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Abstract
A single dataset is rarely sufficient to address a question of substantive interest. Instead, most applied data

analysis combines data frommultiple sources. Very rarely do two datasets contain the same identifiers with

which tomergedatasets; fields likename,address, andphonenumbermaybeentered incorrectly,missing,or

in dissimilar formats. Combining multiple datasets absent a unique identifier that unambiguously connects

entries is called the record linkage problem. While recent work has made great progress in the case where

there aremany possible fields onwhich tomatch, themuchmore uncertain case of only one identifying field

remains unsolved: this fuzzy string matching problem, both its own problem and a component of standard

record linkage problems, is our focus. We design and validate an algorithmic solution called Adaptive Fuzzy

String Matching rooted in adaptive learning, and show that our tool identifies more matches, with higher

precision, than existing solutions. Finally, we illustrate its validity and practical value through applications to

matching organizations, places, and individuals.

Keywords: Record linkage, adaptive learning

1 Record Linkage and Data Analysis
Combining data from diverse sources is a critical component of data analysis across computa-

tional fields. Linking disease outbreak patients with water supply locations gave John Snow new

insights into how cholera spreads (Snow 1855), forming the foundation for modern public health;

mergingCongressmembers’ campaigndonationdatawith their votes cast addresses the influence

of money in politics (Wawro 2001); and combining student records frommultiple schools enables

researchers to assess the effects of educational policiesmany years down the line (Alicandro et al.

2018).

In the best-case scenario, both datasets share in common several unique identifying columns

with identical formatting that unambiguously connect observations across sources. All common

data analysis so�ware includes tools to perform this datamerge. However, the best-case scenario

rarely appears in practice.More commonly, the twodatasets contain different and incomplete sets

of identifiers, with different formatting. The first datasetmight contain a single variable indicating

an individual’s name, whereas the second dataset might have columns for first name, middle

name, last name, and suffix; the first dataset might indicate organizations by their full names,

whereas the second dataset might only include abbreviations. A correct match identifies that

JennySmith andJennifer A. Smith are the sameperson, or that “JPMorgan,” “jpmandassociates,”

and “JPM” are all the same company as “J.P. Morgan Chase and Co.”

In both cases, there are two datasets each with rows representing entities: a person in the

first example, and an organization in the second. When there are multiple variables to identify

which entities appear in both datasets—name, age, and date of birth, for example—it is called a

record linkage problem (Fellegi and Sunter 1969; Jaro 1989; Larsen and Rubin 2001). A large and

growing literature reflects the importance of this problem, applying probabilistic and Bayesian

methodologies to computematch confidences (Christen 2005; Enamorado, Fifield, and Imai 2019;

Political Analysis (2022)
vol. 30: 590–596
DOI: 10.1017/pan.2021.38

Published
11 October 2021

Corresponding author
Aaron R. Kaufman

Edited by
Jeff Gill

© The Author(s), 2021. Published
by Cambridge University Press
on behalf of the Society for
Political Methodology. This is an
Open Access article, distributed
under the terms of the Creative
Commons Attribution licence
(http://creativecommons.org/
licenses/by/4.0/), which permits
unrestricted re-use, distribution,
and reproduction in any
medium, provided the original
work is properly cited.

590

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
1.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0003-3688-0428
mailto:AaronRKaufman.com
mailto:aaronkaufman@nyu.edu
www.doi.org/10.1017/pan.2021.38
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/pan.2021.38


McVeigh, Spahn, and Murray 2020), increasing both the precision (the proportion of identified

matches that link the same entities) and recall (the proportion of correct matches found to total

matches that exist).

Since this merging step is preliminary to almost all applied data analysis, finding correct

matches, andmany of them, is greatly consequential. Too fewmatches and subsequent analyses

will have insufficient statistical power; if too many matches are incorrect, or if they are systemat-

ically incorrect in an important way, any following results may be severely biased. This induces

a methodological trade-off: researchers may choose to retain fewer matches of higher quality

and bear the consequences of reduced observations, or accept a less stringent standard of match

certainty and risk compromising their results.

