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Abstract. We study the motive of the moduli spaces of rank two vector bundles on a curve. In the
smooth case we obtain the Hodge numbers, intermediate Jacobians and number of points over
a finite field as corollaries. In the singular case our computations yield the Poincaré—Hodge
polynomial of Seshadri’s smooth model.
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Introduction

The moduli space of stable vector bundles over an algebraic curve is an interesting
space related to the curve and has received great attention for the last 20 years.
In particular, when the rank and degree are coprime its cohomology has been shown
to be torsion free and its Betti numbers are known. However the methods used in
studying its cohomology are topological [23], number theoretical [11, 15] or infinite-
dimensional [1], and these, at least in principle, do not yield information on the
motivic structure of the cohomology of the moduli space.

In this paper we use a recent construction by M. Thaddeus [28] to give a descrip-
tion of the motivic Poincaré polynomial of the moduli space of rank two semistable
vector bundles of fixed determinant on an algebraic curve. It is an idea of
Grothendieck that one should work in the Grothendieck group Kj of the category
of motives; this is where the motivic Poincaré polynomial lives. We believe that
the theory of motives is an effective language to express clearly and precisely
how the algebro-geometric properties of the curve influence those of the moduli
space of stable vector bundles. As a manifestation of this belief we show how to
prove a semisimplicity statement for the action of the Galois group on the étale
cohomology of the moduli space.

This work is concerned with the moduli spaces with fixed determinant. The case
where only the degree is fixed and the rank is arbitrary is treated, over a field of
characteristic zero, in [7]. The connection between these two studies is related to
the action of the torsion of the Jacobian on the Chow motive of the moduli spaces.

https://doi.org/10.1023/A:1014756205008 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014756205008

2 SEBASTIAN DEL BANO

As far as we know the only known fact in this direction is the result of Harder and
Narasimhan [15], stating that this action is trivial on cohomology.

In Section 1 we introduce the moduli spaces and some basic facts of the theory of
motives.

The next section contains a study of the motive of the moduli space of rank two
stable and odd determinant vector bundles over a curve. This is a smooth projective
variety. We use results of Thaddeus for which we have given a short review. We
end this section with applications to Hodge theory and ¢-adic cohomology.

Section 3 is devoted to the study of the singular moduli space, that is the one in
which the determinant is even. We obtain an expression of its motivic Poincaré
polynomial and that of the canonical smooth model found by Seshadri. As an
application we find the Hodge numbers of Seshadri’s smooth model. To conclude
we study the mixed Hodge structure of the singular moduli space and show that
only two weights occur.

1. Preliminaries

Throughout this work k will stand for a field.

1.1. MODULI SPACES

Let C be a smooth projective curve over k, n > 1 an integer and £ € PicC(k) a line
bundle over C. We shall denote by N¢(n, £) the moduli space of semistable vector
bundles of rank n and determinant isomorphic to £. N¢(n, £)’ will denote the smooth
Zariski open subset of N¢(n, £) whose points parametrize stable bundles. In the case
k is algebraically closed it is easy to see, using the divisibility of JacC(k), that the
variety N¢(n, £) only depends on the residue of deg(£) modulo n. It is also the case
that N¢(n, £) is a smooth variety if (deg(£), n) = 1.

Therefore, in the case n = 2, we essentially have two moduli spaces according to
whether deg(£) is even or odd. Except in the case g = 2 the even degree moduli space
is singular. Seshadri has found a smooth model for N¢(2, O¢) which we shall note
by M.

1.2. MOTIVES

1.2.1. Definitions

We shall denote by Vy the category of smooth projective varieties over k. Let M| be
the category of effective Chow motives over k [18, 25]. This consists of a
pseudoabelian tensor Q-linear category M) together with a functor /i: Vi —
M. By taking classes in K, we obtain a map y: Ob V; — KoM that generalises
the Poincaré polynomial, it will be called the motivic Poincaré polynomial. For
chark =0 the Poincaré-Hodge polynomial extends to a ring morphism
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KoM — 7Z[x, y] which will be denoted by P,,. For k >~ [, a finite field the trace of
Frobenius defines a ring morphism v,: KOJ\/I;r — Q, such that v,((X)) = #X (k).

The motive of Spec(k) is called the trivial motive and denoted by 1. If C is a
smooth projective curve we have a decomposition #(C) = 1 @ h'C @ L (see [25]).
We call L the Lefschetz motive. It is customary to denote a tensor product like
MeL® " ®L by M(—n).

Given a finite subset of Ob M, we define the pseudo-Abelian tensor category
generated by these objects to be the full subcategory of M;  whose objects are
subquotients of tensor products of the given objects.

1.2.2. Motives of Arbitrary Schemes

In the case & has resolution of singularities, e.g. if char(k) =0, F. Guillén and
V. Navarro [13], have extended the functor % to the category of separated
schemes of finite type over k, Schy. Taking the class in Ky, we obtain a map
%: Ob Sch, — KoM . They also obtain an extension corresponding to a theory with
compact supports, the corresponding map will be denoted by y,. The function y, is
characterized by the following property

(E) If XeObSch, and Y CX is a closed subscheme then y. (X —Y)=

1.2.3. The Ring K

Define K to be the completion of KoM, along the ideal generated by the Lefschetz
motive L. As P, (L) = xy we see that P,, extends to a morphism P,,: K —
Z|[x, y]l. Over a finite field, I';, we define a ring morphism vf]: K — Q[[4]] by

Vi(M) = (—=1)Tr(Fr,: H{(M) — Hj(M))"".

i

We recover the morphism v, by setting ¢ = 1.

1.2.4. Symmetric Powers

For a motive M and a nonnegative integer n define 1"(M) to be the image in M®" of
the projector (1/n!) ) s 0« Let C be a smooth projective curve, let C™ be the
nth symmetric power of C, it is a smooth projective variety. The results of [7] show
that the motive of C* is given by hC" =@, .., 1% ® ’h'(C) ® L®* where
a, b and ¢ run through nonnegative integers. If n > 2g — 1 and C(k) # ¥ one can
view C" as a projective bundle over JacC of rank n — g so that by the results
of [18, §71 hC™W ~ hJacCR (1 ®L & --- & L" ). In fact, this is the case even if
C(k) # @, as one can easily check from the above description of hC™.
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Expressions like @fﬁg J'h' C(—ni), where g¢ is the genus of C, will arise in our
1
calculations. We will denote this motive, or its class in KoM}, by (1 + L"Y"€. Note
that (1 + H)hlc is just the motive of the Jacobian JacC.

2. The Smooth Case

Here we study the moduli space of stable rank two vector bundles with fixed odd
determinant N¢(2, £). We will use a construction due to M. Thaddeus which we
now recall.

