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Abstract. The purpose of this paper is to show how generalizations of generic vanishing theorems to
aQ-divisor setting can be used to study the geometric properties of pluritheta divisors on a principally
polarized Abelian variety (PPAV for short).
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Introduction

Abelian varieties are some of the most studied higher-dimensional algebraic
varieties. They appear to be very simple, as they are constructed by quotienting
C” by an integral lattice. However, there are many open problems concerning their
geometry. One of the techniques that has been used to investigate the properties
of PPAVs is the study of the singularities of their theta divisor. This connection
was first exploited by Andreotti and Mayer [AM], in their study of the Schottky
problem. In another direction, Kempf [Ke] showed thatifs the Jacobian variety

of some curve then the theta divisor has only rational singularities. In a joint article
[AD], Albarello and De Concini suggest that(ifi, ®) is an irreducible principally
polarized Abelian variety, then the singular locus of the theta divisor has codimen-
sion at least 3 iM. At any rate, Kollar [K] proved that the singularities of the theta
divisor on a principally polarized Abelian variety are mild in the following sense

THEOREM (Kollar). Let(A, ©®) be aPPAV, then the pairA, ®) is log canonical.

This implies, for example, that if
Zi(®) = {x € Almult,(©) > k},

then every component &, (®) has codimension at leaktn A.

It is easy to construct examples in which the codimension is exactly just
considering &-fold product of PPAVs. Ein and Lazarsfeld [EL] proved that this is
essentially the only case in which such a phenomenon can occur.
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THEOREM (Ein, Lazarsfeld).If ® C A is an irreducible theta divisor, the® is
normal and has only rational singularities.

Consequently, ifA, ®) is any PPAV for whichX, (®) contains an irreducible
component of codimensiok, then (A, ®) splits as ak-fold product of PPAVs.
They also generalized the result of Kollar@aedivisors in the following sense

THEOREM (Ein, Lazarsfeld)If D is a divisor in the linear seriegn®|, then the
pair (A, (1/m)D) is log-canonical.

In the same spirit as the first of the two theorems of Ein and Lazarsfeld, we
prove the following theorem:

THEOREM 1. Let (A, ©) be a principally polarized Abelian variety and for >
1let D be a divisor in the linear seriegn®| such that| (1/m)D| = 0. Then the
pair (A, (1/m)D) is log terminal.

The condition that(1/m)D| = 0 is equivalent to requiring that the multiplicity
of every irreducible component @ is strictly less thamn.

COROLLARY 2. Let(A, ®) be a principally polarized Abelian variety, and for
m > 1let D be a divisor in the linear seriegn®|. If k > 1 is the greatest
integer such thak,,, (D) contains an irreducible component of codimensign
then(A, ©) splits as a product of at leagtPPAVs

(A, ©) = (A1, 01) x -+ X (A, Op) x (A, )

(the componentA’, ®) being possibly trivigl Moreover, the divisorD decom-
poses as follows

k

D=mY pi©)+p D,
i=1

whereD’ € |[m®’|, and the pair(A’, (1/m)D’) is log terminal.
Remark The componentA’, ®’) is trivial precisely whenD’ = 0, i.e. when

|(1/m)D] = (1/m)D. Similarly (A, ®) = (A, ®) (i.e. k = 0) precisely when
[(1/m)D] = 0. This is the case treated in Theorem 1.

0. Notation and Conventions

f*D pull-back,

Dreq reduced divisor associated

Q' (D) sheaf of holomorphi¢-forms with logarithmic poles alonfp,eq,
|D| linear series associated to the dividoy
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Bs|D| the base locus of the linear series associated to the diGisor

= numerical equivalence,

wyx = ' canonical sheaf ok,

Kx linear equivalence class of a canonical divisorXbn

wyxy = wx @ (f*wy)* relative canonical sheaf of a morphisfnX — Y

Unless otherwise statex, Y will denote smooth complex projective varieties.
If D is aQ-divisor we will denote byl D| and by[D7 the round down and the
round up ofD respectively.

1. Preliminaries

Let X be a smooth complex projective variety and Ietbe aQ-divisor on X.
We will say thatf: ¥ — X is a log-resolution of the paitX, D), if f is a
proper birational morphism such that®D U {exceptional set ¢f} is a divisor
with normal crossing support. Given a log-resolution of the p&irD), we can
define the multiplier ideal sheaf associated to the divi3pr

(D) = f(Oy(Ky/x — Lf*D]).

The definition is independent of the choice of the log-resolution. Multiplier ideal
sheaves may be defined in much grater generality. Their properties have been
extensively studied, e.g., [N], [SK], [De] and [E]. Under the above assumptions,
we will say that the paifX, D) is log canonical (respectively log terminal) if the
multiplier ideal sheaf associated to the divigtr— ¢)D is trivial, for0 < ¢ < 1
(respectively 0< ¢ < 1).

