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A GENERALIZATION OF THOM CLASSES AND 
CHARACTERISTIC CLASSES TO 

NONSPHERICAL FIBRATIONS 

R E I N H A R D SCHULTZ 

Let X be a polyhedron, and let Fx denote the contravariant functor consist­
ing of fiber homotopy types of Hurewicz fibrations over a given base whose 
fibers are homotopy equivalent to X. A fundamental theorem on fiber spaces 
states that Fx is a representable homotopy functor and a universal space for 
Fx is the classifying space for the topological monoid of self-equivalences of X 
[2; 5]. Frequently, algebraic topological information about the associated 
universal fibration yields information about arbitrary fibrations with fiber 
(homotopy equivalent to) X. However, present knowledge of the algebraic 
topological properties of the universal base space is extremely limited except 
in some special cases. Consequently, no systematic method of studying the 
properties of these universal fibrations exists. 

Perhaps the simplest algebraic topological problem involving the universal 
fibration is the determination of the image of the cohomology of the universal 
total space in H* (X) ; of course, this image is contained in the image of an 
arbitrary total space by naturality. A variant of the above problem is the 
determination of the image of the cohomology of the total space of a universal 
orientable fibration induced on a suitable covering of the universal base space. 
We shall showr that the algebraic structure of H*(X) yields some information 
on this problem. As illustrations of this principle, we shall give examples of 
noncontractible 1-connected finite complexes for which the restriction maps 
are onto; it follows that every fibration whose fibers are (homotopically) these 
complexes have a fiber which is totally nonhomologous to zero and a collapsing 
Serre spectral sequence (see Proposition 6). We shall also give examples of 
closed 1-connected manifolds for which the restriction maps of the induced 
orientable fibrations are onto (see Proposition 5). 

Classes in the image of restriction to H* (X) arise from suitable characteristic 
classes defined for oriented sectioned X-fibrations. One motivation for this is 
the existence of a canonical cross section on the pullback of the universal 
X-fibration p : E —> B to E; explicitly, this cross section sends e £ E to 
(e, e) G {(u, v) G E X E\p(u) = p(v)}. Since the restriction of this fibration 
to a fiber X C E is the trivial fibration in : X X X —-» X and the canonical 
cross section pulls back to the diagonal map, computations of the classes for 

Received August 22, 1972 and in revised form, October 31, 1972. This research was partially 
supported by NSF Grant GP-19530. 

138 

https://doi.org/10.4153/CJM-1974-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-015-4


NONSPHERICAL FIBRATIONS 139 

this example are often quite simple. It follows that these easily computed 
classes must extend to H*(E'), where E' is the total space of any oriented 
X-fibration (compare Proposition 0). In the examples mentioned above, these 
classes generate H*(X). 

We shall conclude this paper by discussing some applications of these 
characteristic classes along the lines of [3, § 8]. 

I wish to thank D. Gottlieb for discussing certain aspects of his results in 
[3] and related papers with me. 

1. Generalized Thorn classes. In this section all cohomology groups are 
assumed to have coefficients in a fixed commutative ring with unit. 

Let 

X-^E-^B 

be the universal Hurewicz fibration and let w C iri(B) be the ineffective 
kernel of the natural action on H*(X). If q : B' —> B is the regular covering 
associated to w, then q is the smallest covering map for which the induced 
fibration over B' is H*-orientable; furthermore, fundamental theorems on 
covering spaces imply that the classifying map of any i7*-orientable X-fibra-
tion factors through g. We define an orientation of an X-fibration to be a 
lifting of the classifying map to B'. Let Er be the total space of the induced 
fibration over B', and let p' : E' —-> B' be the projection. Let q' : Er —> E be 
the canonical map. 

Following standard terminology, we define a sectioned fibration to be a 
fibration together with a specified cross section. We define oriented sectioned 
X-fibrations and oriented sectioned fiber homotopy equivalences of such 
objects in the obvious manner. 

There is a canonical oriented sectioned X-fibration £' over E' which is 
induced by the composite qp' = pqr. Its orientation is p' and its cross section 
is induced from the canonical cross section of E via q'. This example has an 
important naturality property. 

PROPOSITION 0. Let K be a CW complex and lei £ be an oriented sectioned 
X-fibration. Then there is a well-defined homotopy class w% Ç [K, E'] such that 
if [/] = wb then there is an oriented sectioned fiber homotopy equivalence from 
Ztof*£. 