2.1. THADDEUS' CONSTRUCTION

Given a line bundle £ of degree d Thaddeus considers the problem of classifying the
isomorphism classes of vector bundles plus a nonzero section. As in the case of ordi-
nary vector bundles, in order to construct a separated moduli space one has to define
a concept of stability and restrict to stable objects. However, in contrast with that
case, there is not a canonical definition of stability but various. In this way one
obtains a list of moduli spaces depending on a real parameter o € [0, d/2]. For o
not in a finite set S C [0, d/2] of critical values the moduli space is a smooth
projective fine moduli space (fine on the algebraic closure k) which only depends
on the connected component of [0,d/2]—S in which ¢ lies. Let us write
My, My, ..., M, for this ordered list of moduli spaces of pairs, then w =
[(d — 1)/2], hence we assume d > 3.

These different moduli spaces are related by a special kind of birational
transformation called flips. Let us recall this concept.

DEFINITION 2.1. A birational map X, — — — X_ is called a smooth flip with
centre Z and type (d,, d_) if it fits in a diagram of the following type:

By ——— >R

X+/ \X_
N, NS
NS

Z

in which the two upper diagrams are blow up diagrams, the lower square is a
cartesian diagram and P, (resp. P_) is a projective bundle over Z associated to
a vector bundle of rank d_ (resp. d).
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In particular note that the codimension of P, (resp. P_) in X, (resp. X_) is d_

(resp. dy).
The following summarizes the results of [28] we shall use.

THEOREM 2.2. (M. Thaddeus).

(1) There is aflip Mi_y — — — M; with centre the ith symmetric power of C, CY, and
type (i,d +g—2i—1).

(2) The first moduli space of pairs My is isomorphic to the (d + g — 2)-dimensional
projective space PHY(C, £71) [28, 3.1].

(3) Thereis anatural morphismn: M, — Nc(2, £). If d is odd and greater than 2g — 2
it makes M, into a projective fibration over N¢(2, £) [28, 3.20].

We can picture this chain of flips:

NN

Note that M; — M, is the blow up of M) along a smooth divisor therefore an
isomorphism.

2.2. THE MOTIVE OF N¢(2, £)

In this section we use the construction described in the previous section to find the
motivic Poincaré polynomial of N¢(2, £).

We start with a lemma which explains how a flip operates on the motive of a
variety.

LEMMA 2.3. Let X1, X_ and Z be smooth projective varieties. If X and X_ are
related by a flip with centre Z and type (dy,d_), then

Xpe(Le--eL-"NHe(le---eL*")®n2Z)

~hXH)e(Le ol He(le oL hZ) (1)
and
Ld+ _ Ld,
WX3) — (X)) = 1(2) 1L 2)

Proof. This is consequence of Definition 2.1, and of the results of Manin on the
structure of the motive of a blow up and a projective bundle ([18, §7 and §9]). (J
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COROLLARY 2.4. Let X_, Xy and Z be smooth projective varieties. If
X, — — — X_isaflipwith centre Z then h(X_) lies in the pseudo- Abelian subcategory
of M} generated by h(X,), h(Z) and L.

Proof. This follows from (1) which exhibits an isomorphism between 2(X_) and a
subobject of

xpe(Le---el " he(le- - L% h2Z). O

THEOREM 2.5. The Chow motive of N¢(2, L) lies in the pseudo-Abelian tensor
category of ./\/l; generated by h'(C) and L.

Proof. First we prove by induction on i that this is the case for the moduli spaces
of pairs M;. As M, is a projective space the statement is certainly true for i = 0.
Assume h(M;_)) lies in the stipulated category. The motive of #(C®) also lies in this
category by Subsection 1.2.4; the previous corollary and 2.2.1 show the same holds
for h(M;).

By tensoring our vector bundles by the canonical line bundle, K-, we obtain
an isomorphism N¢(2,L£) - N(2, K?z ® L), hence we may assume that
deg £ > 2g —2. By 2.2.3 there is a natural map n: M, — N¢(2,£) which is a
projective bundle. But via 7*, h(N¢(2, £)) is identified with a subobject of h(M,,)
thus proving the assertion. O

In[23], P. E. Newstead shows that the Poincaré polynomial of the variety N¢(2, £)
is (1+2)% — (1 +0%)/((1 — (1 — 1*). The following is our motivic version of
this result.

THEOREM 2.6. Let C be a smooth projective curve over a field k and £ € Pic' C(k) a
line bundle of degree 1. Then

4+ L"O — (14 ) O(—g)
1(Ne(2, L)) = I-Da-15

Proof. We may substitute £ by a line bundle of degree 4g — 3 for there is an
isomorphism

Ne@.£) 25 N K2 ® L) and degk® ® L = 4g — 3.

For this degree the sequence of moduli spaces of pairs has w = 2g — 2. Also
My~P%3 M, is a projective bundle over N¢(2, L) of relative dimension
2¢ —2 and M,_; — — — M, is a flip of type (i, 5g — 4 — 2i) and centre C").
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By inductively applying Lemma 2.3 we obtain

i Se4-2i

[ . L
— 4 (cin=__=-___
1(Mo) = 1(Mo) + ;AC )T

1

w ) Li _ LSg—4—2i
_ (D _
= ; HCD) =5

In order to avoid negative powers of L, we shall work in the ring K[[7]], compute

1 @ NP ‘ ey
=7 (Z UCNT = (T 2’) (3)
i=0 i=0

in this ring and then apply the natural ring morphism R: K[[T]] — K that takes T to
L. We write = for congruence modulo ker R in K[[T]].
We first calculate the first summand in (3)

Do aCOT =3 "3 COT — Y 4T 4)
i=0 i=0 i=2g—1

Note that yC» =Y
(4) equals

atbtoi JPh' C - 1L so the first summand in the right-hand side of

00 00 00 1+ T)h'C
T4 ibhl CTh LETC = (

For the second summand in (4) note that for i > 2g — 1 by Subsection 1.2.4

We - 1= Llfg+1

() —
e

therefore (4) equals

nc hC oo
(1+7) R S (1 - Lo

1-7(1-1LT) 1-L Pyl

(1 + T)th (1 + 1)/1]C T2g—] LgTZg—l
TA-D(-LT) 1-L (1—T_ 1—LT>'

For the second sum in (3), 7%¢4 3¢, 7CO T2 we work in K[[T~']], by arguments
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similar to the previous

[0) ® o
ZXCU) T2 — Zxc(i) T2 _ Z L COT2
i=0 i=0 i=2g—1
S (L i N (L 2V S PRIy
(1-TH1-LT2) 1-L 4=
(1+7)"¢ (1+D)"C T4 L7422
T(A-THA-LT?)  1-L (1—T—2_1_LT—2>
now
T5g—4 ig: L COT-2 — T54(1 — T-2)"'C e HW'e [ 12 L
=0 g (=T -LT?) 1-L =712 1-LT7>2

B T5g(1 _ T—Z)h]C B (1 + 1)/1]C _T¢ ~ 18T¢
ST 2-DT2-L) 1-L =72 7-1L)

this lives in X[[7T]], and modulo kerR it is congruent to

TSg—l(l + T—2)th (1+ l)hlc 721 T8
1-TH1-T) 1-L <1—T_1—T2)'

By Kiinnemann’s motivic version of hard Lefschetz we have A’h' C(i — g) ~ /%7 'h' C.
This implies that

2
T5g—1(1 . T—z)hlc _ Xg: 75812 jipl &

i=0
2g 2g

— Z T4g—1—iLg—i/~{ih1 C — ng—l Z ng—[/’*hzg—ihl C
i=0 i=0

=771+ 7).

