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Abstract

An embedding of a metric graph (G, d) on a closed hyperbolic surface is essential if each complementary
region has a negative Euler characteristic. We show, by construction, that given any metric graph, its
metric can be rescaled so that it admits an essential and isometric embedding on a closed hyperbolic
surface. The essential genus ge(G) of (G, d) is the lowest genus of a surface on which such an embedding
is possible. We establish a formula to compute ge(G) and show that, for every integer g ≥ ge(G), there is
an embedding of (G, d) (possibly after a rescaling of d) on a surface of genus g. Next, we study minimal
embeddings where each complementary region has Euler characteristic −1. The maximum essential
genus gmax

e (G) of (G, d) is the largest genus of a surface on which the graph is minimally embedded. We
describe a method for an essential embedding of (G, d), where ge(G) and gmax

e (G) are realised.
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1. Introduction

Graphs on surfaces play an important role in the study of topology and geometry of
surfaces. A two-cell embedding of a graph G on a closed oriented topological surface
Sg of genus g is a cellular decomposition of Sg, whose one-skeleton is isomorphic to
G [6]. In topological graph theory, the characterisation of the surfaces on which a
graph can be two-cell embedded is a famous problem and well-studied [13]. In this
direction, Kuratowski showed that a graph is planar if and only if it does not contain
K3,3 (the complete bipartite graph with partitions of size 3 and 3) or K5 (the complete
graph with five vertices) as a minor. Hence, these are the only minimal nonplanar
graphs.

The genus of a surface S is denoted by g(S ). The genus of a graph G is defined
by g(G) = min{g(S )}, where the minimum is taken over the surfaces S on which G is
two-cell embedded. The maximum genus gM(G) is similarly defined [15].
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In [6], Duke has shown that every finite graph G admits a two-cell embedding on
a surface Sg of genus g for each g with g(G) ≤ g ≤ gM(G). A two-cell embedding of
a graph realising its genus is called a minimal embedding. A maximal embedding is
defined similarly. In [6, Theorem 3.1], Duke derived a sufficient condition for a two-
cell embedding to be nonminimal and provided an algorithm to obtain an embedding
on a lower genus surface.

The maximum genus problem was studied by Xuong in [15]. In [15, Theorem 3],
Xuong obtained the formula gM(G) = 1

2 (β(G) − ζ(G)) for the maximum genus,
where β(G) and ζ(G) are the Betti number and Betti deficiency of G, respectively.
Furthermore, in a maximal embedding, the number of two-cells in the cellular
decomposition is 1 + ζ(G). For more results on two-cell embeddings, we refer to [13]
and [9].

In this paper, when we say surface, we will always mean a Riemannian surface with
constant negative sectional curvature −1. Such a surface is called a hyperbolic surface.

Configurations of geodesics on surfaces have become increasingly important in the
study of mapping class groups and the moduli spaces of surfaces through the systolic
function [12] and filling pair length function [2]. The study of filling systems has its
origin in the work of Thurston [14]. To construct a spine of the moduli space Thurston
defined a set χg consisting of the closed hyperbolic surfaces of genus g whose systoles
fill the surfaces [14]. We call χg the Thurston set of genus g (see [2]). Recently,
Anderson et al. [1] studied the shape of χg, comparing it with the set Yg of trivalent
surfaces (the surfaces with a pants decomposition with all curves of length bounded
above and below by positive constants independent of g, see [12, Section 4]) by giving
a lower bound on the Hausdorff distance between χg and Yg in the moduli spaceMg.

There is a natural connection between graphs and surfaces. For instance, given
a system of curves on a surface, the union forms a so-called fat graph, where the
intersection points are the vertices, sub-arcs between the intersections are the edges
and the cyclic order on the set of edges incident at each vertex is determined by the
orientation of the surface. In [3], Balacheff et al. studied the geometry and topology of
Riemann surfaces by embedding a suitable graph on the surface which captures some
of its geometric and topological properties.