Proof. Let g : K —* B' be an orientation, and let h : K —> E be a lifting of 
qg induced by the cross section. Then there is a factorization of 

(g, h):K-+Bf XE 

through E'', and we call this factorization / . By construction, there is an 
oriented sectioned fiber homotopy equivalence from £ to / *£r ; it remains to 
show that / is well-defined up to homotopy. But this is a straightforward 
consequence of the covering homotopy property applied to the fibrations 
p and q. 
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The following is a simple consequence of the Serre spectral sequence: 

PROPOSITION 1. Let X be q-connected (where q ^ 1), and let p0 : E0—> B0 be 
an orientable sectioned X-fibration with cross section a. Then the restriction map 
from Hq+1(E0, a(B0)) to Hq+1(X) is bijective. 

If X is a sphere, the inverse image of the generator of H9+1(X) = Z is the 
ordinary Thorn class with respect to a suitable orientation. 

Definition. Let X be as above, and let u Ç H*(X). A system of generalized 
Thorn classes associated to u is a map assigning to each oriented sectioned 
X-fibration £ = (E0-^B0) a class U(u,£) £ HT(E0j a(B0)) satisfying the 
following conditions: 

(i) If j : X —» (£o, <r(Bo)) is a fiber inclusion, then j*U(u, £) = w. 
(ii) If / : -Bi —> Bo is a continuous map, then U(u,f*£) = f*U(u,£). 

COROLLARY 2. Let X be q-connected where q > 1 and Ze£ u £ Hq+1(X). Then 
a unique system of generalized Thorn classes associated to u exists. 

Proof. Use Proposition 1 to define the class U in the universal case, and 
define them in all other cases using rule (ii). By Proposition 1 the class U(u, £) 
is the unique class that restricts to u 6 Hq+l(X). 

2. The characteristic classes of a relation. In this section we shall 
restrict our attention to a ç-connected space X whose cohomology over some 
fixed commutative ring with unit is a free graded module; all cohomology 
groups in this section are assumed to have coefficients in this ring. 

Let ui, . . . ,ur G Hq+1(X), and assume that v G H*(X) is expressible as a 
polynomial in these elements; explicitly, write v = f(u\, . . . , uT). If 
U(ui, £), . . . , U(ur, £) are the systems of generalized Thorn classes associated 
to Wi ur, then the expression 

U(pfi) =f(U(u1,H),...,U(ur,l;)) 

defines a system of generalized Thorn classes associated to v. 
Suppose that v = 0; in other words, f(ui, . . . , ur) = 0 is a non trivial 

polynomial relation satisfied by the elements of HQ+1(X). Although U(v, £) 
defines a system of generalized Thorn classes associated to zero in this case, it 
need not be zero. For example, if q is odd, X = SQ+1, r = 1, and u Ç Hq+l (Sq+l), 
then u2 = 0 is a nontrivial relation which holds in H*(Sq+1) but U(u,£)2 

vanishes if and only if the Euler class of £ does. We shall construct similar 
characteristic classes for other spaces; the vanishing of these classes is a 
necessary condition for the vanishing of U(y, £). 

THEOREM 3. Let uu...,uTe H*(X), let 0 = f(uu ...,uT) £ Hk(X) be a 
polynomial relation satisfied by the uu and let U(uu £) be a system of generalized 
Thorn classes associated to ut. Assume that Hl(X) = 0 for k > i > k — m 
and a free basis for Hk~m(X) may be constructed using polynomials in the classes 
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Ui (say gi, . . . , gs). Then there exists a unique family of classes s*(£) £ Hm(B0) 
(1 ^ i ^ s) such that: 

(*') /(£/(«i, I), • • • U(un £)) = D />**,({) • «,(£/(«!, f) . . . , U(ut, {)) 

modulo terms of filtration m -\- 1 in the Serre spectral sequence (p : E0 —» J50 w 
/Ae projection). 

(ii) If h : Bi—^ Bo is continuous, then Zi(h*£) = h*zt(i;). 

We call the classes £*(£) the characteristic classes of £ associated to the general­
ized Thorn classes U(uu £), the relation f(uu . . . , wr) = 0, and the 6*ms 

Proof. The hypothesis on Hk~m(X) implies t ha t £2
0 '*~w = EJ-*-m in the 

Serre spectral sequence for J, and the existence of a cross section implies t ha t 
£ V ' ° = E^1'0 for all /. T h u s the multiplicative properties of the Serre spectral 
sequence imply tha t E2

t,k~m = EJ^k~m\ since Hk~m(X) is free, the E2 term is a 
tensor product , and it follows tha t EJ'k~m ^ EJ'k~m ®Hl(B) under the 
map induced by the cup product pairing on Eœ. By hypothesis Eœ°'k-m is 
freely generated by the images of the classes gi(U(ui, J) , . . . , U(urj £)). 