Therefore yN¢(2, £) is the result of applying R to

- i=0

i=0

1 [(1 T3 ha+D"C a+1re

11| (A-1)1-1? - L
T28-1 _ 21 3-1_ ¢
% ( -7  1-1 )]
A+ )ore
B (1-17)1-T?
This proves the theorem. O
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In the case when we use a semisimple category of motives we obtain an explicit
description of AN (2, £). In such categories there is a cancellation property stating
that A ® C >~ B® C = A >~ B. This shows that two objects have the same class
in the Grothendieck ring if and only if they are isomorphic. Examples of such semi-
simple categories of motives are the category of motives with respect to numerical
equivalence [17] and the category of absolute Hodge motives [9].

COROLLARY 2.7. In any semisimple category of motives h(N¢(2, £)) is isomorphic
to

g
Ppincelole ol He(lelle--aL* )L (5
k=0

Proof. By the previous theorem

I+ )" —(1+ 1'C(—g)

N b == 013

this is equal to

2g k_T¢g
@;fchch—Lz,
(I —-L)1-1L%

k=0
use the duality isomorphism A*¥~'h'C ~ J'h'C @ L5~ of Kiinnemann to get

L2* 1%

g Lk 4 g
Pirnc————saoPinc-—g+b)——s
k=0 (I -L)1-17)

k=0 (1-L)(1 - 12

adding this we obtain the following expression for yN¢(2, £)

é Al Lt 1-L (—k).
k=0 1-L 1-172

Note that this is the class in K; of an actual motive so by the aforementioned
cancellation property we have iN¢(2, £). O

Remark 2.8. The previous corollary allows one to guess what the Chow groups of

Nc(2, £) should look like. Indeed, if the expression (5) were equal to A(N¢(2, £))
in the category of Chow motives we would have

CH{,(Nc(2. £)) = € CHEG R €)™V
a,b

for certain computable integers d, »(j). Of course, the category of Chow motives is
not semisimple so the above is only a guess.
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2.3. REALIZATIONS

Next we show how the theorems in the previous section give results for concrete
cohomology theories.

The algebraic cohomology of the moduli space has been studied in [3]. In [6] (see
also [7]) we show how this is connected with the motivic Poincaré polynomial.

2.3.1. Poincarée— Hodge Polynomials

COROLLARY 2.9. The Poincaré—Hodge polynomial of Nc(2, L) is

(1407 (1 + X2p) = xp8(1+ 2 (1 +p)f
(1 —xp)(1 = x2?) '
Proof. We will apply the morphism P.,: K — Z[[x, y]] to the expression in

Theorem 2.6. Taking into account that P,, is a ring morphism we just need to
evaluate it on

L, (1+1Y¢ and (14 L)"©.

Itis clear that P, (L) = ny(Hz(P}()) = xy, also, as (1 + ]l)hl(c) = h(JacC), we have
Po((14+ DMy = P (JacC) = (1 + x)%(1 + p)~.

It remains to show that
Poy(1 410" = (1 + 021+ 22y,

We shall give a general expression for P, (1 + L”)hl(c) . From the definition, as P, is
a ring morphism, we have

Py(1+ 1LY =3P (0 C) - (7).

If we replace the x"y" coming from L.” by an indeterminate 7" we get

D P(AR'C)-T'=)" Y dimHP(JacC, C)x'y4 - T
i i ptq=i
= Pryy(JacC) = (1 + Tx)*(1 + Ty)S.
Therefore we have shown that

ny(ﬂ — Ln)hlc =(1+ xn+1yn)g(] + xl’lyn+l)g.

This proves the corollary. O

Recall that by [24] the varieties N¢(2, £) are rational. As a consequence the Hodge
numbers /*? N¢(2, £) are zero for all p > 0. That is, the border of the Hodge diamond

https://doi.org/10.1023/A:1014756205008 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014756205008

MODULI SPACES OF RANK TWO VECTOR BUNDLES 11

contains zeroes. In fact the Hodge diamond is quite thin, for this recall the definition
of the level of a Hodge structure: Max».0|p — g|. Then one can prove that the level
of the Hodge structure H'(N¢(2, £), Q) is less than or equal to [i/3]. This can be
proven by working out the Poincaré-Hodge polynomial in the following way:
Put 4 = (1 4+ xy*)(1 +x%y) and B = xy(1 + x)(1 + ) then

A% — B¢
PyNc(2,£) == — = AV 4 A PB 4 4 BT,

and as the only monomials in 4 and B are x'y/ with i = j, i = 2j or 2i = j one can now
see that the level of H' is less than or equal to [i/3]. Pictorially, the nonzero Hodge
numbers of N¢(2, £) lie in the shadowed rhombus in Figure 1.

2.3.2. Intermediate Jacobians

Let X be a smooth complex projective variety. Hodge theory shows that the natural
map H'(X,7Z) - H' (X, C) - H"(X, C) is an injection of H'(X,Z) as a lattice
in H'%(X, C). The quotient, J(X), is thus a complex torus called the Albanese
or Jacobian variety. By using Hodge theory one can show that this complex torus
is actually an Abelian variety.

The higher intermediate Jacobians, J/(X), are analogues of this using higher
cohomology groups H*~!.

Weil defines J/(X) to be the quotient

HZifl(X’ C)
H0,2i—1 ® H2,2i—3 PP HZi—Z,l + HZI—I(X’ Z)

and shows this to be an Abelian variety. However, as X varies in moduli J/(X) do not.

Figure 1. The Hodge diamond of N¢(2, £).
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Griffiths defines J/(X) to be the quotient

HZFI(X, C)
FiHY (X, C)+ H* (X, 7)’

where F is the Hodge filtration. This is not in general an Abelian variety but it varies
in moduli with X.

An (-adic analogue of Griffiths definition is inspired by the following result of
Carlson [5]: Let MHSy, be the category of integral mixed Hodge structures, then
there is a natural isomorphism of Abelian groups

J'(X) ~ Extyys, (Z(—i), H (X, Z)).

This motivates the following definition of intermediate Jacobian of a variety X
defined over a field k,

Ji(X) = Ext;ep/ Gatdpo (Ze(=0), H" WX ®k, 7)),
where G, = Gal(k|k) is the Galois group of k. Define the f-adic intermediate
Jacobians up to isogeny to be the same groups replacing Z, by Q,.

In the following corollary, we assume either (i) & is finitely generated over Q and a
prime number ¢ has been chosen, or (ii) an embedding of £ in C has been chosen
together with a choice between Griffiths’s and Weil’s definition.

