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AN APPLICATION OF HOMOGENIZATION THEORY 
TO HARMONIC ANALYSIS: 

HARNACK INEQUALITIES AND RIESZ TRANSFORMS 
ON LIE GROUPS OF POLYNOMIAL GROWTH 

G. ALEXOPOULOS 

ABSTRACT. We prove a homogenization formula for a sub-Laplacian L = —(Èj + 
• • • + ££) ( E\,..., Ep are left invariant Hôrmander vector fields) on a connected Lie 
group G of polynomial growth. Then using a rescaling argument inspired from M. Avel-
lanedaand F. H. Lin [2], we prove Harnack inequalities for the positive solutions of the 
equation (d/dt + L)u = 0. Using these inequalities and further exploiting the alge­
braic structure of G we prove that the Riesz transforms EjLT 5, ZT 2" Eh 1 < / < p, are 
bounded on Lq, 1 < q < +00 and from D to weak-L1. 

RÉSUMÉ. On démontre une formule de homogénéisation pour un sous-Laplacien 
L = —(£"? + • • • + Ep) (E\,...,EP sont des champs de vecteurs de Hôrmander invariants 
à gauche) sur un group de Lie G connexe, à croissance polynômiale du volume. Après, 
en utilisant un argument de rescalarisation inspiré de M. Avellaneda et F. H. Lin [2], on 
démontre des inégalités de Harnack pour les solutions positives de l'équation (d/dt + 
L)u = 0. En utilisant ces inégalités et en exploitant la structure algébrique de G, on 
démontre que les transformés de Riesz £/L~?, L~^Eh 1 < i < p sont bornés sur Lq, 
1 < q < +00 et de Ù dans L1 -faible. 

0. Introduction. Let G be a connected Lie group of polynomial growth, i.e. if dg 
is a left invariant Haar measure and V a compact neighborhood of the identity element e 
of G , then there are constants c, d > 0 such that dg-measureiV") < cnd, n £ N. Notice 
that the connected nilpotent Lie groups are of polynomial growth. 

Let us also identify the elements of the Lie algebra g of G with the left invariant vector 
fields on G and consider E\,...,EP G g that satisfy Hôrmander's condition i.e. together 
with their successive Lie brackets \Eil, [E(2,..., £/J • • •], they generate g. To these vector 
fields it is associated, in a canonical way, a left invariant distance J^(.,. ) on G, called 
control distance. This distanse has the property that (cf. [24]) if SE(X, t) = {y G G, 
dE(x,y) < t}, x G G, t > 0, then there is c e N such that 

(0. 1) SE(e,ri) Ç Vc\ Vn Ç SE(e,cn), n G N. 

Moreover the operators L = — (E\ + • • • + E2
p) and d/dt + L, according to a classical 

theorem of L. Hôrmander [15], are hypoelliptic. 
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692 G. ALEXOPOULOS 

The purpose of this paper is to explain how ideas inspired from Homogenization the­
ory can be used to answer questions concerning the Harmonic analysis on G. More pre­
cisely, we prove a homogenization formula for the operator L. This formula is similar 
to the one already known for second order uniformly elliptic differential operators with 
periodic coefficients on Rn. The novelty here is that we deal with hypoelliptic operators 
whose coefficients are functions defined on a compact Lie group and not periodic and 
that the homogenised operator L# is a left invariant sub-Laplacian (i.e. like L, it is a sum 
of squares of left invariant vector fields that satisfy Hormander's condition ), defined on 
a homogeneous nilpotent Lie group NH and invariant with respect to its dilation struc­
ture. NH is uniquely determined from the algebraic structure of G. Then using a rescaling 
argument inspired from M. Avellaneda and F. H. Lin [2] and [3] and further exploiting 
the algebraic structure of G, we obtain the following results. 

THEOREM 1. Let G,E\,... ,EP and L be as above. Then for every integer k > 0, 
1 < i < P and 0 < a < b < 1 there exists c > 0 such that 

dk I _ _ i 

zr-rEiU(at,x)\ < crk~~^u(bt,x), t>l,x€G 
or I 

for allu>0 such that (d/dt + L)u = 0 in (0, t) X SE(x, y/i). 

THEOREM 2. Let G,E\,...,Ep and L be as above. Then the Riesz transforms E[L~ 2, 
LT^Ei, 1 < i <p (cf. [21]), are bounded on Lq, 1 < q < 00 and from l) to weak-L{. 

Theorem 2 has been proved, in the case where G is a stratified nilpotent Lie group 
and L is invariant with respect to its dilation structure by M. Christ and D. Geller [8] and 
for general nilpotent Lie groups by N. Lohoué and N. Th. Varopoulos [18]. 

When G is nilpotent then Theorem 1 is a particular case of a more general result of 
N. Th. Varopoulos [24], namely for all integ ers k, I ^ 0 there is Q- 1 ̂ 0 such that 

(0.2) k r ^ ' i ' -EiMat,x)\ < ckit~
k *u(bt,x), t>l,xeG 

\or I 

for all u > 0 such that (d/dt + L)u = 0, in (0, t) x SE(x, y/1). 
These inequalities are also true for 0 < t < 1 (cf. N. Th. Varopoulos [23]), but this is 

a result of the local theory of operators of the type sum of squares of vector fields that 
satisfy Hormander's condition. 

