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Abstract. The purpose of this paper is to show how generalizations of generic vanishing theorems to
aQ-divisor setting can be used to study the geometric properties of pluritheta divisors on a principally
polarized Abelian variety (PPAV for short).
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Introduction

Abelian varieties are some of the most studied higher-dimensional algebraic
varieties. They appear to be very simple, as they are constructed by quotienting
Cn by an integral lattice. However, there are many open problems concerning their
geometry. One of the techniques that has been used to investigate the properties
of PPAVs is the study of the singularities of their theta divisor. This connection
was first exploited by Andreotti and Mayer [AM], in their study of the Schottky
problem. In another direction, Kempf [Ke] showed that ifA is the Jacobian variety
of some curve then the theta divisor has only rational singularities. In a joint article
[AD], Albarello and De Concini suggest that if(A,2) is an irreducible principally
polarized Abelian variety, then the singular locus of the theta divisor has codimen-
sion at least 3 inA. At any rate, Kollár [K] proved that the singularities of the theta
divisor on a principally polarized Abelian variety are mild in the following sense

THEOREM (Kollár). Let(A,2) be aPPAV, then the pair(A,2) is log canonical.

This implies, for example, that if

6k(2) = {x ∈ A|multx(2) > k},
then every component of6k(2) has codimension at leastk in A.

It is easy to construct examples in which the codimension is exactlyk, by just
considering ak-fold product of PPAVs. Ein and Lazarsfeld [EL] proved that this is
essentially the only case in which such a phenomenon can occur.
? Partially supported by Consiglio Nazionale delle Ricerche.
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THEOREM (Ein, Lazarsfeld).If 2 ⊂ A is an irreducible theta divisor, then2 is
normal and has only rational singularities.

Consequently, if(A,2) is any PPAV for which6k(2) contains an irreducible
component of codimensionk, then (A,2) splits as ak-fold product of PPAVs.
They also generalized the result of Kollár toQ-divisors in the following sense

THEOREM (Ein, Lazarsfeld).If D is a divisor in the linear series|m2|, then the
pair (A, (1/m)D) is log-canonical.

In the same spirit as the first of the two theorems of Ein and Lazarsfeld, we
prove the following theorem:

THEOREM 1. Let (A,2) be a principally polarized Abelian variety and form >
1 let D be a divisor in the linear series|m2| such thatb(1/m)Dc = 0. Then the
pair (A, (1/m)D) is log terminal.

The condition thatb(1/m)Dc = 0 is equivalent to requiring that the multiplicity
of every irreducible component ofD is strictly less thanm.

COROLLARY 2. Let (A,2) be a principally polarized Abelian variety, and for
m > 1 let D be a divisor in the linear series|m2|. If k > 1 is the greatest
integer such that6mk(D) contains an irreducible component of codimensionk,
then(A,2) splits as a product of at leastk PPAVs

(A,2) ∼= (A1,21)× · · · × (Ak,2k)× (A′,2′)
(the component(A′,2′) being possibly trivial). Moreover, the divisorD decom-
poses as follows

D = m
k∑
i=1

p∗i (2i)+ p′∗D′,

whereD′ ∈ |m2′|, and the pair(A′, (1/m)D′) is log terminal.

Remark. The component(A′,2′) is trivial precisely whenD′ = 0, i.e. when
b(1/m)Dc = (1/m)D. Similarly (A,2) ∼= (A′,2′) (i.e. k = 0) precisely when
b(1/m)Dc = 0. This is the case treated in Theorem 1.

0. Notation and Conventions

f ∗D pull-back,
Dred reduced divisor associated toD,
�iX〈D〉 sheaf of holomorphici-forms with logarithmic poles alongDred,
|D| linear series associated to the divisorD,
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Bs|D| the base locus of the linear series associated to the divisorD,
≡ numerical equivalence,
ωX = �nX canonical sheaf ofX,
KX linear equivalence class of a canonical divisor onX,
ωX/Y := ωX ⊗ (f ∗ωY)∗ relative canonical sheaf of a morphismf :X→ Y

Unless otherwise statedX,Y will denote smooth complex projective varieties.
If D is aQ-divisor we will denote bybDc and bydDe the round down and the
round up ofD respectively.