Since f(uly . . . , wr) = 0, the restrictions of V = f(U(uu £ ) , . . . , U(ur, £)) 
to H*(X) is also zero by natura l i ty ; thus V has positive Serre filtration in 
Hk(E0, a (Bo)). The hypothesis t ha t the last nonzero cohomology of X before 
dimension k occurs in dimension k — m implies t ha t V has filtration a t least m 
and hence determines a unique element in Eœ

m'k~m. Pa r t (i) of the theorem 
follows from the tensor product representation of Eœ

m'k-m given above. P a r t (ii) 
follows from elementary natura l i ty considerations. 

The Euler class arises as a special case of the above theorem for which 
u G HQ(SQ) is a generator a n d / ( w ) = u2. Grothendieck and others have used 
a construction similar to Theorem 3 to define the Chern classes of a complex 
vector bundle (see [1, pp. 42-47]) . 

3. E x a m p l e s a n d app l i ca t ions . Obviously, the usefulness of Theorem 3 
for constructing characteristic classes depends strongly upon knowledge of 
the ring structure of H*(X) and the existence of very few (if any) cohomology 
generators in dimensions greater than q. We shall only consider examples in 
which H*(X) is generated by HQ(X) where X is (q — l)-connected; the class 
of all such spaces contains all products SQ X . . . X SQ and (if q = 2, 4, 8) 
appropriate projective spaces. 

Assume tha t X is (q — l)-connected and u G HQ(X); we wish to compute 
U(u, J) for £ the trivial bundle wi : X X X —•> X with the diagonal cross section. 
Denote the diagonal of X in X X X by Ax; the restriction map H*(X X X) 
to H*(AX) has a one-sided inverse given by w —•> w X 1, and hence 

Hk(XXX,Ax) 
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consists of all expressions in 

H\X X I ) ^ E H\X) ®Hk-\X) 

whose cup products add up to zero. Since i2*U(u, £) = u and Hg(X X X) ^ 
HQ(X) (x) Z © Z (x) i P ( X ) it follows t h a t Z7(«, J) = 1 X u + v X 1 for some 
v G Hq(X); since the cup products add up to zero, v = — w must hold. T h u s 
we have the following: 

Formula 4. If X is (q — l ) -connected, u £ HQ(X), and J is the above 
sectioned fibration, then U(u, £) = 1 X w — u X 1. 

This formula and Theorem 3 are useful for producing examples of nonzero 
characterist ic classes. 

Example 1. Let X = Sq X . . . X S9 (r factors) and let uu . . . , ur be co-
spherical generators of HQ(X); assume q is even. Then ut

2 = 0 for all i and 
hence there exist characteristic classes z^ £ H2(B0) associated to ut

2 = 0 
and the {ut} basis of HQ(S9 X . . . X SQ). If £ is the above sectioned bundle 
over X, a routine computat ion shows t ha t zi

j = 0 if i 7e j and zi
i = — 2ut. 

Example 2. Let A be the complex numbers , quaternions, or Cayley numbers , 
and let X = APn be ^4-projective w-space (n ^ 2 for the Cayley numbers ) . 
Le t s; G Ha(APn) be a generator (a = dim ^4). Then there is a characterist ic 
class z G Ha(B0) associated to the relation vn+1 = 0 and the basis \vn) of 
Han(APn). Another routine computa t ion shows t h a t z(£) = (n + l)v in this 
case. 

Example 3. Let X be the connected sum CPn # S2 X . . . X S2 (n factors). 
Then H*(X) is isomorphic to H* (CPn) © H* (S2 X . . . X S2) modulo the 
relation vn = U\ . . ,un. In this case one can perform both of the above con­
structions independently and obtain characteristic classes whose values for £ 
are (n + l)v and —2tii, . . . , —2un. On the other hand, one can consider the 
relations utv = 0 and take characterist ic classes corresponding to the basis of 
H2(X) given by w* and v; in this case one obtains characteristic classes whose 
values for £ are dzut and ±v. I t follows t ha t ^ e r y element in H*(X) is a ^>o/^-
nomial in characteristic classes for £. 