A graph G on a closed surface S is essential if each component of S \ G has a
negative Euler characteristic. The definition of essential graphs is motivated by the
definition of essential curves on closed surfaces with negative Euler characteristic.
In [11], we studied essential systolic graphs on closed hyperbolic surfaces aiming to
get a natural decomposition of the moduli space of hyperbolic surfaces by associating
to a surface its systolic graph.

In this paper, we consider essential graphs on surfaces, whose edges are realised by
geodesic segments. Furthermore, no two edges meet in their interior. Such a graph
has a metric, where the distances between points on the graph are measured along a
shortest path in the induced metric on the graph.

By a graph, we always mean a finite and connected graph, but the graphs under
consideration need not be simplicial. In particular, we will be looking at (finite and
connected) metric graphs.
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510 B. Sanki [3]

Definition 1.1. A metric graph is a pair (G, d) consisting of a graph G and a positive
real valued function d : E → R+ on the set E of edges of G.

The central questions in this paper can be summarised in the following way.

Question 1.2. Let (G, d) be a metric graph.

(1) Does there exist a closed hyperbolic surface on which (G, d) can be essentially
embedded?

(2) Characterise the surfaces on which such an embedding of (G, d) is possible and
find the lowest genus of such a surface.

While studying embeddings of metric graphs, we are of course interested in
isometric embeddings, that is, an injective map Φ : (G, d)→ S which preserves the
lengths of the edges. An embedding Φ : (G, d)→ S is called essential if Φ(G) is
essential on S .

Scaling of the metric. Given a metric graph (G, d) and a positive real number t,

dt : E → R+ is defined by dt(e) = td(e) for all e ∈ E.

Then dt is the metric obtained from d scaling by t.
From the collar lemma [7, Lemma 13.6], if α and β are two intersecting closed

geodesics on a hyperbolic surface, then l(β) ≥ 2 sinh−1(1/ sinh(l(α)/2)), which implies
two intersecting closed geodesics cannot both be arbitrarily short. Thus it is natural
to consider Question 1.2 up to scaling. Therefore, the general question is as follows:
Given a metric graph (G,d), does there exists a t > 0 such that (G,dt) can be essentially
and isometrically embedded on a closed hyperbolic surface?

Remark 1.3. Henceforth, a metric embedding of a metric graph is an isometric
embedding up to scaling its metric.

The first result we obtain answers Question 1.2(1).

Theorem 1.4. Given a metric graph (G, d) with degree of each vertex at least three,
there exists a closed surface Sg of genus g = |E| + β(G) on which (G, d) is essentially
and metrically embedded, where β(G) and |E| are the Betti number and the number of
edges of G, respectively.

Notation. We denote by S (G, d) the set of closed surfaces on which (G, d) admits an
essential metric embedding.

Now, we focus on the genera of the surfaces in S (G, d).

Definition 1.5. The essential genus of (G, d) is ge(G) = min{g(S ) | S ∈ S (G, d)}.

If T is a spanning (or maximal) tree of a graph G, then ξ(G, T ) denotes the number
of components in G \ E(T ) with an odd number of edges, where E(T ) is the set of
edges of T .
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Definition 1.6. The Betti deficiency of a graph G is defined by

ζ(G) = min{ξ(G,T ) | T is a spanning tree of G}. (1.1)

In contrast to Xuong’s formula [15, Theorem 3], we prove the following
theorem, which computes the essential genus of a metric graph and thus answers
Question 1.2(2).

Theorem 1.7. The essential genus of a metric graph (G, d) is given by

ge(G) = 1
2 (β(G) − ζ(G)) + 2q + r,

where β(G), ζ(G) are the Betti number and Betti deficiency of G, respectively, and q, r
are the unique integers satisfying ζ(G) + 1 = 3q + r, 0 ≤ r < 3. Furthermore, for any
given g ≥ ge(G), there exists a surface F of genus g on which (G,d) admits an essential
metric embedding.

An embedding of (G, d) on a surface S is the simplest if the Euler characteristic
of each complementary component is −1. We therefore define minimal embedding as
follows.

Definition 1.8. An embedding Φ : (G, d)→ S is called minimal if χ(Σ) = −1 for each
component Σ in S \ Φ(G).