1. Preliminaries

Let X be a smooth complex projective variety and letD be aQ-divisor onX.
We will say thatf : Y → X is a log-resolution of the pair(X,D), if f is a
proper birational morphism such thatf −1D ∪ {exceptional set off } is a divisor
with normal crossing support. Given a log-resolution of the pair(X,D), we can
define the multiplier ideal sheaf associated to the divisorD,

I(D) := f∗(OY (KY/X − bf ∗Dc)).

The definition is independent of the choice of the log-resolution. Multiplier ideal
sheaves may be defined in much grater generality. Their properties have been
extensively studied, e.g., [N], [Sk], [De] and [E]. Under the above assumptions,
we will say that the pair(X,D) is log canonical (respectively log terminal) if the
multiplier ideal sheaf associated to the divisor(1− ε)D is trivial, for 0 < ε < 1
(respectively 06 ε < 1).

As in [EV] given an invertible sheafL, an effective divisorB = ∑
biBi and

a positive natural numberN such thatLN = OX(B), we will denote byL(1) the
sheaf

L(1) := L⊗OX

(
−
⌊

1

N
B

⌋)
and byB(1) the divisorB(1) =∑N -bi Bi.

We will study the loci

V i(ωX ⊗L(1)) := {P ∈ Pic0(X)|hi(ωX ⊗L(1) ⊗P ) 6= 0}.

Assume now thatB is a divisor with normal crossing support, then the deforma-
tion theory of the cohomology groupsHi(X,ωX⊗L(1)⊗P ) behaves analogously
to the deformation theory of the cohomology groupsHi(X,ωX ⊗ P ). In fact, the
geometry of these loci is governed by the following theorem which parallels the
theory developed in [GL1] and in [GL2], (see Thm. 1.2 of [EL] for an analogous
formulation).
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THEOREM 1.1.LetT ⊂ Pic0(X) be any irreducible component ofV i(ωX⊗L(1)),
and letP ∈ T be a general point. Then

(a) T is (a translate of) a sub-torus ofPic0(X),
(b) codimPic0(X)T > i − (dimX − dim albX(X)),
(c) Pic0(X) ⊃ V 0(ωX ⊗L(1)) ⊃ V 1(ωX ⊗L(1)) ⊃ · · · ⊃ V n(ωX ⊗L(1)),
(d) If 0 6= v ∈ H 1(X,OX) ∼= TP Pic0(X) is not tangent toT , then the sequence

Hn−i−1(X, (L(1) ⊗P )∗) ∪v- Hn−i(X, (L(1) ⊗P )∗)
∪v- Hn−i+1(X, (L(1) ⊗P )∗)

is exact. Ifv 6= 0 is tangent toT , then the maps in the above sequence vanish.

The statements (a, b and c) are well-known. For (a), the reader may refer to [B]
and [S], for (b), to [D]; (c) is analogous to Lemma 1.8 [EL]; the second part of
(d) is [EV] Lemma 12.6c). As for the first assertion in (d), one may proceed as in
[GL2]. The main point is to represent the cohomology groupsHi(X, (L(1)⊗ P)∗)
in terms of harmonicL(2) forms with coefficients in an appropriate unitary local
constant system cf. [EV] and [EV2] Appendix D.

2. Proofs

Proof of Theorem1. Let D be a divisor in the linear series|m2|. Consider its
decomposition into irreducible reduced componentsD =∑ diDi.We may assume
that 16 di 6 m− 1. Now consider a log resolutionf :X→ A of the pair(A,D).
Define the sheaf

L(1) := OX

(
f ∗(2)−

⌊
1

m
f ∗D

⌋)
and observe that (cf. [E])

f∗(ωX ⊗L(1)) = f∗
(
ωX/A ⊗ f ∗(2)−

⌊
1

m
f ∗D

⌋)
= I

(
1

m
D

)
⊗OA(2),

Rif∗(ωX ⊗L(1)) = 0, ∀i > 0.