The motivating example is the universal covering of the group of Euclidean motions 
on the plane, which is a three dimensional solvable Lie group of polynomial growth. As 
we shall see in Section 1, every operator L as above, on this group, can be expressed 
as a second order differential operator on R3 with periodic coefficients. We shall give in 
Section 1, a specific example of a sub-Laplacian L = — (É\ + E\ + E\), for which there 
are families of functions ut,vt,t> 1 and c > 0 such that 

(0.3) ut > 0, Lut = 0 in SE(eJ\ \É\ut(e)\ > -ut(e\ ut(e) > c, t > 1 
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HARNACK INEQUALITIES 693 

(0.4) vt G Cg°(G), \\E\vt\\2 > t\\Lvt\\2, t > 1. 

Clearly, (0.3) shows that the inequalities (0.2) are not true, for I > 2, for general 
non-nilpotent Lie groups of polynomial growth and (0.4) that the higher order Riesz 
transforms, ÉjL~l, L~lE2, 1 <i <p, in general, are not bounded, even on L2. 

In Section 1 we shall discuss the universal covering of the group of the Euclidean 
motions on the plane and we shall show how (0.3), (0.4) and Theorems 1 and 2 can be 
proved in this particular case. In the subsequent sections we shall show how these results 
can be proved in the general case. 

To simplify the notation, we shall use the summation convention for repeated indices 
throughout this paper. 

ACKNOWLEDGEMENTS. I wish to thank my advisor N. Th. Varopoulos for introduc­
ing me to these problems and for his constant help and encouragement and M. Avellaneda 
for several helpful discussions. 

1. The motivating example. Let Q be a simply connected Lie group of dimension 
three and assume that there is a basis {X\, X2, X3} of its Lie algebra q (the elements of q 
are identified with the left invariant vector fields on Q) such that 

[XUX2] = X3, [XUX3] = -X2 , [X2,X3] = a 

Identifying the analytic subgroups of Q whose Lie algebra is generated by {X2,X3} and 
{X\} with R2 and R respectively, we can see that Q is isomorphic to the semidirect prod­
uct R2 x r R where the action r of R on R2 is given by r: R —» L(R2): x —> rot*, rot* being 
the counterclockwise rotation by angle x and L(R2) the space of linear tranformations of 
R2. 

Q is isomorphic to the universal covering of the group of Euclidean motions on the 
plane. It is a (non-nilpotent) solvable Lie group of polynomial growth. 

Let 
Ei = Xu E2 = Xi +X2, E3 = X3 andL = -{E\ +E\ +E2

3). 

We are going to show how Theorems 1 and 2 can be proved in this specific example, 
construct the families of functions ut and vt, t > 1 mentioned in (0.3) and (0.4) and 
explain why it is natural to use Homogenization theory. 

The fundamental remark is that, if we identify Q with IR3, using the exponential co­
ordinates of the second kind, then L becomes a second order differential operator with 
periodic coefficients on IR3. 

By exponential coordinates of the second kind, we understand the diffeomorphism 

<j>: R3 —> <2, (/>: (x3,x2,x\) —•* expjt3X3 expx2X2 cxpx{X\. 

If x — C*3,Jt2,*i) then we have that 

_, 3 _, d d 
(1.1) dcj) X\(x) = —- d(f) X2(x) — cosxî r—- +sinjci-— 

OX\ OX2 OX3 

_, d d 
d(j) X3(x) = — sinxj r̂— + cosxi ^—. 

ox2 ox3 
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Let us now identify Q with R3 (as differential manifolds). Then L becomes a uniformly 
elliptic differential operator, which can be written in divergence form L = 
-^-«( /W^: , with an = 2, a22 = a33 = 1, al2 = a2\ = cosxi, fln = 3̂1 = sin*i 
and a23 = #32 = 0 and the control distance (1E(. , • ) associated to the vector fields E\, E2, 
£3 equivalent to the Euclidean one i.e. 3b>a> 0 such thai a\x—y\ < ds(x,y) < b\x—y\, 
x,y G R3. 

Moreover, if L£ = - ^ / / ( f ) ^ and£e,/(jc) = £,(f), i = 1,2,3,0 < e < 1 and5(0,1) 
is the Euclidean unit ball then proving the inequalities (0.2) is equivalent to proving that 
for all jfc, I G Z, jfc, I > 0 and 0 < a < b < 1 there is c > 0 such that 

(1.2) 
#_ 
3**' 

| —Eg, ; , • ••££,; fW£(fl,0) <o i e (6 ,0 ) , 0 < e < l 

for all u£ > 0 satisfying (3/3f + L£)w£ = 0 in (0,1) x #(0,1), which is a problem of 
Homogenization theory. 

Results from Homogenization theory (cf. [2], [4]). Let L = - ^ y W | : be a uni­
formly elliptic operator in W1 and assume that its coefficients atj(x) are periodic (i.e. 
atj(x + z) — ciij(x),x G Rn,z G Zn) and Holder continuous (/.e. there is a G (0,1) and 
M > 0 such that | |^W| | c«(r < M). 

We denote by \}\j; — 1 , . . . , n the unique solutions of the problem 

L(xj - x7) - 0, y!(x + z) = XJ(*X Je G Rn, z G Zn, J x ;W dx = 0, D = [0, If. 

The functions \j are called correctors. 
We denote by LQ — — ̂ qij^. the homogenised operator whose coefficients qtj are 

the constants defined by 

\dx, D = [0, l]n w=/Dh-^^w 
It can be shown that Lo is an elliptic operator (cf. [4]). 