COROLLARY 2.10. Let L be a line bundle of degree 1. The ith intermediate Jacobian
of Nc(2, L) is isogenous to

(]
[ [FracCysse, (6)
k=1

where
Cikg =coeffiva(l+t+£2 4+ A+ 2+ 4 72,

Proof. Taking the piece of weight 2i — 1 in (5), we see that for k£ = C the rational
pure Hodge structure H*~'(X, Q) is isomorphic to

weight 2i—1-3j part of )

J
@A H'(C, Q=) ® ((Q@Q( 1)@+ O(—g+i+1)B(0S V(2@ ®O(~2g-+2i-+2)
j7

Given that the Lefschetz—Hodge structure, Q(—1), has weight 2, in the sum above the
only nonzero summands arise when 2i — 1 — 3/ is even, so we can assume that j is
odd. Put j=2k—1, then k runs from 1 to [(g+1)/2]. As 2i—1—-3j=
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2i — 6k + 2, the Hodge structure H*~'(N¢(2, £), Q) is isomorphic to

]
ARTTHY(C, Q)(=2k + 1) ® O(—i + 3k — 1)

—
oS
o)

~
Il
R

Given Hodge structure M and N and integers k, i we have natural isomorphisms
J(M @ N) ~ J(M) x J(N) and J(N(k)) ~ J*+*(M). By using these properties
we see that the ith intermediate Jacobian of N¢(2, £) is isomorphic to

[+
[T/ HY(C, O)k — i)

k=1
[ (]
~ [T/~ HY(C, Q))te = [T J*(ac(C))
k=1 k=1
as claimed.
The analogous expression for £-adic cohomology is obtained in the same way.
The result follows. O

2.3.3. The Siegel Formula

In the case k is the finite field with g elements, I,, Theorem 2.6 allows us to recover
the following formula due to G. Harder which is essentially equivalent to the fact
that the Tamagawa number of SL, over the function field of C is one, 51, = 1.

COROLLARY 2.11 ([14, §2]). The number of IV,-rational points of Nc(2, L) is

#Nc(2, L)(Fg) = ¢ c(2) — #lacC(F).

¢
(1 —g)1 —¢%

Proof. Let £ be a prime number not dividing ¢. Call wy, ..., wy, the eigenvalues of
thg: geometric Frobenius morphism acting on H'(C ®r, F,, Q) and set Pi(f) =
l_[ril(l — w;t).

By Subsection 1.2.1 #N¢(2, L)(IF,) = v,xNc(2, £). However, our expression for
1Nc(2, £) lies in K and the morphism v,: KoM, — Q, does not extend to this ring.
We shall use the ring morphism v;: K — Q,[[#]] defined in Subsection 1.2.3. Then
vgxNc(2, £) is a polynomial in 7 and its value at ¢ =1 gives #Nc(2, L)(F,) =
vexNc(2, £).

Thus we need to evaluate

(AL~ + 1) (=g)
! (1-L)1 - 1% '
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14 SEBASTIAN DEL BANO
Given that v; is a ring morphism it suffices to evaluate
viIL, vi(I+L)"C and V(14 DMC.

Let n be a nonnegative integer, then

)tz — ¢,
Qu(=1)

V;(l + Ln)h] C — Z TI‘ (Fl‘q - )ti+2ni
i NHY(C,Qp)(—ni)

— Z Z wj ... wjiqnit(ZnJrl)i =P, (qnt2n+1).

iji<-<ji

vy(lL) = Tr<Frq

Therefore,

Pi(qr’) — Pi(1)q1*®
(I =g =gt
The substitution ¢t = 1 gives
Pi(g) — Pi(1)g®

(I -9l 4%

Note that by the trace formula Pi(1) = #JacC(IF,). The functional equation for the
zeta function {(s) gives

Vi INe(2, L) =

#Nc(zs ‘C) =

Pi(q)
1-9pd—-¢*"

The result follows. O

7@ =Le(=1) and {c(=1) =

Another consequence of the previous is the following conjectural statement in [14].

PROPOSITION 2.12. Let k be a number field or a finite field and k an algebraic
closure of k. The action of Gal(k|k) on H}(Nc(2, L)) is semisimple.

Proof. Theorem 2.5 shows that /(N¢(2, £)) lies in the tensor category generated by
h'(C) and L. This implies that the Gal(l_c|k)-module H}(N¢(2, £)) is a subobject of a
sum of Gal(k|k)-module of the type H}(C)®"Q,(—1)®" with n, m € N.

A well known result due to Faltings [12] for number fields and to Tate for finite
fields states that H}(C) is a semisimple Gal(l_clk)-module. The result follows. []

3. The Singular Case

In this section we study the motive of the moduli space N¢(2, O¢) and that of its
canonical smooth model, M.
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We require two restrictions for this to work. The first is that our curve has a
k-rational point; this is needed to construct the Hecke correspondence and to
guarantee the existence of a universal bundle. The second is that the characteristic
of the field is zero. The reason for this is that the calculations involve motivic
Poincaré polynomials of some varieties which are not smooth and projective (see
Subsection 1.2.2); this is only currently available if the characteristic is zero. In
the case of a finite field we can replace the motivic Poincaré polynomial by the pure
Poincaré polynomials defined in [22].

Therefore in this section we fix a point x € C(k) and assume that k is either a field
of characteristic zero or a finite field.

If the genus of the curve C is 2 then N¢(2, O¢) =~ P? [20, §6] and the motive of
projective space is well known [18, §6]. Therefore, we take g to be greater than 2.

3.1. PRELIMINARIES: THE HECKE CORRESPONDENCE

We shall now describe a construction due to Narasimhan and Ramanan [21], that
relates the moduli spaces N¢(2, Oc(x)) and N¢(2, O¢). We describe it by using
the notion of parabolic bundle over a curve ([19], see also Part 3 in [27]).

3.1.1. Rank Two Parabolic Bundles

DEFINITION 3.1 ([27]). A rank two parabolic bundle with nontrivial parabolic
structure concentrated on x consists on a pair (E, £) where E is a rank two vector
bundle over C and ¢ C FE, is a subspace of dimension one.

DEFINITION 3.2. Fix parabolic weights 1 > o, > a; > 0. Then a parabolic bundle

(E, ) is called stable if for every line bundle L C E
deg L < uE+¥, i L=t

degL<,uE+az—gal, if Ly # 0.

Parabolic semistability is defined as above but using < instead of <.
Remark 3.3. Tt is not hard to see that if the parabolic weights are small enough,

then:

(I) Parabolic stability is independent of the (o, o).

(2) (E, ) is parabolic stable < (FE, £) is parabolic semistable.

(3) (E, ) is parabolic stable = E is a semistable vector bundle.

(4) E is a stable vector bundle = (E, £) is parabolic semistable for any £
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DEFINITION 3.4. A family of rank two parabolic bundles with parabolic structure
concentrated on x parametrized by a scheme S is a vector bundle £ over S x C of
rank 2 together with a section, o, of the projective bundle PE) — S. Two families

(&, 0), (&, d') parametrized by S are said to be isomorphic if there is an isomorphism
f: €& — & such that fyoo =0

Remark 3.5. Note that for each point s € S we get a vector bundle & over C, the
section of P&} | gives a line £; C &y, that is a parabolic bundle. A family of parabolic
vector bundles is called stable if for each s e S the parabolic bundle (&, £,) is
parabolic stable.