Given a metric graph, there exists a minimal embedding where the essential genus
is realised. Note that, the essential genus can also be realised by a nonminimal
embedding. For instance, the complement might contain a torus with two boundary
components. The set of closed surfaces on which (G, d) can be minimally and
metrically embedded is denoted by Sm(G, d). The genera of the surfaces in Sm(G, d)
are bounded from below by ge(G) and this bound is sharp. We define the maximum
essential genus of (G, d) by

gmax
e (G) = max{g(S ) | S ∈ Sm(G, d)}.

It follows from Euler’s equation that gmax
e (G) ≤ 1/2(β(G) + 1 + 2|E|/T (G)) (see, for

example, [4]). Here, T (G) is the girth of the graph G.
Next, we focus on an explicit construction of minimal (or maximal) embeddings.

To embed a graph on a surface minimally (or maximally), the crucial part is to find
a suitable fat graph structure which gives the minimum (or maximum) number of
boundary components among all possible fat graph structures on the graph. For a
definition of fat graphs, we refer to Definition 2.2. For a fat graph structure σ0 on G,
the number of boundary components in (G, σ0) is denoted by #∂(G, σ0).

We prove the following proposition which leads to an algorithm for minimal and
maximal embeddings. Given any integer g satisfying ge(G) ≤ g ≤ gmax

e (G), there exists
a closed hyperbolic surface of genus g on which (G,d) can be minimally and metrically
embedded, answering Question 1.2.
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Proposition 1.9. Let G = (E,∼, σ1) be any graph with degree of each vertex at least
three. Suppose σ0 =

∏
v∈V σv is a fat graph structure on G such that there is a vertex

v which is common in b (≥ 3) boundary components. Then there exists a fat graph
structure σ′0 on G, such that

#∂(G, σ′0) = #∂(G, σ0) − 2.

2. Preliminaries

In this section, we recall some graph theory and geometric notions. Also, we
develop a lemma which is essential in the subsequent sections.

2.1. Fat graph. Before going to the formal definition of fat graph (ribbon graph),
we recall a definition of graph and a few graph parameters. The definition of graph
we use here is not the standard one which is used in ordinary graph theory. But, it is
straightforward to see that this definition is equivalent to the standard one. We use this
definition because it is a convenient starting point to describe fat graphs.

Definition 2.1. A finite graph is a triple G = (E1,∼, σ1), where E1 is a finite, nonempty
set with an even number of elements, σ1 is a fixed-point free involution on E1 and ∼
is an equivalence relation on E1.

In ordinary language, E1 is the set of directed edges, E := E1/σ1 is the set of
undirected edges and V := E1/∼ is the set of vertices. The involution σ1 maps a
directed edge to its reverse directed edge. If ~e ∈ E1, we say that ~e is emanating from
the vertex v = [~e], the equivalence class of ~e. The degree of a vertex v ∈ V is defined
by deg(v) = |v|.

The girth T (G) of a graph G is the length of a shortest nontrivial simple cycle,
where the length of a cycle is the number of edges it contains. The girth of a tree
(graph without a simple cycle) is defined to be infinity. The Betti number of a graph G
is defined by β(G) = −|V | + |E| + 1.

Now, we define fat graphs. Informally, a fat graph is a graph equipped with a cyclic
order on the set of directed edges emanating from each vertex. If the degree of a
vertex is less than three, then the cyclic order is trivial. Therefore, we consider the
graphs with degree of each vertex at least three.

Definition 2.2. A fat graph is a quadruple G = (E1,∼, σ1, σ0), where

(1) (E1,∼, σ1) is a graph; and
(2) σ0 is a permutation on E1 so that each cycle corresponds to a cyclic order on the

set of oriented edges emanating from a vertex.

For a vertex v of degree d, σv = (ev,1, ev,2, . . . , ev,d) represents a cyclic order on
v, where ev,i, i = 1, 2, . . . , d, are the directed edges emanating from the vertex v and
σ0 =

∏
v∈V σv. Given a fat graph G, we construct an oriented topological surface Σ(G)

with boundary by thickening its edges. The number of boundary components in Σ(G)
is the number of disjoint cycles in σ1 ∗ σ

−1
0 (see [10, Section 2.1]). For more details

on fat graphs, we refer to [10, 11] and [8].
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Figure 1. Replacement of two edges by a single edge and removal of a vertex.