Let L£ = - | - ^ ( f ) | ; , 0 < e < 1. Let a l so / G 1/^(5(0,1)), £ > 0, g G 
C1'z/(35(0,1)), 0 < v < 1 and denote by u£, 0 < £ < 1, the solutions of the prob­
lem 

(1.3). L e w e = / i n 5(0,1), w£ = g on 3#(0,1), 0 < £ < 1. 

We have the following results. 

THEOREM 1.1 (cf. [4]). Let u£, 0 < e < 1 be as above. Then u£ —» M0, (e —* 0), 
uniformly on the compact subsets ofB(0,1). 

THEOREM 1.2 (c/ M. AVELLANEDA AND F. H. LIN [2]). Let u£, 0 < e < 1 be as 

above. Then there is a constant c > 0 depending only on a, M, n, v, b and independent 
of z such that 

(*-4) ["elco.'MO,!)) - C\[g]c^(dB(0,\))+ 11/11^(5(0,1))) • 
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In our example, we have that 

\\x) = 0, \2(x) = - sinxu X3W = ~z cos*i 

and 

= {0#_ l^_ 5^x 

L£ can also be written as 

„ 32 o xi 32 „ . *, a2 a2 a2 

L£ = —2^-^ — 2 cos — ^— 2 sin 
(1.5) 

dx\ e ^x{dx2 £ dx\dx3 dx\ dx^ 

1 . x\ 3 1 JCI 3 
+ - sin — cos — -—. 

£ £ ÔX2 £ £ OX3 

The Harnack inequalities. For I — 1, (1.2) is a parabolic analogue of (1.4) and it 
can be proved in a similar way (for details, see Section 7). 

Let us now see why (1.2) is not true for I > 2. Let us take/ = 0 and g = X3 + 2 in 
(1.3). Then u$ = X3 + 2 . Hence wo > 0, J-w = 1 and ^-wo = ^-wo = 0. 

Since L£^u£ = ^L£u£ = 0, / = 2,3, it follows from Theorem 1.1 that 

a a 
(1.6) u£ -^ UQ and — we —* — «0» (£ ~~* 0)» / = 2,3 

ox/ ck; 
uniformly on the compact subsets of 5(0,1). 
Moreover, it follows from Theorem 1.2 that there is c > 0 such that 

(1.7) — ^-u£(x) 
OXi OXj 

< c , * G 5(0,1) / = 1,2,3, y = 2,3. 

Now, (1.5),(1.6) and (1.7) imply that 

a2 ... 1 
K £ ( 0 ) ~ T , (e-^0). 

1 àx? e 

It follows that the family of functions ut,t>\ defined by ut(x) — u£(£x), £ = -t satisfy 
(0.3). 

The Riesz transforms. The construction of the family vt,t> 1, mentioned in (0.4) is 
similar to the construction of the family ut,t> 1 above, i.e. we can consider, in (1.3), 
g = 0 and/ = Lo(f, where ip E Cg°(#(0,1)) is such that J-9? ^ 0 and then proceed in 
the same way. 

Let us now see how we can prove that the Riesz transforms £/L~2 and L~*Ei, i = 
1,2,3 are bounded on Lq

9 I < q < +00 and from L1 to weak-L1. 
It follows from the observation 

£ | | £ ,L -^ | | 2 = - £ ( £ ? L - ^ , L - ^ ) = ( L - ^ , L - ^ ) = | | ^ 
1<K3 1<K3 
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1 1 O 

that the tranforms EtL'^, as well as their adjoints L^Et, are bounded on Lz. So it is 
enough to prove that they are bounded from L1 to weak-L1. Then by interpolation we 
can prove that they are bounded on Lq, 1 < q < 2 and by duality on Lq, 2 < q < oo 
(cf [20]). 

Let us use the notation EyK(x, y) to denote the derivative of the kernel K(x, y) with 
respect to the variable y with respect to the vector field Ej. 

Let Kt(x, y) be the kernel of the transform E[L~ 2. 
If pt(x, y) is the heat kernel (i.e. the fundamental solution of the equation (d/dt+L)u = 

0)then 

r i f°° 1 

r-*EÏpt(x,y)dt md tfjKfay) = JQ r*EyEx
iPt(x,y)dt. 

Since the function u(t,y) = E%pt(x,y) satisfies (d/dt+L)u = 0, Theorem 1 can be applied 
to both E*pt(x, y) and EyE*pt(x, y) and using well known Gaussian estimates of the heat 
kernel pt(x,y) (cf. [1]) we can deduce from (1.8) that there is c > 0 such that 

(1.9) \Ki(x,y)\ < 1—^3, and \E]Ki(x,y)\ < 7 — ^ . 
\x — y\ \x~ y\ 

It is well known that once we have the estimates (1.9) then it can be proved that E[L'^ 
is bounded from L1 to weak-L1 {cf. [20]). 

Unfortunately, the estimates (1.9) are not availlable for the kernels K*(x,y) of the 
tranforms L^E[, since in that case we have that 

(1.10) K*(x,y) = jo r-2Eypt{x,y)dt<mdEyK*(x,y) = jQ r^E]Ey
lPt{x,y)dt. 

and, as we have seen, the Harnack inequalities needed to estimate EyEy
tpt{x,y) are not 

true. 