DEFINITION 3.6. Let «;, oy be small enough weights. Define N (2, £) to be the
functor Sch;, — Sets that takes S to

Isomorphism classes of families of rank 2 parabolic
stable vector bundles with det = £ parametrized by S

PicS

The following theorem seems to be well known. Lacking a precise reference we
give a proof that fits nicely in our discussion of the Hecke correspondence.

THEOREM 3.7 (cf. [27] Part 3, Théoréme 32). (1) The functor N (2, L) is represent-
able by a smooth projective variety Ny(2, L).

(2) There is a canonical isomorphism of functors N (2, L) — N (2, L(—x)).

Proof. (1) In view of 3.7.2 it is enough to prove it in the case deg £ is odd. Let U be
a universal bundle over N¢(2, £) x C and 1: {x}< C the natural inclusion. Put
U, = (1y x 1)*U and let N(2, £) be the projective bundle over N¢(2, £) associated
to U, (which does not depend on the particular choice of universal bundle U/),
we claim this represents the functor AV (2, £).

Let S € Ob(Schy) and (€, 6) € N (2, £)(S). As deg L is odd, & is a family of stable
vector bundles and we obtain f: S — N¢(2, £) such that (f x 1¢)'U ~ £ Q peMs
where Mg € PicS. The section of PE) — S gives a section of Pf*U) — S, i.e. a
lift of /' to PU) = N,(2, £). Thus we have a map

N2, £0)S) 22 N2, £)(S)

which is functorial in S, that is we have a morphism of functors

N2, L) = N2, L)

(here we identify the variety N,(2, £) with the functor it represents).
®(S) is injective for we can clearly recover (€, ) modulo PicS from S — N, (2, £).
®(S) is also surjective for by Remark 3.3.(4) any family of parabolic bundles with
underlying stable vector bundle is parabolic stable.
This proves (1).
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(2) Let S € Ob(Schy) and let (£, o) € N (2, £)(S). The section ¢ is equivalent to
giving a surjection of £/ to a line bundle on S, M ([16, I1.7.12]). By taking duals
we get an exact sequence of vector bundles over S

O-> M, —>E —->T,— 0.
Define & = ker(§ — £, — T .) then we have an exact sequence
08 —->E—-T,—-0,

in which &' is locally free for 7, has a projective resolution of length 2. Tensoring the
previous exact sequence of O,, we get

0> M, & & —->T,—0

where M, = Tor (Oy, T ).

The surjection £ — M’ defines a section of PE.’ giving a family of parabolic
bundles (£', ¢’) of rank two and determinant £(—x).

We shall see that (£, ¢”) is a family of parabolic stable bundles. It is clearly enough
to check this for S the spectrum of a field. Then we have a parabolic stable bundle
(E,?) and if t = E,/¢ the above construction defines a parabolic vector bundle
(E', 0') by the exact sequences

0—-FE —-E—>t—0,

0—>¢—>E —E —1t—0.
We want to see that (£, ¢') is parabolic stable. For this let L C E’ be a line subbundle
of E.
If L, = ¢ then in the inclusion L C E L, — E, is zero, therefore L C E(—x) and
as E is a semistable vector bundle

pL < pE(—x) = pE — 1 = pE' — 3,

hence uL < pE' + (op — 02)/2.
If L, # ¢ then the map L, — E./¢' = ¢ is nonzero, therefore in L C E we have
L, =¢. As (E, £) is parabolic stable

o — o ;o l+a—a
,uL<,uE+l 2:,11E~|—#,
2 2
hence ul < pE + (0 — o1)/2.
This way we get a morphism of functors

E: N,(2,L) = N2, L(—x)).
We claim that

®0c(x)
PN

N2, L(=x)) 55 N2, £(=2x)) N2, L)

1s its inverse.
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To prove this let S € Ob(Schy) and (£, 6) € N'«(2, £)(S). Let (£, ') = E(£, 6) and
(&",6")=E(, o), we want to show that (£”,¢”) is naturally isomorphic to
(&,0) ® Oc(—x).

The isomorphism &” ~ £(—x) follows by applying the snake lemma to the
morphism of exact sequences

0 — & — & — Tx — 0

L

0 - M =7, — & — T, — 0

Next recall that M” = Tor{(Ox, T') = Tor{(Ox, My) =~ M(—X).
This concludes the proof. [

3.1.2. The Hecke Correspondence

Note that as N,(2, £) represents a functor, it parametrizes a universal family of
parabolic vector bundles over C. By the universal property of N(2,£) and
Remark 3.3.3 we get a morphism N,(2, £) — N(2, £). By the isomorphism in 3.7.2
there is a diagram.

N (2, 0)c(x)) = N(2, O¢)

/ \ (7)

Nc(2, Oc(x)) Nc(2,Oc).

This is the Hecke correspondence.

In the proof of Theorem 3.7 we have seen that p; is the projective bundle associated
to a vector bundle of rank two. Our next task is to analyze the morphism p,. Recall
that N¢(2, O¢) is a singular variety so it is natural to consider the stratification given
by the singular loci. The singular locus of N¢(2, Oc¢) is isomorphic to the Kummer
variety KC. The Kummer variety is singular, its singular locus, KyC, is isomorphic
to the 2-torsion of the Jacobian, Jac,C, via the quotient map JacC — KC. In next
proposition will describe the structure of the morphism py over each of these strata.

First we set some notations. Fix x € C(k). As C(k) # @ there is a Poincaré bundle,
P, over JacC x C. If we normalize it so that Py,ccx(y is trivial, P is then uniquely
defined. The quotient map JacC — KC restricts to a double cover JacC—
Jac,C — KC — K;C. The action of Z/27 on (JacC — Jac,C) x C lifts to the vector
bundle P @ P! and by descent we get a vector bundle on (KC — K,C) x C which
we still denote by P@® P! (note however that P is not defined over
(KC — K(C) x C). The projections of a product, X x Y, on its factors will be written
Px and Py.

PROPOSITION 3.8. (1) The morphism pg restricted to Nc(2, Oc¢)’ is a conic bundle
(cf. [2] Proposition 7).
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(2) There is a section of py over KC — KoC, o, a locally trivial P*~>-bundle
n: R — JacC — Jac, C and a locally trivial Pl-bundle over R, Q — R, with a section
a’ such that there exists an isomorphism, ¢, making the following diagram commute

0—0'R— py(KC — KyC) — 6(KC — Ky C)

l

R Po

JacC-Jac,C ——————KC — K, C

(3) The reduced scheme associated to py'KoC is isomorphic to the projective
bundle over K,C, PRlpKOC*OCXKOC.