We must show that the multiplier idealI := I((1/m)D) is trivial. As before, let

Vi := {P ∈ Pic0(X)|hi(ωX ⊗L(1) ⊗P ) 6= 0}

=
{
P ∈ Pic0(A)|hi

(
OA(2)⊗ I

(
1

m
D

)
⊗P

)
6= 0

}
,

and considerS an irreducible component ofV0 of dimensionk.
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By Theorem 1.1(a), we have thatS is (a translate of) a subtorous of Pic0(X), so
we may consider the dual Abelian varietyC := S∗ and the dual map

π :A→ C.

The componentS is not empty, as otherwise, we would have (Theorem 1.1(c))
Hi(X,ωX ⊗ L(1) ⊗ P ) = 0 for all P ∈ Pic0(X) and all integers 06 i 6 n.
Therefore, by a result of Mukai [M],ωX⊗L(1)⊗P = 0 and this is a contradiction.

PROPOSITION 2.1.LetF be any component of the divisorD such thatπ(F) =
C. Then

F ⊂ Bs
∣∣∣∣2⊗P ⊗ I

(
1

m
D

)∣∣∣∣
for generalP ∈ S.

Proof.LetB := f ∗D =∑ biBi , then the divisorB(1) =∑m-bi Bi contains the
proper transforms of all the components ofD. Now consider

H 0(X,�n−1
X 〈B(1)〉 ⊗L(1) ⊗P (−B(1))) ∧ω- H 0(X,ωX ⊗L(1) ⊗P ) (1)

whereω ∈ H 0(X,�1
X) is a global holomorphic 1-form. By [T], this is the conjug-

ate of the last map in the complex in Theorem 1.1(d). The conjugatev = ω ∈
H 1(X,OX) may be identified with a vector in the tangent spaceTP (Pic0(X)).
Recall that ifv 6∈ TPS, then(1) is onto. In order to recover the required information
from (1), we must make the appropriate choice of the holomorphic 1-formω. To
this end, consider any componentF of D such thatπ(F) = C. Let E be the
proper transform ofF under the mapf :X → A. E is a component ofB(1). Let
p a general smooth point of the divisorE, and choose local parametersz1, . . . , zn
on an appropriate open setU , such thatE is defined onU by the equationz1 = 0.
Chooseω ∈ H 0(X,�1

X) such thatω(p) = dz1. By choosingp ∈ E generically,
we may assume thatω is not tangent toS, and so(1) is onto. Lets be a section
of H 0(X,�n−1

X 〈B(1)〉 ⊗L(1) ⊗ P (−B(1))). Then restricting to the open setU , we
may writes =∑ ηiz1ai, where

η1 = dz2 ∧ · · · ∧ dzn, ηi = (dz1/z1) ∧ · · · ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn

for 26 i 6 n, andai ∈ 0(U,L(1) ⊗P ). Therefore,

(s ∧ ω)(p) = (a1z1dz1 ∧ · · · ∧ dzn)(p) = 0,

sop ∈ Bs|ωX ⊗L(1)⊗P |. Moreover,p is a general point ofE, soE ∈ Bs|ωX ⊗
L(1) ⊗P |. Since

H 0(X,ωX ⊗L(1) ⊗P ) ∼= H 0(A,OA(2)⊗P ⊗ I),
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andE is the proper transform ofF , it follows that

F ⊂ Bs
∣∣∣∣2⊗P ⊗ I

(
1

m
D

)∣∣∣∣ 2
COROLLARY 2.2. The divisor

2−
∑

π(Di)=C
Di

is algebraically equivalent to an effective divisor, and hence is nef.

Now consider the divisorH := D −∑π(Di)=C diDi. Using the corollary, we
may rewrite the divisorH as a sum of an ample divisor, a nef divisor and effective
divisor

H ≡ 2+ (m− 1)

2− ∑
π(Di)=C

Di

+ ∑
π(Di)=C

(m− 1− di)Di.

On an PPAV, any effective divisor is nef, and the sum of an ample divisor with a
nef divisor is always ample. Therefore the divisorH is ample.

The theorem follows, since asH is ample and contained in the pullback of a
divisor onC, the mapπ must be an isomorphism, and henceS = Pic0(A). So

H 0

(
A,OA(2)⊗P ⊗ I

(
1

m
D

))
6= 0

for all P ∈ Pic0(A). This means that all translates of2 must vanish along the
cosupport ofI, but thenI = OA. 2

Proof of Corollary 2. In order to prove Corollary 2, we will need the following
lemmas.