2.2. Pair of pants. A hyperbolic three-holed sphere is called a pair of pants. It is
a fact in hyperbolic geometry that given any three positive real numbers l1, l2 and l3,
there exists a unique pair of pants with boundary geodesics of lengths l1, l2 and l3 (see
[5, Section 3.1]). Let Px be the pair of pants with boundary geodesics of lengths 1, 1
and 2x, where x ∈ R+. We define a function f , where for x ∈ R+, f (x) is the distance
between the two boundary components of Px of length 1.

Lemma 2.3. The function f is continuous and strictly monotonically increasing with

f (R+) = ( fmin,∞), where fmin = cosh−1
(cosh2 1

2 + 1

sinh2 1
2

)
.

Proof. The distance f (x) between the boundary components of length 1 is realised by
the common perpendicular geodesic segment to these boundary geodesics.

The common perpendicular geodesic segments between a pair of distinct boundary
components of Px decompose it into two isometric right-angled hexagons with
alternate sides of lengths 1

2 ,
1
2 and x. Now, using formula (i) in [5, Theorem 2.4.1],

f (x) = cosh−1
(cosh2 1

2 + cosh x

sinh2 1
2

)
,

which implies the lemma. �

3. Essential embedding of a metric graph

In this section, we prove Theorem 1.4. Note that, if a graph G is a cycle, then
we find an embedded geodesic loop with length equal to the total length of the cycle,
and populate it with vertices according to the lengths of each edge. Therefore, in the
remaining part in this section, we exclude the case where the graph is a cycle.

Definition 3.1. A metric graph is called geometric if it can be essentially and
metrically embedded on a closed surface.

Let (G, d) be a metric graph with degree of each vertex at least two, where
G = (E1,∼, σ1). If v = {~ei : i = 1, 2} is a vertex with degree 2, then we define a new
graph G′ = (E′1,∼

′, σ′1) with metric d′ by removing the vertex v and replacing two
edges ei = {~ei, ~ei}, i = 1, 2, by a single edge e = {~e, ~e} in G (see Figure 1). The metric d′

is defined by, d′(x) = d(x), for all x ∈ E′ \ {e} and d′(e) = d(e1) + d(e2).

Lemma 3.2. A graph (G, d) is geometric if and only if (G′, d′) is geometric. Moreover,
the essential genera of these graphs are the same, that is, ge(G) = ge(G′).
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Figure 2. Hyperbolic d-holed sphere, d = 4.

Proof. Suppose (G′, d′) is geometric and Φ : (G′, d′t )→ S is a metric embedding for
some t > 0. Considering the point in the interior of e (according to the lengths of e1

and e2) as a vertex, we get a metric embedding of (G, dt) on S . Similarly, a metric
embedding of (G, d) gives the metric embedding of (G′, d′) by forgetting the vertex v.
Hence, the lemma follows. �

In the light of Lemma 3.2, from now on, we assume that the degree of each vertex
of the graph G is at least three, that is, deg(v) ≥ 3, for all v ∈ V.

Proof of Theorem 1.4. Let (G, d) be a given metric graph with degree of each vertex
at least three. For each vertex v, we assign a hyperbolic deg(v)-holed sphere S (v) with
each boundary geodesic of length 1. Namely, we construct 2 deg(v)-sided right-angled
hyperbolic polygons P(v) with v pairwise nonadjacent edges of length 1/2 by attaching
2 deg(v) copies of Q(π/ deg(v)). Here, Q(θ) denotes a sharp corner (also known as a
Lambert quadrilateral), whose only angle not equal to a right angle is θ and a side
opposite to this angle is of length 1

4 (see Figure 2). Then consider two copies of P(v)
and glue them in an obvious way by isometries to obtain S (v).