The way to get around this difficulty, is to observe , as it is clear from (1.1), that the 

natural fields to use are the Jj- and not the L„ / = 1,2,3. Indeed, in that case we can take 

advantage of the fact that for / = 2,3, ^ and L commute and obtain the desired estimates 

for ^^Pt(x,y), i — 2,3 J = 1,2,3 applying Theorem 1 twice and then prove that the 

transforms L~ 2 ^ - and L_ 2 J - are bounded from L1 to weak-L1 (their L2 boundedness 

follows from that of the transforms L~ 2 Et, i = 1,2,3, proved above). 

In order to prove that the transform L~ 2 J - , is bounded from L1 to weak-L1, we argue 

as follows. We consider the transform LT*H where the vector field H is defined by 

d f d ?\ d / 3 o\ d d 1 d 1 . d 
H= 5—+ U - X T - + U— X 5— = 3— + -COSX1—+ -sinxi^—. 

djci V dx\ J 0x2 V OJCI / 0x3 ox\ 2 0x2 2 0x3 

Observe that 

a „ i / a2 a2 a2 . a2 

dxi 2 V cm oxi ox{0X2 0x10x3 
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So, as it has already been explained above, we can estimate ^-Hpt(x,y), i = 1,2,3 
applying Theorem 1 twice and prove the estimates (1.8) for the kernel KH(x,y) of the 
transform L~ïH, which in turn implies that L~îH, hence L~î ^-, is bounded from l) to 
weak-L1. 

In the following sections, we shall generalise these ideas in any connected Lie group 
of polynomial growth. 

2. The structure of the Lie algebra. Let g be a Lie algebra and denote by q, n 
and m respectively the radical, the nil-radical and a Levi sub-algebra of q. q and rt are, 
respectively, solvable and nilpotent ideals and m a semisimple subalgebra of q. Moreover 
(cf [22]) 

(2.1) n Ç q, q = q + m, q H m = {0}, [q, q] C n. 

We denote by TT the natural map IT: q —-> q/n and we put k = dim(q/rt). 
We denote by adZ = S(X) + K(X) the Jordan decomposition of the derivation 

adX(F) = [X, Y], X G q. S(X) is the semisimple and K(Y) the nilpotent part. It is well 
known that 

(i) S(X) and K(X) are derivations of q (cf. [22]). 
(ii) There are real polynomials s(x) and k(x) such that 

(2.2) S(X) = s(ad X) and K(X) = k(ad X) 

(cf. [16]). 

(iii) 

(2.3) [S(X),K(X)] = 0. 

Notice that the fact that adX(X) = [X,X] = 0, X G g implies that the constant 
coefficients of the polynomials k(x), hence also of the polynomials s(x), are zero. 

LEMMA 1.1. There are vectors Y\,...,Yk G q s«c/z / t o 
a) [S(Yi),S(Yj)] = 0, [Z, Yt] = 0, 1 < i,j < k, Z G m, 
£) {7r(Fi),..., 7r(y^)} is a basis of q/n. 

PROOF. Let {Z\,..., Zk } any choice of vectors of q such that {TT(Z\ ) , . . . , 7r(Zk)} is a 
basis of q/ n. To prove the lemma it is enough to prove that for every integer 1 < m < k 
we can choose vectors Y\,..., Ym G q such that 

(2.4) [S(Yil S(Yj)] = 0, [Z, yf-] = 0, 1 < i J < m ,Z G m 

{7r(Fi),..., 7r(ym), 7r(Zm+i),..., TT(Z^)} basis of q/n. 

(2.4) will be proved by induction on m. For m = 1 observe that (2.1) together with the fact 
that m is semisimple imply that q has a subspace b which is complementary to n, i.e. such 
thatq = b0nandadZ(b)= {0},ZG m (cf. [16]).ForFi we choose any nonzero element 
of b such that n(Y\) is linearly independent from the vectors 7r(Z2),..., 7r(Z*). Assume 
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now that (2.4) is true for m = j , 1 < j < k. To prove that it is also true for m — j + \ 
assume that the vectors Y\,...,Yj have been chosen and consider the linear space b that 
is generated by n and the vectors Zj+\,..., Zk. It follows from the fact that [q, q] Ç n that 
b is actually an ideal of q. Furthermore n is an invariant subspace of b with respect to the 
Lie algebra of linear tranformations generated by the {adZ,S(Yi),Z G m, 1 < / < j}. 
Hence, b has a subspace b that is complementary to n, i.e. such that b = b 0 n and 
adZib) = {0}, Z G m, S(y,-)(b) = {0}, 1 < / < j . For Yj+] we choose any nonzero 
element of b such that 7r(l}+i ) is linearly independent from the vectors 7r(Z7+2),..., 7T(ZJ0. 

5(F/+I) will commute with the derivations S(Y\),. .,S(Yj) because of (2.2) and the fact 
that S(Yi)Yj+\ — 0, 1 < i <j. This proves (2.4) and the lemma follows. 

PROPOSITION 2.2. There are vectorsX\,...,Xk G q, k = dimq/n, Xu...,Xk G q, 
& = dimq/n, swc/z that 

a) S(Xt)Xj = 0, adZ(Xf) = 0, Z G m, 1 < U < k. 
b) {ir(X\),..., 7r(X )̂} is a basis ofq/n. 

PROOF. Let Y\,..., Yk G q as in the Lemma 2.1 above and denote by 3 be the Lie 
algebra of linear transformations of q generated by adZ, S{Yi), Z G m, 1 < i < k. n is 
invariant with respect to £. Hence, there is a complementary subspace b to n such that 
q = n © 6 and A(b) Ç b, A G ë (cf. [16]). (2.1) and (2.3) imply that adZ(b) = S(Yt)b = 
{0},ZG m, 1 < i<k. 

