1 = t2.
Moreover, we must have r1 = r2.

We have proved the following:

Proposition 9.2 If there is no Cartan subalgebra containing both a1 and a conjugate of a2,
or if r1 �= r2, then ρ̄1 and ρ̄2 have no intertwining.

Here is a sharper result. When G is a classical group, recall that in Definition 5.6 we
constructed a set G ⊂ g such that for any tamely ramified Cartan subalgebra t, each coset
in t−r/t(−r)+ contains exactly one element of G. We showed that elements of G are good,
though for this we required p to be odd if G is not an inner form of GLn.

Proposition 9.3 Suppose either that G is an inner form of GLn, or that p �= 2 and G is a
form of GLn, Spn, or SOn (non-triality). Suppose that the ai are chosen to lie in the class G.
Then

IG(ρ̄1, ρ̄2) = J2C(a1, a2) J1,

where C(a1, a2) = {g ∈ G | Ad(g)a1 = a2}. In particular, the intertwining set is empty if the
ai are not conjugate in G.

Proof It is clear that the intertwining set is at least as large as claimed. Suppose g ∈
IG(ρ1, ρ2). From reasoning at the beginning of the proof of Proposition 7.4, after mul-
tiplying on the left by an element of J2 and on the right by an element of J1, we may assume
that Ad(g)X1 = X2, for some Xi ∈ ai + (ti)(−r)+ , where ti is a Cartan subalgebra containing
ai . Since Ad(g)a1 and a2 both belong to G and both belong to a2 + (t2)(−r)+ , we must have
Ad(g)a1 = a2.
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