Consider the central point on each copy of P(v) on S (v) and connect it to the
boundary components by distance realising geodesic segments. These geodesic
segments meet boundary components orthogonally. Now, applying formula (vi) in
[5, Theorem 2.3.1], on the sharp corner Q(π/ deg(v)) as indicated in Figure 2, we find
the length of the perpendicular geodesic segment is

xv = sinh−1 (
coth(1/4) coth(π/deg(v))

)
.

For an edge e with the ends u and v, we define l(e) = xu + xv. Now, we choose a
positive real number t such that dt(e) > l(e) + fmin for all edges e in G, where fmin is
given in Lemma 2.3.

To each edge e, we assign a pair of pants Pxe (as in Section 2.2, Lemma 3.2), where
xe ∈ R satisfies f (xe) = dt(e) − l(e).
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Now, glue the surfaces S (v), v ∈ V and Pxe , e ∈ E, along the boundaries of length 1
according to the graph G with twists so that all of the distance-realising orthogonal
geodesic segments meet. Thus, we obtain a surface, denoted by Σ∂(G, d), with
boundary on which (G, dt) is isometrically embedded. We turn our surface into a
closed surface Σ(G, d) by attaching one-holed tori to the boundary components.

Finally, we count the genus g of Σ(G, d) by counting the number of pairs of pants
in a pants decomposition which gives 2g − 2 =

∑
v∈V (deg(v) − 2) + 2|E|. This equation

and the relation
∑

v∈V deg(v) = 2|E| conclude the proof. �

4. Fat graph structures and embeddings

In this section, for a given fat graph structure σ0 on (G, d), we construct an essential
metric embedding on a closed surface S (G, d, σ0), where the fat graph structure is
realised and the genus is minimised.

A graph G on an oriented surface S has a natural fat graph structure σ0 determined
by the orientation of S . Conversely, if σ0 is any given fat graph structure on G, then
there exists an essential metric embedding of (G,d) on a closed hyperbolic surface S of
genus g = |E| + β(G) (see Theorem 1.4), where the fat graph structure σ0 is realised.
Construction of such an embedding follows the same procedure as in the proof of
Theorem 1.4. The only difference is that one needs to glue the deg(v)-holed spheres
S (v), v ∈ V , and Pxe , e ∈ E, according to the fat graph structure σ0.

4.1. Embedding on a surface with totally geodesic boundary. Let Nε(G, d, σ0)
be the regular (tubular) ε-neighbourhood of G on S , where ε > 0 is sufficiently small.
Let β′ be a boundary component of Nε(G, d, σ0). Then β′ is an essential simple closed
curve on S as the graph is essentially embedded (in particular, no complementary
region is a disc). Therefore, there is a unique geodesic representative β (simple and
closed) in its free homotopy class. Note that, the geodesic representatives β of the
boundary components of Nε(G, d, σ0) are disjoint from the embedding of the graph on
the surface S (see, for example, [11, Section 7]). We obtain the surface Σ0(G, d, σ0)
with totally geodesic boundary by cutting S along the geodesics in the free homotopy
classes of the boundary components of Nε(G, d, σ0).

Lemma 4.1. The metric graph (G,d) is metrically embedded on the surface Σ0(G,d, σ0)
with totally geodesic boundary. Furthermore, the number of boundary components of
Σ0(G, d, σ0) is the number of orbits of σ1 ∗ σ

−1
0 .

Proof. By the construction described above, (G, d) is metrically embedded on the
surface Σ0(G, d, σ0) which is a subsurface of S . Finally, Σ0(G, d, σ0) is homeomorphic
to Σ(G, σ0). Therefore, the number of boundary components of Σ0(G, d, σ0) is the
number of orbits of σ1 ∗ σ

−1
0 . �

4.2. Embedding on a closed surface. In this subsection, we cap the surface
Σ0(G, d, σ0) by surfaces with boundary to obtain a closed surface. Equivalently, we
embed Σ0(G, d, σ0) metrically and essentially on a closed surface. We describe two
gluing procedures below.
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4.2.1. Glue I. In this gluing procedure, we assume that Σ0(G, d, σ0) has at least
three boundary components and choose any three of them, say β1, β2 and β3. We
consider a pair of pants Y , with boundary geodesics b1, b2 and b3 of lengths l(β1), l(β2)
and l(β3), respectively. We glue βi with bi, i = 1, 2, 3, by hyperbolic isometries. In this
gluing, the resulting surface has genus two more than the genus of Σ0(G, d, σ0) and
number of boundary components is three less than that of Σ0(G, d, σ0).

