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Exponents of Class Groups of Quadratic
Function Fields over Finite Fields
David A. Cardon and M. Ram Murty

Abstract. We find a lower bound on the number of imaginary quadratic extensions of the function
field Fq(T) whose class groups have an element of a fixed order.

More precisely, let q ≥ 5 be a power of an odd prime and let g be a fixed positive integer≥ 3. There

are� q
�( 1

2 + 1
g )

polynomials D ∈ Fq[T] with deg(D) ≤ � such that the class groups of the quadratic
extensions Fq(T,

√
D) have an element of order g.

1 Introduction

In a recent paper Murty [11] showed that if g is a fixed integer≥ 3 then the number
of imaginary quadratic fields whose absolute discriminant is ≤ x and whose class

group has an element of order g is� x
1
2 + 1

g . He also showed that the number of real
quadratic fields whose discriminant is ≤ x and whose class group has an element of

order g is� x
1
2g .

In this paper we prove the analogous result for function fields rather than number
fields in the analog of the imaginary quadratic case.

The problem of divisibility of class numbers for number fields has been studied
extensively. Gauss studied the case g = 2. The case g = 3 was studied by Daven-
port and Heilbronn [4]. For any g the infinitude of such fields was established by
Nagell [12], Honda [9], Ankeny and Chowla [2], Hartung [8], Yamamoto [14], and
Weinberger [13]. Assuming the ABC Conjecture Murty [10] obtained a quantitative
lower bound on the number of such fields. More recently Murty [11] improved the
technique to give the result mentioned earlier without assuming the ABC conjecture.
A conjecture of Cohen and Lenstra [3] predicts that as x increases a positive fraction
of discriminants ≤ x produce quadratic extensions whose class number is divisible
by any fixed g.

Interest in function fields was stimulated by the doctoral thesis of E. Artin [1] and
the class number problem for function fields has been studied. For example, if g is not
divisible by q then Friesen [7] constructed infinitely many polynomials M ∈ Fq[T]
of even degree such that the class groups of the quadratic extensions Fq(T,

√
M) of

the function field Fq(T) have an element of order g. Friedman and Washington [6]
have studied the Cohen-Lenstra conjecture in the function field case, and Yu [15] has
established the Cohen-Lenstra conjecture as the characteristic p tends to infinity for
fixed discriminantal degree.
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We now state the main result of this paper:

Theorem Let q ≥ 5 be a power of an odd prime and let g be a fixed positive integer

≥ 3. There are� q�(
1
2 + 1

g ) quadratic extensions Fq(T,
√

D) of Fq(T) with deg(D) ≤ �
whose class group has an element of order g.

The remainder of this paper will present the proof as a series of lemmas. The
main outline is as follows. We show that if n and m are monic elements of Fq[T], if
−a ∈ F×q is not a square, if deg(mg) > deg(n2), and if D = n2 − amg is squarefree,

then the class group of Fq(T,
√

D) has an element of order g. Using sieve methods
and by letting m and n vary we are able to give a lower bound on the number of m and
n such that D is squarefree. Finally, we show that as m and n vary there are relatively
few duplicated values of D.

2 Preliminaries

Fq will denote the finite field with q elements where q is a power of an odd prime.
R = Fq[T] is the polynomial ring with coefficients in Fq over the indeterminate T
and the function field Fq(T) is the field of fractions of R. We will assume that g is an
odd integer that is relatively prime to q.

The symbol p will always represent a monic irreducible polynomial in R. The
symbols n and m will also be monic (but not necessarily irreducible) polynomials
in R of degrees j and k respectively. The expression

∑
m f (m) would mean to sum

f (m) over all monic polynomials m of fixed degree k. If a and b are elements of R,
then (a, b) represents the greatest common (monic) divisor of a and b. If a and b
are ordinary integers then (a, b) will denote the greatest common divisor in the usual
sense.

3 Class Groups with Elements of Order g

In the following lemma we construct quadratic extensions of Fq(T) whose class
groups contain elements of order g.

Lemma 1 Let g be a positive integer ≥ 3. Assume n,m ∈ R are monic, −a ∈ F×q
is not a square, deg(mg) > deg(n2), and D = n2 − amg is squarefree. Then the class
group for Fq(T,

√
D) has an element of order g.