As in [EV] given an invertible sheaf’, an effective divisorB = ) b; B; and
a positive natural numbey such thatty = Oy (B), we will denote by.LV the
sheaf

£ = 200, (| 2a))

and byB¥ the divisorB™Y = 3"\, B:.
We will study the loci

Vilwy @ LD) := {P € PICX)|h (wx @ LP @ P) £ 0.

Assume now thaB is a divisor with normal crossing support, then the deforma-
tion theory of the conomology grougé' (X, wx ® LY ® #) behaves analogously
to the deformation theory of the cohomology groups X, wy ® #). In fact, the
geometry of these loci is governed by the following theorem which parallels the
theory developed in [GL1] and in [GL2], (see Thm. 1.2 of [EL] for an analogous
formulation).
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THEOREM 1.1.LetT c Pic°(X) be any irreducible component &f (wxy ® L),
and let? € T be a general point. Then

(a) T is (a translate of a sub-torus oPic®(X),

(b) codimyox, T > i — (dim X — dim alby (X)),

(©) Pid(X) 2 Vo%(wx @ LD) D Viwx @ L) D -+ D V' (wy ® L),

(d) If 0 #£ v e HY(X, Ox) = T Pic°(X) is not tangent td’, then the sequence

Uv

Hn_i_l(X, (cﬁ(l) R P)") Hn_i(X, (oc(l) ® P)")

Uv Hn_H_l(X, (oc(l) ® 33)*)
is exact. Ifv # 0 is tangent tar", then the maps in the above sequence vanish.

The statements (a, b and c) are well-known. For (a), the reader may refer to [B]
and [S], for (b), to [D]; (c) is analogous to Lemma 1.8 [EL]; the second part of
(d) is [EV] Lemma 12.6c). As for the first assertion in (d), one may proceed as in
[GL2]. The main point is to represent the cohomology groHpsX, (LY ® P)*)
in terms of harmonid.® forms with coefficients in an appropriate unitary local
constant system cf. [EV] and [EV2] Appendix D.

2. Proofs

Proof of Theoreml. Let D be a divisor in the linear serigs:®|. Consider its
decomposition into irreducible reduced componénts: ) d; D;. We may assume
that 1< d; < m — 1. Now consider a log resolutiofi: X — A of the pair(A, D).
Define the sheaf

LD = 0y (f*(®) — L%f*DJ)

and observe that (cf. [E])
Dy __ * 1 * _ 1
fulox @ L) = fiu | wx/a ® f1(O) — ;f D|)=4 ;D ® 04(0),

R fwxy @ LY)y=0, Vi>0.
We must show that the multiplier ideal:= £((1/m) D) is trivial. As before, let
Vi = (P € PiICX)|h(wx @ LP @ P) £ 0}

- {J’ e Pid(A)|h’ ((9A(®) R4 (%D) ® J)) - o} ,

and consides§ an irreducible component &, of dimensionk.
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By Theorem 1.1(a), we have th&is (a translate of) a subtorous of Ri&), so
we may consider the dual Abelian variety:= S$* and the dual map

m:A— C.
The componentS is not empty, as otherwise, we would have (Theorem 1.1(c))

H(X,0x @ LD ® £) = 0 for all # € Pic°(X) and all integers 0< i < n.
Therefore, by a result of Mukai [Mlyy ® L ® # = 0 and this is a contradiction.

PROPOSITION 2.1.Let F be any component of the divisér such thatr (F) =
C.Then

F C Bs
m

1
osrsi( )

for general® < S.
Proof.Let B := f*D = Y_ b; B;, then the divisoB®Y = > Bi contains the
proper transforms of all the componentsi®f Now consider

HOX, Y (BY) @ L @ 2(—BY)) = H' X, ox @ LY @ 2) (1)
X

wherew € H°(X, Q1) is a global holomorphic 1-form. By [T], this is the conjug-
ate of the last map in the complex in Theorem 1.1(d). The conjugatew €
H(X, 9x) may be identified with a vector in the tangent spaggPic’(X)).
Recallthatifv € T» S, then(1) is onto. In order to recover the required information
from (1), we must make the appropriate choice of the holomorphic 1-ferifo
this end, consider any componeftof D such thatr(F) = C. Let E be the
proper transform of under the magf: X — A. E is a component oB®. Let

p a general smooth point of the divisér, and choose local parametess. . ., z,
on an appropriate open sgt such thatt is defined o/ by the equatiorz; = 0.
Choosew € H°(X, Q%) such thatw(p) = dz;. By choosingp € E generically,
we may assume thai is not tangent ta§, and so(1) is onto. Lets be a section
of HO(X, Qv HBY) @ £L® @ £ (—BWM)). Then restricting to the open st we
may writes = Y n;z1a;, where

for2 <i <n,andg; € (U, L ® £). Therefore,
(s Nw)p) = (@z1dza A -+ ANdzy) ) =0,

S0p € Bslwy ® L ® £|. Moreover,p is a general point of, SOE € Bs|wy ®
LY ® £|. Since

HX, wx @ LY ® P) = H(A, 0,(0) @ P ® 1),
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andE is the proper transform af, it follows that

F C Bs

1
®®?®1(—D)‘ O

m

COROLLARY 2.2. The divisor

®—ZD,-

w(D;)=C
is algebraically equivalent to an effective divisor, and hence is nef.