Let A^i,... ,Nk G n such thatX/ = Yt - Nt G b, / = 1,... ,fc. The vectors Xi, . . . ,X* 
have all the properties required by the proposition: they satisfy b) since they form a 
basis of b. It is also clear that adZ(X/) = 0,Z G m. So it only remains to verify that 
S(Xt)Xj = 0. This will follow from the fact that S(X*) = S(Y(). This assertion is proved as 
follows. First we observe that S(Yi)X( = 0 and that S(Y()Ni = S(Yi)Yi -S(Yi)Xi = O.Next 
we observe that since K(Y() is a derivation we have that [K(Yt), adNt] - ad(^(F/)A^/), 
which combined with the fact that K(Yi)Nt G n implies that the linear transformation 
[K(Yi), ad Nt] is nilpotent. This in turn implies that although the K(Yi) and ad Ni do not 
commute, we can nevertheless find m G Nsuchthat(Ar(F/)+adM) = OJ.e. K(Yi)+adNi 
is a nilpotent transformation. In other words we have proved that S(Yi) and K(Yi) + ad Ni 
are semisimple and nilpotent transformations respectively and that they commute. Since 
ad Xi — S(Yi) + K(Yi) + ad Nu it follows from the uniqueness of the Jordan decomposition 
that S(Yi) is the semisimple part of adX, and the proposition follows. 

In what follows we shall consider and fix, once and for all, vectors X\,... ,Xk G q 
having the properties described in the above proposition. 

The nil-shadow q^ofq. We can easily see that the conditions 

[XhXj]N = [XhXjl [Xh Y]N = K{Xi)Y, [Y,Z]N = [Y,Z], 1 < i J < k, Y,Z G n 

define a unique product [.,. ]M on the linear space q. We can verify directly (writing the 
elements X of q as a sum X — X'+Y with X' a linear combination of the vectors X\,...,Xk 

and Y G n) that [.,.]# satisfies the Jacobi identity. So, qN = (q, [.,. ]N) is a Lie algebra, 
which is also nilpotent. q/v is called the nil-shadow of q. 
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The filtration of q. We put ri = q and r,-+i = [ri, r,-]^, / > 1. Then, since qN is 
nilpotent, we have the following filtration of q : 

q = rj D n D r2 D • • • D rm 2 rm+i = {0}, rm ^ {0}. 

PROPOSITION 2.3. i j r} D n 2 r2. 

2) t/ w AW /d£<?/ 6>/g, / = 1,2,... 
J) 77z£re are subspaces a\,..., am ofq such that 
a) adZ((Xi) Ç a,-, S(Xj)eij Ç a/, Z G m, y' = 1,... >k, i = 1,...,m 
£) r/ = Û/ 0 • • • 0 am ««J 
cj a, = a0/ 0 ai/ 0 û2i, wftere ûo/ = {Y G a,-,S(X;)y = 0,1 < j < fc,adZ(F) = 

0,Z G m}, a0i 0 ai,- = {Y G a;,S(X7)F = 0,1 <y < Jt}, ad Z(aw) Ç aw, Z G m, 
S(Xj)a2i Ç û2i, 1 <y < K ad Z(a2/) Ç a2t, Z G m. 

PROOF. 1) follows from (2.1) and the way [.,. ]# was defined. 2) can be proved by 
induction. It is trivially true for / = 1. So, assume that it is true for / = n. We are going 
to verify that it is also true for / = n + 1. 

Let Ye vu Z G r,-. If X G n, then adX([Y,Z]N) = [X,[Y,Z]N}N G r„+2 Ç 
rw+i. If X G m, Z G n and Y = Xj for some 1 < j < k, then adX([XJ9Z]N) = 
<xdXK(Xj)Z = K(Xj) 3dX(Z) = [X7-, ad X(Z)Lv G r„+i, since adX(X,) = 0 and AT(X;) 
is a polynomial in ad Xj. If X G m, Z = X̂  and F = Xj for some l < j , l < fc, 
then adX[X*,X7-Lv = adX[X£,X7] = 0. If Z G n, F = Xj and X = X£ for some 
1 < 7, l < K then adX£([X7-,ZLv) = ad XeK(Xj)Z = K(Xi)K(Xj)Z + S{Xi)K{Xj)Z = 
K(Xe)K(Xj)Z+K(Xj)S(Xi)Z, since 5(X£)X7 - 0 and X(Xy-) is a polynomial in adX,. Hence 
adX,([X,-,Zk) - [x,, [XhZ\N)N + [Xj,S(X,)Z]N G r„+1. Finally, if X = Xh,Y = Xt and 
Z = Xj for some 1 < h, l,j < k, then adXh([Xe,Xj]N) = [xh, [Xl9Xj]N]N G r„+2 Ç t„+]. 
Since the general case is a linear combination of the cases examined above, we conclude 
that rn+i is also an ideal of g. This proves the inductive step and 2) follows. 

3a) and 3b) follow from the observation that, according to 2), the spaces t i , . . . , xm 

are invariant with respect to the Lie algebra of linear transformations of q generated by 
the tranformations adZ,5(X,-), Z G m, / = 1,... ,k (cf. [16]). Given 3a) and 3b), 3c) 
follows again from the observation that ÙOÎ and cto; 0 Oi/ are invariant with respect to the 
Lie algebra of linear transformations of q generated by the tranformations adZ, S(X/), 
Z G m, / = l,...,fc. 