Proof First we note that (n,m) = 1 because if there were a common factor of n and
m then D would not be squarefree. We factor amg as

amg = n2 − D = (n +
√

D)(n−
√

D).

Suppose I|(n +
√

D) and I|(n −
√

D). Then n +
√

D ∈ I and n −
√

D ∈ I which
implies that n,D ∈ I and I = R = Fq[T]. Thus the ideals (n +

√
D) and (n −

√
D)

are relatively prime. Therefore

(m)g = (n +
√

D)(n−
√

D) = aga ′
g
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where a and a ′ are ideals such that (n +
√

D) = ag and (n −
√

D) = a ′
g . Taking

norms we find that N(m) = q2 deg(m) = N(a)2 so that N(a) = qdeg(m). Now suppose
that ar is principal for some r < g:

ar = (u + v
√

D).

Then

N(a)r = qr deg(m) = N(u + v
√

D) = qdeg(u2−v2D)

and because the leading coefficient of v2D is not a square this is

≥ qdeg(D) = qdeg(n2−amg ) = qdeg(mg )

= N(a)g .

This is a contradiction unless r = g.

4 How Often Is D = n2 − amg Squarefree?

In light of Lemma 1 we would like to construct a lower bound on the number of
squarefree expressions D = n2 − amg as n and m vary such that deg(n) = j and
deg(m) = k and deg(mg) > deg(n2). Regarding k as the independent parameter we
will maximize the number of possible values of D by choosing j to be the optimally
large value j = �gk/2	 if gk is odd or j = �gk/2	 − 1 if gk is even. Let s(h) be 1 or 0
according as h is squarefree or not. Also let

sz(h) =

{
1 if d2 does not divide h whenever 1 ≤ deg(d) ≤ z

0 otherwise.

We would like estimate the sum

∑
deg(m)=k
deg(n)= j

s(n2 − amg).

Lemma 2 By counting expressions n2 − amg that are squarefree in the small factors
we obtain the following sieving inequality:

∑
m,n

sz(n2 − amg) ≥
∑
m,n

s(n2 − amg) ≥
∑
m,n

sz(n2 − amg)−
∑
m,n,p

deg(p)>z
n2−amg≡0(p2)

1.
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With an appropriate choice of z (depending on k) we will show that for large k

#{distinct squarefree values of n2 − amg} ∼
∑
m,n

s(n2 − amg) ∼
∑
m,n

sz(n2 − amg)

� q j+k.

Several auxiliary functions will be useful for estimating the terms in Lemma 2.
Define the Möbius µ function on the nonzero elements of R. If h ∈ R has factor-
ization apα1

1 · · · p
αt
t where a ∈ Fq and the pi are irreducible monic polynomials in R

then

µ(h) =




1 if h ∈ F×q ,

(−1)t if αi = 1 for all i,

0 otherwise.

For z ≥ 1 let

P(z) =
∏

irreducible p
deg(p)≤z

p

and let

Nm,z( j) =
∑

deg(n)= j

sz(n2 − amg).

For fixed m, h ∈ R let

ρm(h) = #{n ∈ R/hR : n2 − amg ≡ 0(h)}.

Thus ρm(h) is the number of n ∈ R/hR satisfying the congruence n2 − amg ≡ 0
(mod h).

We will use the following elementary estimate several times:

Lemma 3 If π(u) represents the number of irreducible polynomials in Fq[T] of degree
u > 0, then π(u) ≤ qu/u.

Proof Since qu =
∑

d|u dπ(d), the upper bound is clear.

Lemma 4

(1) ρm(d1d2) = ρm(d1)ρm(d2) if d1 and d2 are coprime.
(2) ρm(p2) = qdeg(p) if p is irreducible and p divides m.
(3) ρm(p2) ≤ 2 if p is irreducible and p does not divide m.
(4) ρm(d2) ≤ 2ν(d)qdeg(m) for squarefree d where ν(d) is the number of distinct monic

irreducible polynomials of degree≥ 1 that divide d.
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Proof The multiplicativity of ρm is an immediate consequence of the Chinese re-
mainder theorem.