W e previously noted t ha t £ is the restriction to X of a sectioned fibration 
over E', the total space of the universal orientable fibration; let p' : E' —> 2?' 
be the projection. Then we have the following application of the above 
algebraic manipulat ions: 

P R O P O S I T I O N 5. Let p0 : E0 —> B0 be an orientable Hurewicz fibration with 
fiber S2 X . . . X S2 # CPn. Then the integral cohomology Serre spectral sequence 
for po collapses. 

Proof. By the above discussion, the restriction map 

H*(E') -^H*(S2 X . . . X S2 # CPn) 
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is surjective in the universal case. Since H*(S2 X . . . X S2 # CPn) is a free 
graded abelian group, the result follows in the universal case by s tandard 
considerations. If p0 : E0 —> B0 is an arbi t rary oriented fibration with fiber 
S2 X . . . X S2 # CPn, the inclusion of F in E' factors through the inclusion 
of F in JE0 by the universality of p', and this factorization yields the result for 
arb i t rary fibrations. 

If we modify the above example slightly, we can obtain finite complexes X 
for which H*(E) —>H*(X) is always onto (orientability being automat ic ) . 

P R O P O S I T I O N 6. There exist infinitely many homotopy inequivalent finite 
complexes X satisfying the following conditions: 

(i) X is 3-connected and non-contractible. 
(ii) The integral cohomology Serre spectral sequence for every X-fibration 

collapses. 

Proof. Let v 6 7r7(.S
4) be the Hopf map, let n è 0 be a positive integer, and 

let C(kv) denote the mapping cone of kv. Construct a ' 'connected sum" of 
C(v) and C((24?z + 2)v) by imitating the construction for manifolds on the 
top-dimensional cells. This yields 3-connected cell complexes Xn with 
HQ(Xn) = 0 unless n = 4, 8 while HA(Xn) has two infinite cyclic generators 
x, y and Hs(Xn) has one generator z. These generators satisfy the multiplica­
tive relations xy = 0, x2 = z, y2 = (24w + 2)z. An elementary cup product 
a rgument shows tha t Xm and Xn are homotopy equivalent if and only if 
m = n. 

As in the proof of Proposition 5, the relation xy = 0 yields characteristic 
classes whose values for the diagonally sectioned trivial fibration are ± x and 
zty. Since x2 = z, (ii) is valid for i7*-orientable fibrations. 

I t suffices to show tha t every Xw-fibration is iT*-orientable; equivalently, it 
sufiices to show tha t every homotopy self-equivalence of Xn induces the 
identi ty in cohomology. An elementary cup product argument like the previous 
one showrs t ha t if / : Xn —> Xn is a homotopy self-equivalence, t h e n / * x = ± x 
and f*y = ±y. Since we can assume / is cellular, it follows tha t / induces 
homotopy self-equivalences of Xn mod either basic 4-cell collapsed to a point. 
Bu t the complexes obtained this way areC (v) and C((24w + 2)v), and every 
homotopy self-equivalence of these induces the identi ty in cohomology (this 
follows from cup product considerations and the fact t ha t the suspensions of v 
and (24w + 2)v in 7r8(55) are not 2-torsion). Hence a simple diagram chase 
shows t h a t / also induces the identi ty in cohomology. 

Let M be a closed orientable topological n-manifold, and let E —> B be an 
orientable fiber bundle with fiber M. A result of Gottl ieb states t h a t 
x(M)n G Hn(M) is in the image of Hn(E), where M is an orientation class and 
x(M) denotes the Euler characteristic [3, § 8]. If xC&O ^ 0, it is na tura l to 
ask whether |xC&0| is the lowest positive multiple of /z in the image of Hn(E). 
I t is not difficult to find examples of manifolds for which |x(Af)| is the lowest 
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positive multiple of /* in the image of Hn(E)\ any simply connected closed 
manifold with Euler characteristic ± 1 will suffice. On the other hand, evalua­
tion map considerations show that n + 1 = x(CPn) is the smallest positive 
multiple which works for CPn (compare [4, Theorem 16]). Thus one might 
conjecture that the answer to the question is yes for all M. However, this is 
not the case for M = S2 X . . . X S2 # CPn, since the Euler characteristic of 
this manifold is 2n + n — 1 while the restriction map H2n(E) —>H2n(M) is 
surjective by Proposition 5. 

Added in proof. Infinitely many inequivalent Xn fibrations over Ss are 
distinguishable by the sectioning obstruction in in(Xn). Certain smoothable 
closed-up plumbing manifolds also satisfy the conclusion of Proposition 6. 
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