We put n = dim q, no — 0 and nt = dim(cti 0 • • • 0 a,-), / = 1, . . . , m. Then 

1 < k < n\ < • • • < nm = n. 

The choice of the basis ofq. Assume now that g , hence q is of type R, i.e. that all 
the eigenvalues of the derivations adX, X G g are purely imaginary (i.e. of the type 
ia, a G R). 

PROPOSITION 2.4. Ifq is of type R, then there is a basis {Xj,... ,Xn} ofq such that 
1) X\,...,Xfc are as above andX^+i,..., Xn G n, 
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2) {X„._1+i,...,Xn.} is a basis of'et/, i — 1,...,m 

3) {X„._1+i,... ,Xn0(}, {Xnoi+u . . . ,Xnu}and{Xnu+U . . . ,X„.} arefowisofa0i, au and 
Û2Ï respectively, i = 0 , . . . , m and 

4) the number of the vectors {Xnij.+i,... ,Xn.} is even and they can be combined in 
pairs {Xnii.+i,Xnii.+2},..., {Xj,Xj+\},..., {Xn._i,Xn.} so that for every pair 
{Xj,Xj+\} and every t — 1 , . . . , k there is ai G R such that 

(2.5) eS(X[)Xj = cos atXj + sin atXj+{ 

es(X()Xj+\ = — sina^Xj + cos a{X^\. 

PROOF. For {Xni_x+\,..., Xn0/} and {Xno.+\,..., Xnu} we choose any basis of ÛO/ and 
ai, respectively, so that 1) is satisfied. In order to choose {Xnu+\,... ,Xn.} let us denote 
by Û2Ï,C the complexification of Û2/ and denote by S(Xj)c the extension of S(X7) to a2;,c, 
/ — 1, . . . , k. Since S(Xj)ç is also semisimple, we can decompose Û2/,C as c^b, ©• • -0Û2IA 

where ct2t> = {F G a2;,c>S(Xj)c(F) = ife^F} and ib\,...,/fe^ G i'R are the different 
eigenvalues of S(Xy)c. Since S(X£)cS(A))c = S(X7-)CS(X£)C, € = 1 A:, S(X£)ca2^, Ç 
Û2IA» ^ — 1, . . . , /Î. We can apply the same procedure to a2i,bs relative to any other S(Xz)c. 
This leads to a decomposition 

(2.6) Û2,-,C = fci0---e^ 

of Û2I,C
 m to {S(Xj)cJ = 1, . . . , &}-invariant subspaces, such that the linear tranforma-

tions induced in the t^ by every 5(X7)C are scalar multiplications by some ia, a G IR. 
Moreover the subspaces rj£ can be taken to be one-dimensional. Let us identify a2/,c 
with {Z+iE,Z,E G a2i} and put ? = Z-iE, Re F = Z, Im F = £for Y = Z+iE G Û2I-,C. 

Z,E G a2l- andÂ = {F, F G A} for A Ç a/jC. We observe that if /a, a G R,a ^ 0 is 
an eigenvalue of S(X7-)c then —ia is also an eigenvalue of the same multiplicity and that 
if F is an eigenvector for ia, F ^ 0 then Re F ^ 0, Im F ^ 0, Re F ^ Im F and F is 
an eigenvector for the eigenvalue —ia. Using this observation we can easily see that the 
subspaces b^ can be chosen in such a way, that the decomposition (2.6) can be written as 

Û2i,C = h © K © * * * © &*ï © &iV 

where b£ = {zF£, z G C} for some F£ G a2l-,c, ^ = Z + /£, Z, £ G a2;, Z ^ E, Z, £ ^ 0. 
We take Xnw+i = Re F,-, Xnw+2 = ImFM , . . . ,Xn._i = ReFlV,Xn. - ImF/r. Wecan 

easily see that the basis of q, constructed in this way, satisfies the requirements of the 
proposition. 

CONVENTION. In the rest of this article we shall fix a basis {Xi,.. . , Xn } of q having 
the properties described in the above proposition. 
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3. The exponential coordinates of the second kind. Let G be a connected Lie 
group of polynomial growth and q its Lie algebra. According to a wellknown theorem 
of Y. Guivarc'h [14], q is of type R, i.e. all the eigenvalues of the derivations adX(F) = 
[X, 7], X, Y G q are imaginary. We identify the elements of q with the left invariant vector 
fields on G. We denote by Adz the differential of the inner automorphim g —• zgz~x of 
G. 

Let q,n and m be as in Section 2. Let S(X), K(X), X G q be as in Section 2 and the 
basis {X\,..., Xn } of q as in Proposition 2.3. 

Denote by Q,N and M the analytic subgroups of G having Lie algebras q,n and m 
respectively. Q and N are closed normal analytic subgroups of G, solvable and nilpotent, 
respectively and M a maximal semisimple analytic subgroup of G. The assumption that 
G is of polynomial growth implies that M is compact and therefore closed. Moreover 

(3.1) G = £M, NCQmd Q/N is abelian. 