Now consider the divisoH := D — ZN(D,,):C d; D;. Using the corollary, we
may rewrite the diviso/ as a sum of an ample divisor, a nef divisor and effective
divisor

H=0+m-1 06— Z D; | + Z (m —1—d;)D;.
7(D;)=C 7w (D;)=C

On an PPAV, any effective divisor is nef, and the sum of an ample divisor with a
nef divisor is always ample. Therefore the divigdris ample.

The theorem follows, since & is ample and contained in the pullback of a
divisor onC, the mapr must be an isomorphism, and herte- Pico(A). So

H° <A, 0,0 P RJ <%D)> £ 0

for all # € Pic°(A). This means that all translates 6f must vanish along the
cosupport oft, but theng = Q4. a

Proof of Corollary 2. In order to prove Corollary 2, we will need the following
lemmas.

LEMMA 2.2. The components of the divisdr € |m®| have multiplicity at most
equal tom.

Proof. Suppose that there exists a componEmf D of multiplicity f > m,
and letD = fF + ) d;D; be a decomposition oD into distinct irreducible
components. We have the following numerical equivalenc@-divisors

1
® — F =g —(D —mF).
m

Sincef > m + 1, it follows (after an easy calculation) that

fom_ 1 f

m /m—i-l;'
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Consequently

©—F).C = %(D—mF).C:%((f—m)F—i—Zd,»Di) e

1/ f d; 1
> — | ——F —D;|.C=|——)06.C
m(m—i—l +Zm+l ) (m—i—l)
for any curveC and, hence(® — F) is ample. By Riemann—Roch®(® — F) > 0,

soh%(® — F) = h%(®) = 1. This means that® — F)" = (©)". On an Abelian
variety this is a contradiction unless the compongrg empty. O

Now we may assume that the divisbrdecomposes as follows

)
D= Zd,»Di +mA,
i=1

where 1< d; <m —1,andA =}, _ D is the reduced Cartier divisor whose
components are the componentsodf multiplicity exactlym.

LEMMA 2.3. There exisPPAVs(Ag, ®g) and (A’, ®'), and projectiongpg: A —
Ao, p'A — A’ such that the maggpy x p'):A — Ay x A’ is an isomorph-
ism of PPAVs.MoreoverA = piAo, D; = p'* D!, whereAy = ©g and D' =
S0 ,d;D] =m®.

Proof. We will use the notation and the results of [LB] Chapters 3.3 and 4.3.
The divisorm(® — A) is linearly equivalent to the effective divisdr d; D;, hence
O,(m(® — A)) and@4(© — A) are positive semidefinite line bundles. Therefore,
there exists a topologically trivial line bundle € Pic®(A) such thati®(©,(© —

A) ® P) # 0. Definepg: A — Ag:= A/K(A)pandp:A — A" .= A/K(O —
A+ P)o. By [LB] 3.3.2, there exist positive definite line bundlég on A" and Mg
on Ag such that

Oa(A) = pgMo and HO(A, O,(A)) = pj(H (Ao, Mo)),
OxO©@—AN)®P=p"M

and
H%(A,04(® — A) ® P) = p""(H°(A', M")),

for some P € Pid°(A). By the decomposition theorem [LB] 4.3.1, the map
(po, p)): A — Ag x A’ is an isomorphism of the PPAVst, ® ® P) and(Ag x

A, po* Mo ® p"*M"). Finally, sinceK(® —A)g = K(®—-A)® P)g = K(m (O —
A))o, it follows that

HO(A, 04(m(® — A))) = p""(H(A', mM')),
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SOA = pjAgand) d;D; = p”*D'. )

Suppose that there exisfsan irreducible component &, (D) of codimen-
sionk. Then there exist positive integetgandk’ such thaink = kg + k£’ and

8
S C Eko(mAO) X X (Z dle/) .

i=1

From the second of the two theorems due to Ein and Lazarsfeld, we know that
. . ko
codimy, =y, (mAg) = codlonE[@](Ao) > —.
m m

Also, by Theorem 1, we know thati#f > 0, then
$ k/
codimy Xy D/ | >|— 1.
mez (3a01) » |5 |+

Therefore,

§
k =codimyS > codimy, Xy, (mAg) + codimy Xy (Z d; DT>

k K
> ’72—‘+L—J+l=k+l.
m m

This implies thatc’ = 0, mk = ko and codim X, (Ag) = k. The corollary now
follows directly from the first of the two theorems due to Ein and Lazarsfeld
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