Proof. (1) Recall that N¢(2, O¢)® is the GIT quotient of a subscheme R® of a
Quot-scheme by a GLyk action (for certain positive integer N). Over R x C there
is a universal bundle, U, however the stabilizers of points of R® in GLyk, namely
k*, do not act trivially on the fibres of this vector bundle, therefore the universal
bundle does not descend to C x N¢(2, Oc¢)’.

However the stabilizers do act trivially on the projective bundle P, therefore it
descends to C x N¢(2, O¢)’ to a projective bundle. Similarly the projective bundle
PU over R* descends to a projective bundle over N¢(2, O¢)’ which we denote
by P,.

Let p denote the projection PU/ — R*. If we pull back the universal family by
p x Idc we get a family of vector bundles over C parametrized by PU). There
is an natural epimorphism p*U/} — O(1) on PU, this data defines a morphism from
PU! to N(2,0¢) which can be seen to be GLyk-equivariant thus yielding a
morphism

P = py'Ne(2,0¢) ®)

that makes the following diagram commute

P, Py ' Nc(2,0c)

Ne(2,0¢)'.

Put N.(2,0c¢) =py'Nc(2,Oc)’, to see that (8) is an isomorphism we shall
construct its inverse. To this effect cover N(2, O¢)® by affine open sets {U;};. By
the universal property of N.(2, O¢)® we have bundles &; over U; x C together with
sections of PEZX over U;. The first data defines (assume, as usual, that the degree
is big enough) morphisms U; — R*, the second a lift of this morphism to Pu}.
This way we get for each i a morphism U; — PU. However, these are not
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uniquely defined because they depend on a trivialization of the trivial bundle
PusEi OZ,-’ unique up to an element of GLyk; in particular they may not patch
to give a morphism N,(2, 0)° — PU. However, if we compose with the quotient
map PU} — P, we get uniquely defined U; — P, which patch together to give
the inverse of (8).

(2) We first define the section g: KC — KyC — pa](KC — KyC) C N,(2,0¢). By
the universal property of N, (2, O¢) this is equivalent to constructing a family of
stable parabolic bundles parametrized by KC — KyC. The family of underlying
vector bundles will be P @ P~! = F defined in the notations. Let I, be the Poincaré
isomorphism /,: Oj,cc — P. Then we can construct a section of P, & 73;] over
JacC which is invariant under the involution described at the beginning of
Subsection 3.1.2, namely I, ® Ix_l. This yields a section of PF) = P(P, & 7);1) over
KC — KyC different from the ones corresponding to the lines P, C F, and
73;1 C F,. By Lemma 3.9, this gives a family of stable parabolic bundles indepen-
dent of the section, i.e. a section a: KC — KyC — N,(2, O¢).

Next we want to analyze py!(KC — KyC) — 6(KC — K, C), the points of this
variety correspond to parabolic vector bundles in which the underlying vector bundle
is a nontrivial extension of £ by £~' where £ is a line bundle of degree zero with
L # L', These extensions are parametrized by the projective bundle over
JacC — Jac, C associated to the rank g — 1 vector bundle (RlpJaCC_JaCZC*P2)\/. Call
R this projective bundle and = the natural projection R — JacC — Jac,C.

Over R x C we have a universal extension

0— (nx1c)'P! = €= (nx 10)*P @ phOr(—1) — 0.
If we pull back by i, we get an exact sequence of vector bundles over R.
0—> Or = &, — Or(=1)— 0. 9)

Let Q be the projective bundle over R associated to £). Then Q parametrizes a
family of parabolic bundles over C. Lemma 3.10 shows that the stable locus,
¢, is the complementary of the section of Q — R defined by the surjection
&/ — Og obtained by dualizing (9).

The universal property of N,(2, Oc¢) yields a morphism

Q@ — py(KC — KyC) — a(KC — Ky C)
which is an isomorphism again by Lemma 3.10. This concludes the proof of (2).
(3) See Lemma 7.4.(ii) in [21]. O
LEMMA 3.9 (cf. [2] proof of Proposition 7, case 2). Let L be a line bundle over C of
degree zero with £ # L. Then

(1) A parabolic bundle (L & L', €) is parabolic stable if and only if £ # L., £;1.
(2) Any two stable parabolic bundles with L & L~ as underlying vector bundle are
isomorphic.
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Proof. (1) If £ = L, then the subbundle £ ¢ £ & £™! proves that (L& £, ¢) is
not stable for
o — %

> < 0.

pL=0 and wL® L+

The case ¢ = £ is treated in the same way.
Conversely, assume € # L., /J;l, take a subbundle M c L& L' If M - L@
£7' - £ is not zero then either uM < 0 in which case we are done or M ~ L
and M —> L& L' — £7! will be zero, then M = £ so £ # M, and the stability
condition is trivially verified.
(2) This is a consequence of the fact that the action of Aut(£ & £7') = k* x k* on

P(L, @ £") is transitive. O

LEMMA 3.10 (cf. [2] proof of Proposition 7, case 1). Let (E, £) be a parabolic bundle
in which E is a nontrivial extension of L by L™ where L is a line bundle of degree zero
with £ # L7\, Then (E, £) is parabolic stable if and only if £ # 5;1.

Proof. If £ = C;l then the subbundle £~' C E shows that (E, £) is not stable for
pl™ =0 and uE + (o — 22)/2) < 0.

Conversely, assume £ # £;1. Let M C E be a line subbundle, if M — E — L is
not zero then uM < 0 in which case we are done or M >~ £ and we have a section
of the extension which cannot be the case. If M — F — L is zero then
Mc £V and uM < pulL7! =0 which is enough to conclude stability thanks to
the condition ¢ # £ O

3.2. THE MOTIVE OF N¢(2, Oc¢)

We now use the description of the Hecke correspondence in the previous section to
compute the motivic Poincaré polynomial of the singular moduli space
Nc(2,O¢) in terms of the motive of N¢(2, O¢(x)) (see Theorem 2.6), the motive
of the Jacobian variety, JacC and the motive of the Kummer variety, KC.

We need to understand the motivic Poincaré polynomial of a conic bundle. It
happens that it behaves as in the locally trivial case.

PROPOSITION 3.11. Let C — X be a conic bundle. Then y.(C) = y.(X). (1 + L).
Proof. For a proof of this see [6]. Here we shall content ourselves with proving this
fact for any realization of the motive, that is for the image of the motivic Poincaré
polynomial via KoM — KoPHSg or KoM — KoGr-RepQ[Gal(l_dk).
This is then a consequence of the Hirsch theorem that, in our case, yields an
isomorphism of mixed Hodge structures H*(C, Q) ~ H*(X, Q) ® (Q & Q(-1)).J

THEOREM 3.12. The motivic Poincaré polynomials of Nc(2, Oc) and Nc(2, Oc¢)’ are

pJacC - yPS2 . L+ yKC
1+ L ’

1Nc(2,0¢)' = yNe(2, Oc(x)) —
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yJacC - ;{Pﬁ‘z —yKC

ANc(2,0¢c) = yNc(2, Oc(x)) — T+ L

L.