When G is simply connected then g, N and M are also simply connected and QHM = 
{e}. Hence G is isomorphic to the semidirect product Q xTM, where r: z —-»• Aut(0: z —* 
rz, Aut(0 the set of automorphisms of Q and rz(g) = zgz-1, g £ Q, z £ M. When G is 
not simply connected, then QP\M Ç center (M) and the mapping 

<2x T M-*G = QM, (JC,Z)—>JCZ 

is a covering of G (cf. [22], p. 255, exercise 41). Hence there is acentral discrete subgroup 
T of Q x r M, isomorphic with Ô Pi M, such that G is isomorphic with Q xT M/T. The 
fact that M is compact implies that T is finite. 

PROPOSITION 3.1. Let X and Z be left invariant vector fields on Q xT M, X G q, 
Z G m. 77*<?« 

(3.2) (X + Z)(JC, z) = (Adz(X)(x), Z(z)), JC G 0, z G M. 

PROOF. Let JC G «Q, Z G M, g — (JC, z) and t G IR. Then the proposition follows from 
the observation that 

g exp rZ = (JC, Z) exp rZ = (x, z exp fZ) 

g exp tX = O, z) exp tX = (xz exp rXz-}, z) = (x exp r Ad z(X), z). 

3.1 7/ẑ  simply connected case. Let G be the universal covering of G. Then G is simply 
connected and we denote by Q, N and M the analytic subgroups of G whose Lie algebras 
are q, n and m respectively. 

It is well known (cf [22]) that the map 

<t>:Rn —+Q, <t> : x — (xn,..., JCI ) —> expxnXn • • • txpx\X\ 

is a diffeomorphism, called exponential coordinates of the second kind. 
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We want to give an expression for d(f> l. To this end, we shall need some notations. 
We denote by adX, and K(Xi) the linear transformations of q defined by 

âd(Xi)Xj = 0, for / >j and âd(X;)X; = ad(X,)X7, for / < ; 

K(Xi)Xj = 0, for / >j and K{Xi)Xj = K(Xt)Xh for / <j. 

It follows from (2.2) and the fact that S(X;)X;- = 0, 1 < ij < k that 

(3.3) S(Xi)K(Xj) = k(Xj)S(Xi)9 1 < / J < k. 

lfB(x) = bn(x)-^- + - - '+b\(x)£- is a vector field on !Rn, then we put p r^U) = bt(x). 
We also use the same notation for the left invariant vector fields on g, i.e. if E — cnXn + 
• • • + c\X\, then we put prf E — ct. 

We also put o(i) = j , if Uj-\ < i < rij (no,..., nm are as in Section 2). 

PROPOSITION 3.2. WfrA f/ie above notations we have 

prid^lE(x) = pr^"55*" • • • é^ X l ] (£ ) 

= pr.[ex^(Xn) • • • e*1^*1 V * 5 ™ . . . ^i5^i)](£) 

(3.4) 
A, CTC 1 >H—l-A/_ I cr(/— 1 ) <crC0 — 1 

£Vl(X;_l)- • .^' (XOW™ • • V5(Xl))(£). 

PROOF. Clearly, the third equality in (3.4) is a more explicit version of the second 
one and the second equality follows immediately from the first one using (3.3). So it is 
enough to prove the first equality in (3.4). 

Let g = expx„Xn • • • expxiXi G Q and 7(0 = g exp tE,t>0 an integral curve of E. 
Then to prove the proposition it is enough to prove that 

7(0 = exp(jcn +fprné^-iadX"-' • • •^ , a d X l£+ 0(t2))Xn 

exp(jc2 + rpr2 e
X]adXlE + 0(t2))X2 exp(*i + tpr{ E)X{. 

(3.5) can be proved by induction on n: It is trivially true for n = 1. So assume that it is 
true for n < LTo prove that it is also true for n — I + 1, observe that it follows from the 
Campell-Hausdorff formula that 

expr£ = expr(c£+1X£+1 + • • • + ciXi) 

= exp[(*Q+1 + 0(P-))XM + • • • + (tc2 + 0(f2))X2]expcirXi. 

Hence 
(3.6) 

7(0 

= expx£+1X^+1 • • -expxiXi exp[(tcM + 0(t2))xM + • • • + (tc2 + 0(r2))x2] 

exp — x\X\ expxjXi exp(xi + tc\)X\ 

= exp;c£+1X£+1 • • -expjc2X2 exp^ , adXl \{tcM + 0(t2))xM + • • • + (fc2 + 0(t2))x2] 

exp(xi +rcj)Xi. 
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Observing that the linear subspace of q generated by the vectors X^+1,... ,Xi is in fact 
an ideal of the Lie algebra q we can see that it follows from (3.6) and the inductive 
hypothesis that (3.5) is also true for n = t + 1. This proves the inductive step and the 
proposition follows. 

Let QN be a simply connected nilpotent Lie group that admits as Lie algebra the nil-
shadow q# of q. QM is also called the nil-shadow of Q. 

We identify the elements of q# with the left invariant vector fields on QM and if X G 
q then we denote by ^X the element of q# satisfying #X(0) = X(0). We extend the 
transformations S(X), X G q and Adz, z G M to qN by putting S(X)NY = N(S(X)Y) and 
Adz(NY) = N(Adz(Y)). 

Using again the exponential coordinates of the second kind 

<j)N: Rn —* QN, </>: (xn,... ,*i) —> expxnNXn • • -expxiNX\ 

we can see that QN is diffeomorphic with W1. 
From now on, using the exponential coordinates of the second kind <f> and </>#, we shall 

identify Q and QM as differential manifolds with Rn. 
It follows from (3.2) that if x = (*„,..., Jti) G Rn and E G q then 

(3.7) £(*) = <?kS{Xk) • • • é*sm
NE(x). 