LEMMA 2.2. The components of the divisorD ∈ |m2| have multiplicity at most
equal tom.

Proof. Suppose that there exists a componentF of D of multiplicity f > m,
and letD = fF + ∑ diDi be a decomposition ofD into distinct irreducible
components. We have the following numerical equivalence ofQ-divisors

2− F ≡Q 1

m
(D −mF).

Sincef > m+ 1, it follows (after an easy calculation) that

f −m
m

> 1

m+ 1

f

m
.
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Consequently

(2− F).C = 1

m
(D −mF).C = 1

m

(
(f −m)F +

∑
diDi

)
.C

> 1

m

(
f

m+ 1
F +

∑ di

m+ 1
Di

)
.C =

(
1

m+ 1

)
2.C

for any curveC and, hence,(2−F) is ample. By Riemann–Roch,h0(2−F) > 0,
soh0(2 − F) = h0(2) = 1. This means that(2 − F)n = (2)n. On an Abelian
variety this is a contradiction unless the componentF is empty. 2

Now we may assume that the divisorD decomposes as follows

D =
δ∑
i=1

diDi +m1,

where 16 di 6 m − 1, and1 = ∑di=m Di is the reduced Cartier divisor whose
components are the components ofD of multiplicity exactlym.

LEMMA 2.3. There existPPAVs(A0,20) and(A′,2′), and projectionsp0:A→
A0, p′:A → A′ such that the map(p0 × p′):A → A0 × A′ is an isomorph-
ism ofPPAVs.Moreover1 = p∗010,Di = p′∗D′i , where10 = 20 andD′ =∑δ

i=1 diD
′
i ≡ m2′.

Proof. We will use the notation and the results of [LB] Chapters 3.3 and 4.3.
The divisorm(2−1) is linearly equivalent to the effective divisor

∑
diDi, hence

OA(m(2−1)) andOA(2−1) are positive semidefinite line bundles. Therefore,
there exists a topologically trivial line bundleP ∈ Pic0(A) such thath0(OA(2 −
1) ⊗ P) 6= 0. Definep0:A → A0 := A/K(1)0 andp′:A → A′ := A/K(2 −
1+P)0. By [LB] 3.3.2, there exist positive definite line bundlesM′ onA′ andM0

onA0 such that

OA(1) = p∗0M0 and H 0(A,OA(1)) = p∗0(H 0(A0,M0)),

OA(2−1)⊗ P = p′∗M′

and

H 0(A,OA(2−1)⊗ P) = p′∗(H 0(A′,M′)),

for someP ∈ Pic0(A). By the decomposition theorem [LB] 4.3.1, the map
(p0, p

′):A → A0 × A′ is an isomorphism of the PPAVs(A,2 ⊗ P) and(A0 ×
A′, p0

∗M0⊗p′∗M′). Finally, sinceK(2−1)0 = K((2−1)⊗P)0 = K(m(2−
1))0, it follows that

H 0(A,OA(m(2−1))) = p′∗(H 0(A′,mM′)),
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so1 = p∗010 and
∑
diDi = p′∗D′. 2

Suppose that there existsS an irreducible component of6mk(D) of codimen-
sionk. Then there exist positive integersk0 andk′ such thatmk = k0 + k′ and

S ⊂ 6k0(m10)×6k′
(

δ∑
i=1

diD
′
i

)
.

From the second of the two theorems due to Ein and Lazarsfeld, we know that

codimA06k0(m10) = codimA06d k0m e
(10) >

⌈
k0

m

⌉
.

Also, by Theorem 1, we know that ifk′ > 0, then

codimA′6k′

(
δ∑
i=1

diD
′
i

)
>
⌊
k′

m

⌋
+ 1.

Therefore,

k = codimAS > codimA06k0(m10)+ codimA′6k′

(
δ∑
i=1

diD
′
i

)

>
⌈
k0

m

⌉
+
⌊
k′

m

⌋
+ 1= k + 1.

This implies thatk′ = 0, mk = k0 and codimA06k(10) = k. The corollary now
follows directly from the first of the two theorems due to Ein and Lazarsfeld.2
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