4.2.2. Glue II. Let β be a boundary geodesic of Σ0(G, d, σ0). We glue a hyperbolic
one-holed torus with boundary length l(β) to the surface Σ0(G, d, σ0) along β by an
isometry. The resulting surface has genus one more than that of Σ0(G, d, σ0) and the
number of boundary components is one less than that of Σ0(G, d, σ0).

Now, assume that Σ0(G, d, σ0) has b boundary components. Using the division
algorithm, there are unique integers q and r such that b = 3q + r, where 0 ≤ r ≤ 2.
Then following the gluing procedure Glue I (see Section 4.2.1) for q times and Glue II
(see Section 4.2.2) for r times, we obtain the desired closed hyperbolic surface denoted
by S (G, d, σ0).

Remark 4.2. The genus of S (G, d, σ0) depends upon the fat graph structure σ0.

5. Minimum genus problem

In this section, our goal is to prove Theorem 1.7.
Let (G, d) be a metric graph with degree of each vertex at least three and let χ(G)

denote the Euler characteristic of G. We consider a fat graph structure σ0 on G and
denote by Σ0(G, d, σ0) the surface with geodesic boundary obtained in Section 4. As
G is a spine of Σ0(G, d, σ0),

χ(Σ0(G, d, σ0)) = χ(G), (5.1)

where χ(Σ0(G, d, σ0)) denotes the Euler characteristic of Σ0(G, d, σ0). The assumption
deg(v) ≥ 3 and the relation 2|E| =

∑
v∈V deg(v) ≥ 3|V | implies that χ(G) < 0.

Lemma 5.1. Let σ0 and σ′0 be two fat graph structures on (G, d). Then the difference
between the number of boundary components of Σ0(G, d, σ0) and Σ0(G, d, σ′0) is an
even integer, that is, #∂Σ0(G, d, σ0) − #∂Σ0(G, d, σ′0) is divisible by 2.

Proof. Let the genera of Σ(G, d, σ0) and Σ(G, d, σ′0)) be g and g′. By Euler’s equation,
2 − 2g − #∂Σ0(G, d, σ0) = 2 − 2g′ − #∂Σ0(G, d, σ′0) which implies the lemma. �

The number of boundary components of a surface F is denoted by #∂F. The genus
of a fat graph (G, σ0) is the genus of the associated surface and denoted by g(G, σ0).
Similarly, we denote the number of boundary components of a fat graph by #∂(G, σ0).

Lemma 5.2. Let σ0 and σ′0 be two fat graph structures on a metric graph (G, d) such
that #∂(Σ0(G, d, σ0)) − #∂(Σ0(G, d, σ′0)) = 2. Then

g(S (G, d, σ′0)) ≤ g(S (G, d, σ0)).
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Proof. Suppose that the genus and the number of boundary components of Σ0(G,d, σ0)
are g and b, respectively. Then by Euler’s formula and (5.1), we have 2 − 2g − b = χ(G)
which implies that b = 2 − 2g − χ(G). For the integer b, by the division algorithm,
there exist unique integers q and r such that b = 3q + r where 0 ≤ r < 3. Therefore, by
construction (see Section 4), the genus of S (G, d, σ0) is

g(S (G, d, σ0)) = g + 2q + r.

Now, assume that the genus and number of boundary components of Σ0(G, d, σ′0) are
g′ and b′, respectively. Then Euler’s formula and (5.1) give b′ = 2 − 2g′ − χ(G). The
hypothesis b′ = b − 2 of the lemma implies g′ = g + 1.

Now, we compute the genus of the closed surface S (G, d, σ′0). There are three cases
to consider as b′ = 3q + r − 2 with r ∈ {0, 1, 2}.

Case 1: r = 0. In this case b′ = 3(q − 1) + 1. Thus the genus of S (G, d, σ′0) is
g′ + 2(q − 1) + 1 = g + 2q which is equal to the genus of S (Σ, d, σ0). Therefore, the
lemma holds with equality.