1.1 Fuzzy String Matching
This paper offers improvements on this precision-recall trade-off for an important edge case of

(and component of) the record linkage problem.When the two datasets share only a single imper-

fect identifier, this is sometimes called the fuzzy string matching problem (Filipov and Varbanov

2019; Hall and Dowling 1980). Without leveraging similarities acrossmultiple identifying columns,

researchers faced with fuzzy string matching problems have less information and fewer tools at

their disposal. Those that exist fall into three categories. Themost common solutions involve one

or more variants of edit distance (Ristad and Yianilos 1998). Levenshtein distance, for example,

calculates the minimum number of insertions, deletions, or replacements needed to convert one

string to another: “JP Morgxn” converts to “J.P. Morgan” by inserting two periods and replacing

the accidental “x” with an “a” for an edit distance of 3. Consequently, Levenshtein distance is very

effective for fixing typos, but relatively ineffective at matching “JP Morgan” to “JP Morgan Chase”

since that requires six new insertions.

A second category of tools examines substrings: the two most common are longest common

substring (LCSTR), which finds the longest substring in common to both strings, and Jaro–Winkler

dissimilarity, which examines character index proximity. LCSTR similarity might take the strings

“JPMorgxn” and “JPMorgan Chase,” and note that both share the 7-gram “JPMorg.” Jaro–Winkler

distance upweights n-gram matches early in the string according to a tuning parameter, and in

those ways, they both avoid the pitfall that Levenshtein distance falls into above.1 However, they

fail where Levenshtein distance does not inasmuch as they are sensitive to typos, since both may

miss “PJ Mrogan Chsae” as a misspelled match for “JP Morgan Chase.”

A final set, composition-based measures, includes Jaccard similarity and cosine similarity.

Jaccard similarity is the ratio of in-common characters to total characters. By representing a

string as a bag-of-letters, cosine similarity creates a letter frequency vector for each of two strings

and calculates the cosine of the angle between those vectors. Cosine similarity is thereby robust

to switched letters, correctly matching “JP Morgan Chase” with “PJ Mrogan Chsae,” but is less

successful in matching “JP Morgan” to “JP Morgan Chase” like Levenshtein distance.

While there are dozens of variants of string-distance tools, there is little guidance for how

applied researchers can choose among themwhendifferentmethods invariably producedifferent

sets of matches. But critically, while Levenshtein distance is best at identifying typos and Jaccard

similarity is bestwhen typos are rare,most appliedproblems includeboth types of errors (Table 1).

The optimal tool would intelligently use Levenshtein distance to correct typos, Jaro–Winkler

distance to finish incomplete strings, and cosine distance when letters are swapped, as well as

any of the dozens of other tools like Sorensen–Dice distance or the Tversky index as appropriate,

custom-fitted to the application at hand.

1 For certain edge values of Jaro–Winkler’s tuning parameter, it converges toward a correlation of 1 with Levenshtein
distance.
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Table 1. Each row indicates a possible matched pair of String 1 and String 2, and contains the true match
status and four different string-distance metrics. In the first row, String 1 and String 2 are identical, so all
distance scores are 0.

String 1 String 2 Match Levenshtein Jaccard Jaro–Winkler Cosine

JP Morgan Chase JP Morgan Chase Yes 0 0 0 0

JP Morgan Chase J.P. Morgan Yes 8 0.36 0.19 0.30

JP Morgan Chase JPM & Co Yes 10 0.57 0.34 0.35

JP Morgan Chase Bank of America No 15 0.70 0.48 0.37

Wepropose an ensemble learning approach, aggregating these andmanymore string-distance

metrics to collaboratively address the fuzzy string matching problem. Drawing inspiration from

Kaufman, King, and Komisarchik (2021) as a method for quantifying “knowing it when you see

it,” we design and implement a human-in-the-loop (HITL) algorithm called Adaptive Fuzzy String

Matching (AFSM) for combining string matching methods into a metalearner. We think of this

procedure as a method for generating bespoke string-distance measures tailored to each new

application.We find that it optimizesbothprecisionand recall, producingbettermatcheddatasets

for applied research. We show its increased effectiveness over current best practices through a

series of diverse applications, and introduce open-source so�ware to implement our procedures.