Suppose that n satisfies n2 − amg ≡ 0(p2) with p dividing m. Then p divides n.
There are exactly qdeg(p) multiples of p modulo p2.

Suppose that n satisfies n2 − amg ≡ 0(p2) but that p does not divide m. The
solution n must be a ‘lift’ of a solution modulo p. That is n = n1 + pt where n2

1 −
amg ≡ 0(p). We know there are at most two solutions of the congruence modulo p.
Then

0 ≡ (n1 + pt)2 − amg ≡ (n2
1 − amg) + 2n1 pt (mod p2)

implies

0 ≡
n2

1 − amg

p
+ 2n1t (mod p).

When p does not divide n and (2, q) = 1 there is a unique t (mod p) satisfying
the last congruence. Thus the solution n1 (mod p) gives rise to a unique solution n
(mod p2). Therefore, in this case, ρn(p) ≤ 2.

Now let ν(d) represent the number of distinct nonconstant monic polynomials
dividing d where d is squarefree. Then

ρm(d) =
∏
p|d
p|m

ρm(p2)
∏
p|d

(p,m)=1

ρm(p2) ≤
∏
p|d
p|m

qdeg(p)
∏
p|d

(p,m)=1

2 ≤ 2ν(d)qdeg(m).

The following lemma tells us a choice of z that allows the sieve in Lemma 2 to yield
interesting information.

Lemma 5 Given any ε > 0 we can choose κ (independently of m) so that if z =
κ log(k) then

Nm,z( j) = q j
∏

deg(p)≤z

(
1− ρm(p2)q− deg(p2)

)
+ O(q(1+ε)k).

Proof Let Nm,z( j) =
∑

deg(n)= j sz(n2 − amg). Then

Nm,z( j) =
∑

deg(n)= j

∑
d monic

d2|(n2−amg ,P(z))

µ(d) =
∑

d
d2|P(z)

µ(d)
∑

deg(n)= j
n2−amg≡0(d2)

1.

If j ≥ deg(d2) then

∑
deg(n)= j

n2−amg≡0(d2)

1 = ρm(d2)q j−deg(d2),
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while if j ≤ deg(d2) then

∑
deg(n)= j

n2−amg≡0(d2)

1 ≤ ρm(d2).

Thus

Nm,z( j) =
∑

d|P(z)

µ(d)
{
ρm(d2)q j−deg(d2) + O

(
ρm(d2)

)}

= q j
∏

deg(p)≤z

(
1− ρm(p2)q− deg(p2)

)
+
∑

d|P(z)

O
(
ρm(d2)

)
.

Now ∑
d|P(z)

ρn(d2) ≤ qdeg(m)
∑

d|P(z)

2ν(d)

= qdeg(m)
∏

deg(p)≤z

(1 + 2)

≤ qdeg(m)3qz

.

Given any ε > 0 we can choose κ such that if z = κ log(k) then the last expression is
bounded by qεk for sufficiently large k. Therefore for sufficiently large k we have

Nm,z( j) = q j
∏

deg(p)≤z

(
1− ρm(p2)q− deg(p2)

)
+ O(q(1+ε)k).

Lemma 6 We have the lower bound∑
m,n

sz(n2 − amg) =
∑

m

Nm,z( j)� q j+k.

Proof We notice that∏
deg(p)≤z

(
1− ρm(p2)q− deg(p2)

)

=
∏
p|m

deg(p)≤z

(1− q− deg(p))
∏

(p,m)=1
deg(p)≤z

(
1− ρm(p2)q− deg(p2)

)

≥
∏
p|m

deg(p)≤z

(1− q− deg(p))
∏
all p

(1− 2q− deg(p2))
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�
∏
p|m

(1− q− deg(p))

=
∑
d|m

µ(d)q− deg(d).

Then we sum over m

∑
deg(m)=k

∏
deg(p)≤z

(
1− ρm(p2)q− deg(p2)

)

�
∑

deg(m)=k

∑
d|m

µ(d)q− deg(d) =
∑

deg(d)≤k

µ(d)q− deg(d) · qk−deg(d)

= qk
∑

deg(d)≤k

µ(d)q−2 deg(d) = qk{(1− q−1) + O(q−k)} � qk.