Case 2: r = 1. In this case b′ = 3(q − 1) + 2. Therefore, the genus of S (G, d, σ′0) is
g + 1 + 2(q − 1) + 2 = g + 2q + 1 which is equal to the genus of S (Σ, d, σ0). Therefore,
the lemma holds with equality.

Case 3: r = 2. In this case, the genus of S (G,d, σ0) is g + 2q + 2. Now, b′ = b − 2 = 3q
implies that the genus of S (G, d, σ′0) is g′ + 2q = g + 1 + 2q. Therefore,

g(S (G, d, σ′0)) = g(S (G, d, σ0)) − 1 < g(S (G, d, σ0)). �

Proof of Theorem 1.7. To find the essential genus of (G, d), we consider a fat graph
structure σ0 on G which gives the maximum genus of Σ0(G, d, σ0), or equivalently,
the minimum number of boundary components (see Lemma 5.2). For such a fat
graph structure σ0, from [15, Theorem 3], the genus of Σ0(G, d, σ0) is 1

2 (β(G) − ζ(G)).
Moreover, the number of boundary components of the fat graph (G, σ0) is 1 + ζ(G),
which is equal to the number of boundary components of Σ0(G, d, σ0). By the division
algorithm, for the integer 1 + ζ(G), there are unique integers q and r such that

1 + ζ(G) = 3q + r, where 0 ≤ r < 3.

Therefore, the genus of S (G,d, σ0) is ge(G) = 1
2 (β(G) − ζ(G)) + 2q + r, as follows from

the construction in Section 4. This proves the first part of the theorem.
Now, we focus on the proof of the remaining part of the theorem, that is we show

that for any g ≥ ge(G) the graph (G, d) can be metrically embedded on a closed surface
of genus g. We define g′ = g − ge(G). Let us consider the surface S (G, d, σ0) of genus
ge(G) constructed above. Now, there are two possibilities.

Case 1. If the number of boundary components of Σ0(G, d, σ0) is divisible by 3,
then we have a Y-piece, denoted by Y(β′1, β

′
2, β

′
3), attached to Σ0(G, d, σ0) along

the boundary components β1, β2, β3 by hyperbolic isometries in the construction
of S (G, d, σ0) (see the construction in Section 4). We replace this Y-piece from
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Figure 3. Change of cyclic order at a vertex.

S (G, d, σ0) by a hyperbolic surface Fg′,3 of genus g′ and three boundary components,
again denoted by β′1, β

′
2 and β′3, of lengths l(β1), l(β2) and l(β3), respectively. We denote

the new surface by Sg′(G, d, σ0).

Case 2. In this case, we consider the possibility that the number of boundary
components of Σ0(G, d, σ0) is not divisible by 3. Then there is a subsurface F1,1 of
genus 1 and a single boundary component β′, which we have attached to Σ0(G, d, σ0)
along the boundary component β to obtain S (G, d, σ0). Now, we replace F1,1 by
Fg′+1,1, a hyperbolic surface of genus g′ + 1 and a single boundary component β′ of
length l(β), in S (G, d, σ0). We denote the resulting surface by Sg′(G, d, σ0).

The surface Sg′(G, d, σ0) has genus g and (G, d) is metrically embedded on it. �

6. Algorithm: minimal embedding with minimum/maximum genus
In this section, we study minimal essential embeddings and prove Proposition 1.9.

We conclude this section with Remark 6.2 which provides an algorithm for minimal
embedding with minimum and maximum genus.

Let us consider a trivalent fat graph (Γ, σ0) with a vertex v which is shared by three
distinct boundary components. We construct a new fat graph structure to reduce the
number of boundary components.

Lemma 6.1. Let (Γ, σ0) be a three-regular fat graph. If Γ has a vertex which is common
in three boundary components, then there is a fat graph structure σ′0 such that

#∂(Γ, σ′0) = #∂(Γ, σ0) − 2.