Proof. We shall first compute the motivic Poincaré polynomial of py INc(2, O¢)
with compact supports, y.p;'(2, Oc)’. Using property (E) in 1.2.2 we see that

70y 'Nc(2, 0c)’ = yN(2, Oc) — 1.0y (KC — Ko C) — ypy ' Ko C.

The first summand, yN.(2, O¢) is easy to compute, by Theorem 3.7, N.(2, O¢) is
isomorphic to N,(2, O¢(x)) and the proof of the same proposition shows that
the former is a projective bundle over N¢(2, O¢(x)) associated to a vector bundle
of rank two. Therefore by [18, §7]:

IN:(2,0¢0) = (1 + L) - xNc(2, Oc(x)).

To compute ,py ' (KC — K(C) we use the geometric description in Proposition 3.8.
Property (E) in 1.2.2 together with [18, §7] imply that, in the notation of the
mentioned proposition,

1Py (KC — Ky C) — 1 (KCk0C)
= X(,’(Q - OJR) = X{,Q - XLR
= 7R L = y.(JacC — Jac, C) - yPS 2. L.

Again, by Manin’s theorem on the structure of the motive of a projective bundle,
10y ' KoC = 7K, C - ;{Pi_l.

In conclusion y.py INc(2, O¢)* equals

INc(2, 0)C(x)) - (1 + L) — .(JacC — Jac, C) - y P52 . L —
— 2K C -y P57 — 7 (KC — Ko ©)
= N2, Oc(x) - (1 + L) — gJacC - y P52 . L — yKC.

But py: palNc(2, Oc¢)’ — N¢(2,0¢)’ is a conic bundle, and Proposition 3.11
shows
wJacC - yP2 . L+ yKC

1+L
The result for N¢(2, O¢) is a consequence of property (E) in Subsection 1.2.2.[]

1Nc(2,0¢)' = yNe(2, Oc(x)) —

3.3. THE MOTIVE OF SESHADRI'S SMOOTH MODEL

Next we turn to the study of the motivic Poincaré polynomial of the smooth model of
Nc(2, O¢) constructed by Seshadri in [26]. This consists in a smooth projective
variety M together with a birational morphism y: M — N¢(2, O¢). We recall
the description of the fibres of .
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(1) Over the stable locus, Nc(2, O¢)’, ¥ is an isomorphism.

(2) The fibre over a point of KC — K, C is isomorphic to P¢~2 x P¢~2,

(3) Thefibre over a point of K C is the disjoint union of the Grassmannian Gr; V" and
a rank g — 2 vector bundle over Gry V' where V = H'(C, O¢).

The morphism  over KC — K C is not the product of two projective bundles, in
fact it is not locally trivial in the Zariski topology. To compute the motive of M
we shall need to study in more detail the morphism.

v Y H(KC — KyC) > KC — K, C.
As in [2], we use the notation ¥ =y~ (KC — Ky C).

3.3.1. The Variety Y

Recall that P denotes the Poincaré line bundle on JacC x C. Note that on the open
set J =JacC —Jac,C the sheaves R'p;,P? and R'p;,P~% are locally free, for
¢ € {+, —} define P, to be the projective bundle over J associated to the vector bundle
R'p 7+ P?2. The involution, 7, of JacC is defined by the family of line bundles P!, so
by definition we have (t x 1¢)*P = P~!. Flat base change shows t*R'p,,P*> =
R'p;P~2. Thus the action of t interchanges the two projective bundles P, and
P_. By the proof of corollary 1 in [2] we see that in fact Y is the quotient of
P+ x; P_ by this involution. Summarizing:

PROPOSITION 3.13. The pullback of Y via the quotient map J = JacC — Jac,C —
KC — KyC is isomorphic to Py x; P_. The induced action of 7./27 on Py x5 P_
interchanges the two factors.

In the proof of the following proposition we use some facts on isotypical
decompositions of motives from [10] and [8]. As there, if a finite group G acts
on a scheme X and o is a character of G, y.(X,o) stands for the part of
7.(X) on which G acts via the character o (see references above for a precise
definition).

PROPOSITION 3.14. The motivic Poincaré polynomial with compact supports of Y,
1Y), is

$r.(JacC — Jac, C)(1P8%)? + (2.(KC — KoC) — 1 z.(JacC — Jac, C))
1— LZg—Z

1-12

Proof. Denote by 1 and —1 the two characters of 7Z/27. Let U be an affine
7,/27Z~invariant subset of J where P, and P_ trivialize. Then P, x; P_ restricted

to U is isomorphic, as a Z/27-variety, to the product of U and P}i_z X Pi_z, where
the 7/27 acts on the latter variety by permuting the factors.

X
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By property (3) in Proposition 1.3.3 in [10], we have that

XC(PJr xyP_| , 1)
U

= 72U, 1) - 1(PE2 x PE2 1) 4 (U, —1) - 1 (P57 x P2, 1),

Using property theorem 1.3.1 in [10] we see, applying the previous, that

XC(P+ xXJ P—’ 1)
= 2, 1) - 2(PE2 X PE2 1) 4 7o, —1) - (P52 x PE2, 1),

Next note that h(Pﬁ_2 X Pi_z) = @2, 1(—i — ), it is easy to see, by drawing this

ij=0
ona(g—1)x(g—1)array, that
1 1—1L%72
P{x P2 ) = (P + ——
X(k X k’) 2<(Xk)+l—L2 s

g—2 g—2 1 g—252 1 - L2g_2
X(Pk XPk ,—1):5 (ka ) —W .
By Corollary 2.1.19 in [8]
1Y =Py x;P_,1) and y.(KC—KyC)=y.(J,1).

The result follows. O

The previous proposition is in full accordance with the results of Balaji and
Seshadri as shown in the following corollary.

COROLLARY 3.15 ([4], Proposition 4.1). If k is the finite field with q elements, I,
the number of F4-points of Y is given by

L#(JacC — Jac, O)(F ) #P2(F,) >+
— (G #JacC(F,) — #KC(Fy) +3#KC(F,)) - #PF7(F )

Proof. By Lemma 1.2.1, #Y(IF,) is the result of applying v, to x.(Y). The result
follows from the formula obtained in Proposition 3.14 and the fact that v, is a ring
morphism. O

The statement of this result in Balaji and Seshadri’s work reads
#Y () = #A(F,) - #(P2 x PE2)(W,) + #B(F,) - #P(F ).

The agreement with the previous corollary is clear from the proof of Proposition 3.6
in [4]. There it is shown that the term #A4(IF,) (noted N,(A) therein) is equal to
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%#(JacC —Jac, C)(F,) whereas #B(I';) equals
—(#JacC — Jac, O)(F,) — #KC(F,) + 1 #KoC(F)).

3.3.2. The Motive of Y~ 'K,C

PROPOSITION 3.16. The motive of y~'KoC is given by

(1-LHA-LHa =L (1 -LHA -1
(1-L)1-LH1-LY (1-Ly1-1%

. Lg_2> . }{Ko C.