Summing the expression in Lemma 5 as m varies such that deg(m) = k and applying
the last inequality gives the lemma:

∑
m Nm,z( j)� q j+k.

Lemma 7
∑

m ν(m)� log(k)qk.

Proof

∑
m

ν(m) ≤
∑

p
deg(p)≤k

qk−deg(p) ≤ qk
∑
u≤k

q−u ·
qu

u
� log(k)qk.

Lemma 8

∑
m,n,p

deg(p)>z
n2−amg≡0(p2)

1 = o(qi+ j).

Proof We may write

∑
m,n,p

deg(p)>z
n2−amg≡0(p2)

1 =
∑

m

∑
p

deg(p)>z

Mm,p( j)

where

Mm,p( j) =
∑

n
n2−amg≡0(p2)

1.
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Because Mm,p( j) = ρm(p2)q j−deg(p2) if j ≥ deg(p2) and Mm,p( j) ≤ ρm(p2) if j <
deg(p2) we obtain an upper bound on Mm,p( j)

Mm,p( j) ≤

{
2(q j−deg(p2) + 1) if (p,m) = 1,

q j−deg(p) if p|m.

Summing over irreducible p results in

∑
z<deg(p)≤ j

Mm,p( j) ≤
∑

z<deg(p)≤ j
(p,m)=1

2(q j−deg(p2) + 1) +
∑

z<deg(p)≤ j
p|m

q j−deg(p)

�
q j−z

z
+

q j

j
+ ν(m)q j−z.

Then summing the last expression over m gives

∑
m

∑
p

Mm,p( j)�
q j+k−z

z
+

q j+k

j
+ q j−z

∑
m

ν(m)

�
q j+k−z

z
+

q j+k

j
+ log(k)q j+k−z

� q j+k
( 1

zqz
+

1

j
+

log(k)

qz

)
= o(q j+k).

We have now shown (Lemmas 2, 6, and 8) that the number of squarefree values of
n2 − amg as m and n vary is

∑
m,n

s(n2 − amg)� q j+k.

It remains to be shown that there is not too much duplication among the expres-
sions n2 − amg .

Lemma 9 The number of squarefree elements of the form n2 − amg with deg(n) = j
and deg(m) = k that are representable in more than one way is o(q j+k).

Proof Let S be the collection of pairs (m, n) of monic polynomials m and n with
deg(n) = j and deg(m) = k such that n2 − amg is representable in more than one
way. We will determine an upper bound for |S| thereby proving the lemma. Let m1

and m2 be fixed unequal polynomials such that

n2
1 − amg

1 = n2
2 − amg

2
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for some n1 and n2. Then

a(mg
1 −mg

2) = n2
1 − n2

2 = (n1 − n2)(n1 + n2)

which shows that the choices for n1 and n2 are determined by the divisors of
a(mg

1 − mg
2). Since deg(mg

1 − mg
2) < gk, the worst possible case is when a(mg

1 − mg
2)

is divisible by gk − 1 distinct monic linear factors. In this worst case the number of
(not necessarily monic) divisors is

(q− 1)

gk−1∑
ν=0

(
gk− 1

ν

)
= (q− 1)2gk−1.

Notice that q is fixed but that we vary k. So, this is a very crude upper bound on the
number of divisors when k is large relative to q.

There are qk choices for m1. Given m1, the number of choices for n1 is bounded
by the number of choices for m2 times the number of divisors of mg

1 − mg
2. Thus the

set S contains O(q2k2gk) pairs. Since j = �gk/2	 or �gk/2	 − 1 and q ≥ 5, we obtain
|S| = O(q2k2gk) = o(q j+k).

We have now shown that there are� q j+k distinct values of D = n2 − amg . Since

j = �gk/2	 or j = �gk/2	 − 1 there are� qgk( 1
2 + 1

g ) distinct values of D. Therefore

there are� q�(
1
2 + 1

g ) quadratic extensions Fq(T,
√

D) of Fq(T) such that deg(D) ≤ �.
This completes the proof of the theorem stated at the beginning.
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