Proof. Suppose the vertex v is in three distinct boundary components of Γ. Assume
that v = {~ei, i = 1, 2, 3} with σv = (~e1,~e2,~e3) (see Figure 3, left). Suppose ∂i, i = 1, 2, 3,
are the boundary components given by

∂1 = ~e1P1 ~e3, ∂2 = ~e2P2 ~e1 and ∂3 = ~e3P3 ~e2,

where the Pi’s are finite (possibly empty) paths in the graph and ~ei = σ1(~ei) (see
Figure 3, right). We replace the order σv = (~e1, ~e2, ~e3) by σ′v = (~e2, ~e1, ~e3) to obtain
a new fat graph structure σ′0. Then the boundary components of (Γ, σ′0) are given by

∂(Γ, σ′0) = (∂(Γ, σ0) \ {∂i|i = 1, 2, 3}) ∪ {∂},
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where ∂ = ~e2P2 ~e1~e3P3 ~e2~e1P1 ~e3 = ∂2 ∗ ∂3 ∗ ∂1. Here, ∗ is the usual concatenation
operation. Therefore, the number of boundary components in (Γ, σ′0) is the same as
the number of boundary components in (Γ, σ0) minus two. �

Proof of Proposition 1.9. Let v0 = {~e1,~e2, . . . ,~ek} be a vertex which is in at least three
boundary components. We assume that the cyclic order at v0 is given by

σv0 =
(
~e1, ~e2, ~e3, . . . ,~ei, ~ei+1, . . . ,~ek

)
,

where k ≥ 3, 3 ≤ i ≤ k and ~ek+1 = ~e1. We can choose three boundary components
bi, i = 1, 2, 3, such that there is an edge e2 = {~e2, ~e2} with ~e2 in b1 and ~e2 in b2.
We can write b1 = ~e2P1 ~e1, b2 = ~e3P2 ~e2 and b3 = ~ei+1P3 ~ei, where the P j’s are some
paths (possibly empty) in the fat graph. Now, we consider a new cyclic order at v,
given by σ′v = (~e1, ~e3, . . . , ~ei, ~e2, ~ei+1, . . . , ~ek). Then, in the new fat graph structure
σ′0, the boundary components of (G, σ′0) are (∂(G, σ0) \ {b1, b2, b3}) ∪ {b}, where
b = b1 ∗ b2 ∗ b3. Therefore,

#∂(G, σ′0) = #∂(G, σ0) − 2. �

Remark 6.2. One can obtain a minimal embedding applying Proposition 1.9. let us
consider a fat graph (G, σ0). If v is a vertex shared by k ≤ 2 boundary components, then
it follows from Lemmas 5.1 and 5.2 that there is no replacement of the cyclic order
σv (keeping the cyclic order on other vertices unchanged) to reduce the number of
boundary components. If there is a vertex v which is common in at least three boundary
components, then one can replace the fat graph structure by applying Proposition 1.9
to reduce the number of boundary components by two. Therefore, by repeated
application of Proposition 1.9, we can obtain a fat graph structure on the graph G
that provides the essential genus ge(G).

Using Proposition 1.9, in the reverse way, we can obtain a fat graph structure which
provides the maximal genus gmax

e (G) of a minimal embedding. Namely, if there is a
vertex v with cyclic order σv = (~e2,~e3 . . . ,~ei,~e1,~ei+1, . . .~ek) and a boundary component
∂ of the form ∂ = ~e2P1 ~e1 ~e3P2 ~e2ei+1P3 ~ei, where the P j’s are some paths in G, only
then, we can replace σ0 by σ′v = (~e1, ~e2, ~e3, . . . , ~ei, ~ei+1, . . . , ~ek) to obtain a new fat
graph structure σ′0, such that

#∂(G, σ′0) = #∂(G, σ0) + 2.

By repeated use of Proposition 1.9, we can obtain a fat graph structure on G which
provides gmax

e (G).

It would be interesting to study quasi-essential metric embeddings, where some of
the complementary components are allowed to be simply connected. Note that, for
such a component it is necessary that the corresponding boundary component satisfies
the polygonal inequality: for an n-sided polygon the total length of any (n − 1) sides is
strictly greater than the length of the remaining side. We hope to address this question
in the future.
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