2 An Adaptive Algorithm
The key insight to AFSM is leveraging one of the foremost principles of human–computer inter-

action: have computers do what they do well, and let humans do what they do well (Kaufman

et al. 2021; Lazar, Feng, and Hochheiser 2017; Norman and Draper 1986). Drawing inspiration from

the literatures onadaptivemachine learningand text-as-data (Enamorado2018;Miller, Linder, and

Mebane2019),we find that although computers canquickly identify large sets ofpossiblematches,

only humans can quickly identify whether a proposedmatch is correct (Mozer et al. 2018).

Leveraging this, we design an algorithm of three steps. First, a computational model proposes

matches. Second, an HITL identifies which proposedmatches are correct or incorrect. Finally, the

computer refines its model and proposes new matches to repeat the cycle. The training labels

indicate whether a pair of strings is a match; the feature set consists of a number of string-

distance metrics. Note that while this model does require a training set, due to Step 2, we find

that one training set suffices for our three applications. For more details on this phenomenon,

our implementation of the model, the model’s properties, and its drawbacks,2 see the Online

Supplement.

We are agnostic as to which supervised learner our algorithm uses; we experiment with a

number of options and select a random forest model as our preferred learner, and as such, our

procedure is akin to a boosted trees model (Kaufman, Kra�, and Sen 2019). A�er initializing the

algorithm with a training set and producing a baseline model, we repeat the HITL cycle until

the model consistently produces few false positive matches or the model converges.3 For small

datasets, this number of iterationsmay be 1 or even none; for bigger problems, it may be asmany

as 10.

2 To summarize briefly, this model fails in twomain cases: first, when common string errors cannot be identified by existing
string-distance measures, and second, when there are many true negative matches that have very similar strings.

3 This convergence may be in the model’s coefficients, feature importances, or other aspects of its inner workings, so long
as the model is changing relatively little from iteration to iteration.
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2.1 Algorithm Notation
Consider an HITL process with I iterations, a strings in the first set and b strings in the second set,

and X string-distance metrics. Each HITL iteration will examine the n predictions.

Algorithm 1: Human-in-the-loop algorithm

CalculateX for all combinations of a,b ;

Construct initial training setYt r ai n ,Xt r ai n using observations t r ai n ∈ X ; Train initial

modelM1 by regressingYt r ai n Xt r ai n ;

Generate predictions Ŷ1 usingM1,X \Xt r ai n ;

for i in I do

Sort predictions Ŷi ,Xi by predicted probability, descending;

Extract the first n predictions from sorted Ŷi ,Xi to Ŷi ,n ,Xi ,n ;

Manually correct Ŷi ,n toYi ,n ;

Update training setYt r ai n ,Xt r ai n =Yt r ai n | |Yi ,n ,Xt r ai n | |Xi ,n ;

Train newmodelMi+1 by regressingYt r ai n Xt r ai n ;

Generate predictions Ŷi+1 usingMi+1,X \Xt r ai n ;

if False-positive rate less than 1% or the model converges then
Stop;

end

end

3 Applications and Validation
Across three applications, we illustrate different facets and use cases of our method; in each,

we show how our method produces matches robust to a wide variety of typos, abbreviations,

mispunctuations, and more. The first application matches organizations, the second matches

geographies, and the third matches individuals. The first example involves many HITL iterations,

the second example just one, and the third example relies only on the baseline model with no

additional researcher input. We validate each application with comparisons to human labeling,

andmore details for each are available in the Online Supplement.

3.1 Matching Campaign Donors to Amicus Cosigners
Our first application is to interest group ideology. We match a dataset of campaign donations

to interest groups (Bonica 2014) to a dataset of amicus curiae co-signing organizations (Box-

Steffensmeier, Christenson, and Hitt 2013) in the interest of studying the ideological behavior of

amicus curiae (Abi Hassan et al. 2020). To validate that AFSM produces higher precision and recall

than alternativemethods, we conduct two evaluation studies. The first study addresses recall: we

manually identify a number of true matches between the amicus curiae and campaign donation

data, andwithhold thosematches fromour training set;wecanestimate recall as theproportionof

withheld matches that a method identifies (see Figure B.1 in the Online Supplement). The second

study addresses precision: we sample 200 proposedmatches from eachmethod (4,000 total) and

present them to human coders on Amazon.com’s Mechanical Turk. We ask each respondent to

examine a proposedmatch and identify whether thatmatch is correct or incorrect. We triple-code

each pair, and estimate precision as the proportion ofmodel-identifiedmatches that themajority

of human coders label as correct (Figure 1).