Proof. This follows property (E) of the function y, and the cell decomposition of
the Grassmannian varieties. O

3.3.3. The Motive of M

From the structure of the desingularization morphism ¥: M — N¢(2, O) we have
just described together with Theorem 3.12 we can deduce the motivic Poincaré
polynomial of M.

PROPOSITION 3.17. The motivic Poincaré polynomial of M is
21N, O0c) + 1. Y + 10 ' Ko C,

where y Nc(2, O¢)’ is given in Theorem 3.12, 3 Y in Proposition 3.14 and y ' Ky C
by Proposition 3.16.

Upon application of the ring morphism P.,: K — Z[[x, y]], we obtain the
Poincaré-Hodge polynomial of M.

COROLLARY 3.18. The Poincaré—Hodge polynomial of M is
L8 —L
(1 4+ xLy*(1 +yL)® — L£A48 A8 7 +%(Ag + B®)
(1-L0)1-12? 1+

A —2% (1 —[&N\* (B \[(1-— L%
3 ( - L ) +(7‘2g )(W)*
<(1 - L1 —LH(A - L1572 (1 - L1 —1#7h . ng> 92
(I-0)1-LH(1-L% (1-0)1-1% '

+

where

L=xy, A=0+x)(14+y) and B=(1-x)(1-y).
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The Betti numbers of the variety M were computed by Balaji and Seshadri in [4]
using the Weil conjectures. Using the previous corollary we have computed the
Hodge diamond of M for small genus.

EXAMPLES 3.19. The Hodge diamond and Betti numbers of Seshadri’s smooth
model for g =3 and g = 4.

1 1
0 0 0
0 2 0 2
0 3 3 0 6
0 3 11 3 0 17
0 0 3 3 0 0 6
0 0 6 84 6 0 0 96
0 0 3 3 0 0 6
0 3 11 3 0 17
0 3 3 0 6
0 2 0 2
0 0 0
1 1
1 1
0 0 0
0 2 0 2
0 4 4 0 8
0 6 19 6 0 31
0 0 8 8 0 0 16
0 1 28 327 28 1 0 385
0 0 4 32 32 4 0 0 72
0 0 1 34 343 34 1 0 0 413
0 0 0 8 56 56 8 0 0 0 128
0 0 1 34 343 34 1 0 0 413
0 0 4 32 32 4 0 0 72
0 1 28 327 28 1 0 385
0 0 8 8 0 0 16
0 6 19 6 0 31
0 4 4 0 8
0 2 0 2
0 0 0
1 1

3.4. THE MIXED HODGE STRUCTURE OF N¢(2, O¢)

If we apply the ring morphism P,, to the expression for y(N¢(2, O¢)) in Theorem
3.12 we obtain the pure Poincaré—Hodge polynomial of N¢(2, O¢) which is defined
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in terms of the weight filtration of the mixed Hodge structure H*(N¢(2, O¢), Q) (see
[22]). The following result shows how far the pure Poincaré-Hodge polynomial is
from the true Poincaré-Hodge polynomial. Given a vector space, V, acted on
linearly by 7Z/27 we shall write V't for the subspace of invariants and V'~ the
subspace on which 7 /27 acts via its nontrivial character.

THEOREM 3.20. The mixed Hodge structure H(Nc(2, O¢), Q) has weights i and
i— 1

Proof. We first compute the mixed Hodge structure H'(JacC — Jac,C, Q). The
group HY is zero because JacC — Jac,C is not complete. The exact sequence

- — H™'(Jac,C, Q) — H!(JacC — Jac, C, Q) — H'(JacC, Q) —
— H'(Jac,C, Q) — - -

shows that H!(JacC — Jac,C, Q) ~ Hi(z.lacC, Q) fori > 1 and H!(JacC — Jac, C, Q)
is an extension of H'!'(JacC, Q) by Q¥

0 — H°(Jac,C, Q)/H(JacC, Q) — H!(@JacC — Jac,C, Q)

— H'(JacC, Q) — 0.

In fact this mixed Hodge structure is split. This can be seen by using the 7 /2Z-action
on H*(JacC — Jac, C, Q) and the fact that the category of mixed Hodge structures is

an Abelian category; 7/27 acts trivially on H°(Jac,C, Q)/H’(JacC, Q) and as
multiplication by —1 on a sub-Hodge structure mapping isomorphically on

H'(JacC, Q).
To sum up:

‘ H'(JacC, Q)@ Q¥ ifi=1,

H (JacC —Jac,C, Q) = { Hi(JacC, Q), ifi>1,

0, otherwise,

the decomposition according to the action of Z/27 is

228 _1 o
, ifi=1,
H!(JacC —Jac,C, Q)" = { Hi(JacC, Q), ifi> 1 even,
0, otherwise,

Hi(JacC,Q), ifiodd,

H}(JacC —Jac,C, Q)" = { 0 otherwise

By the description above, as in the proof of Proposition 3.14 we obtain an
isomorphism of mixed Hodge structures:

HX(Y, Q) ~ H*(JacC — Jac,C, Q)" ® Q[c, 1T @ H*(JacC — Jac, C, Q)™
® Qle, 1

where ¢ and ¢’ are of degree 2 and subject to the relations ¢¢~! = ¢¢~! = 0. We see
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that H(Y, Q) is the sum of a pure Hodge structure of weight / and the weight i — 1
part of

0™ ® Qle, ¢ = H(Y) - Qle. ¢T*.

In particular, H'(Y, Q) is pure for even i.

Call Y the closure of Y in M and set Y =Y — Y so that Y =y 'KC and
Y =y 1K, C. Taking into account that dY has a cell decomposition (i.e. it is
the disjoint union of a finite collection of affine spaces) it is easy to see that
H(3Y, Q) is a pure Hodge structure of weight i, zero for odd i. The open immersion
J: Y<>Y gives rise to an exact sequence

H¥13Y, Q) = 0 — H(Y, Q) 25 H¥(Y, Q) — H¥(3Y, Q) —>
S HPH(Y, Q) L H¥Y(Y, Q) — H* (Y, Q) =0

From this we deduce that H*(Y, Q) is pure of weight 2i. To see that H**(Y, Q) is
also pure we need to see that WyHX*I(Y,Q) C kerji. As WyH**(Y,Q) C
HN(Y, Q) Qle, ¢T" and ji is a ring morphism it is enough to prove that statement
for i = 0. This follows easily by taking into account the morphism of exact sequences
induced by :

&

H°(9Y,Q) H:(Y,Q) m(y,Q)

v .y Jo

H(KoC,Q) — H(KC — KoC,Q) 2 H'(KC,Q) = 0.

From the exact sequence associated to the immersion Y<> M and the fact that
M is smooth and projective we immediately see that H'(M*, Q) has weights i
and i — 1

o —H™NY, Q) —H(M', Q) —H'(M,Q) — - -

The same argument for the immersion KC<—> N¢(2, O¢) proves the statement of
the theorem

o —>H(Nc(2, 0¢)', Q) — H'(N¢(2, O¢), Q) — HI(KC, Q) —>---. [0
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