When theAFSMmodel identifies amatchwith confidencebetween0.95and 1, it is correct 88.0%

of the time. The next-best performing measure, Jaccard similarity, only achieves 85.0% precision

at a match score of 0.95–1, and 53.0% with a score of 0.9–0.95. Jaro–Winkler achieves 76.3%

precision in the highest category. We compare Area Under the Receiver Operating Characteristic

results for the AFSMmodel, the baselinemodel, and Jaccard similarity in the Online Supplement.
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Figure 1.Match precision increases as the predicted match probability increases for the human-in-the-loop
(HITL)model, the baselinemodel, and four constituentmeasures. At a confidence of 0.95 or greater, the HITL
model achieves 88.0% precision.

3.2 Matching Misspelled Cities in PPP Data
Our second application turns from organizations to geographies. The Paycheck Protection Pro-

gram (PPP), instituted as a stimulus for US small businesses in 2020, awarded loans of more than

$150,000 to more than 600,000 businesses. Its publicly released loan-allocation data include the

approximate dollar amount, business name, and location of loan recipients. Importantly, the city

namevariable is o�enmisspelled. First, removing any cities that are spelled correctly,we compare

every remaining city with the cities in list of almost 30,000 cities that are within the same state.

AFSM identifies matches among both common and uncommonmisspellings: “PHILDADELPHILA”

and “PHILLADELPHIA” both match Philadelphia, PA; “BERKLELEY” and “BERKLEY” both match

Berkeley, CA; “BKLYN” matches to Brooklyn, NY. We successfully match “N LOS VEGAS” and “NO

LOS VEGAS” to the city of North Las Vegas, NV; we correctmissing or extra spacing, trailing punctu-

ation, and even uncommon abbreviations like “PLSDS” to “PALISADES.” Above a 0.95 confidence,

every identified match is a true match as per a manual coding; above 0.75, most of the incorrect

matches involve cardinal direction errors (“N. HOLLYWOOD” matching to “W HOLLYWOOD,” for

example). See the Online Supplement for more details.

3.3 Identifying Incumbent Voting
A final application illustrates AFSM’s utility without the HITL step. The 2016 Cooperative Con-

gressional Election Study (Ansolabehere and Schaffner 2017) asked respondents to identify the

Congressional candidate forwhom they voted in 2016, and later, using geolocationdata, identified

each respondent’s incumbent Member of Congress. However, since the standardized version

of the incumbent names rarely match respondents’ typed candidate name, determining which

respondents cast votes for their incumbent is a fuzzy stringmatching problem. We apply our base

model trainedonour interest groupdataand find that it capturesnearly all the truepositives in the

dataset: the first HITL iteration returns no new true-positive matches. For accuracy, we find that

with a confidence threshold of 0.2, the basemodel achieves both true-positive and false-negative

rates of less than 1%compared to amanual coding, indicating near-perfect accuracy (see Table B.3

in the Online Supplement).
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4 Discussion
This paper introduces a method and associated so�ware for merging datasets with only a single,

error-prone common column. By leveraging the complementary advantages of human coders

and computer models, this method is robust to a diverse set of string errors and requires no

additional training data in applying it to new domains. We show that it productively applies to

matching problems relating to people, places, and organizations, and argue that this robustness

and broad applicability arises from its adversarial learning process—having an HITL iteratively

adds training observations where the model performs poorly.4 This tool is broadly useful on

its own; researchers may also incorporate its confidence scores as a string-distance measure in

performing probabilistic record linkage. We are optimistic that this work will facilitate research

across awide range of disciplines and open up newavenues for analysis, for example, in problems

like reconciling the names of disappeared or deceased people in civil conflicts.
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