Using the diffeomorphism 

O: r x M-> G = QM, O: (x,z) -+ <t>{x)z 

we identify the groups G and ()# x M as differential manifolds with Rn x M. Also, if 
E = (X, Z) is a vector field o n ^ x M then we write £ = X + Z. 

Putting (3.2) and (3.7) together we have that 

(3.8) (X + Z)(x9z) = ^ ( X * } • • • ^ l5(* ,} AdzGvX)(x,z) + Z(JC,z), 

X G q, Z G m, * = (*„,... ,JCI) GR",zG M. 

3.2 The fundamental group ofG. As we have seen the universal cover G of G is isomor­
phic with the group Q x r M. Q x r M, being a simply connected space is the universal 
covering of the group Q xTM which in turn as we have seen is a finite cover of G (cf. [22], 
p. 255, exercise 41). 

Let V be the fundamental group of G. Then V is isomorphic to a finitely generated 
discrete normal subgroup of G. Let I"i = {g G V : g G Q} and A — {g eV : g e M}. 
Then the group T of the finite covering Q xT M —» G = QM: (JC, z) —* xz, is isomorphic 
with V /T\A. Moreover M is isomorphic with M/A, Q with Q/T\ and g x r M with 
G/Y\A. We shall identify these groups using the corresponding isomorphisms. Observe 
that T{ is isomorphic with Td for some d < n. 

We are going to prove the following: 
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PROPOSITION 3.3. Let r \ T\ and A be as above. Then 
(i) r ' is also a subgroup O/QM X M (recall that G and QN X M have been identified 

as differential manifolds, hence Tf is a subset of Qu x M). 
(ii) The basis {Xn,..., X\} ofq can be chosen in such a way that it has the additional 

property that 

expX,,,..., expX,^ generate F\ for some integers 1 < i\ < • • • < id < n. 

To prove the above proposition we shall need some lemmas. 
We denote by Z(G), Z(Q), Z(M), Z(QN) and Z(QN x M) the centers of the groups G, 

<2, M, QN and QN X M respectively. 

LEMMA 3.4. If g = xz, g G Z(G), x G Q, zeM, then z G Z(M) andxy - yx, y G M. 

PROOF. Since q can be written in a unique way as a product g = xz, x G 2, z G M 
and Vy G M, v^v-1 = jxy_1j^>'-1» a nd J-^y"1 G <2> yzy_1 G M we have that yxy-1 = x, 
vzy-1 = z, Vy G M. Hence the lemma. 

LEMMA 3.5. 7/g = xz, x = expjcnX„ • • expxiXi, g G Z(G), x G Q, z G M r/zen 
^5(x,) . . . ^ s(xo Adz(X) = X,Xeq. 

PROOF. It is enough to prove that ^5(X*} • • -e*^^ Adz(X£) = X£, 1 < I < n. 
We have that Xi G et; for some 1 < i < m (cf. Proposition 2.2). Let Ri+\ be the an­
alytic subgroup of G that has r,+i as its Lie algebra. The fact that r,-+i is an ideal of 
q implies that Ri+\ is a normal subgroup of G. Now the lemma follows from the ob­
servation that if yt — expfX^, t G R, then gytg~l — yexpfF^ where y G Rt+\ and 
Yt = e*"™ • • • e*,5(Xl) Adz(X£) G a,-. 

LEMMA 3.6. 7/"g = expjcnX„ • • -expjciXiz G Z(G), z G M, then for all i such that 
x ^ Owe have S(Xi)Xl = 0, i = 1 ik (i.e. xt = 0, n u < t < nh 1 < j < m, cf. 
Proposition 2.4). 

PROOF. Assume that there is 1 < / < k for which the lemma is not true and put 
j = inf{£:x£ ^ Q,S(Xi)Xt ^ 0}. Then because of the way the basis {Xu... ,X„} of 
q was constructed (cf. Propositions 2.2 and 2.4) there is h such that either h — j — 1 
or h = 7 + 1 and a ^ 0 for which we have e5(X,)X7 = cosaX7 + sinaX^. Let r be 
the linear subspace of q generated by the vectors Xj+\,... ,X„, in the case h = j — 1, 
or by the vectors X7+2,... ,Xn in the case h = j + 1. Then r is an ideal of q. Let R 
the analytic subgroup of G having r as its Lie algebra. Let also b = inf(/, /*). Then 
g = y exp(XjXj +XhXh) cxpxb+\Xb+\ • • • expxiXiz for some y G R. Let zr = exp tX(, t G R. 
Since z ^ 1 ^ = /? and z^lzzt = z, there isyt e R such that z ^ g ^ = yt exp etS(Xi)(xjXj + 
jc/IX/z)expjc^+iX^+i • • -expxjXiz, which contradicts the hypothesis that g G Z(G) since 
there is r G IR such that etS(Xi)(XjXj + J C ^ ) ^ xfXj + x^X/j. The lemma follows. 
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LEMMA 3.7. If g = expxnXn • • • txpxxXxz G Z(G), z G M, fto?/i adZ(X^) = 0 for all 
Xi such thatxi ^ 0 andZ G m (i.e. xi,noj < t < rij, 1 <j < m, cf. Proposition 2.4). 

PROOF. Let y = inf{£ : xt ^ 0 and 3Z G m such that adZ(^) ^ 0}. Then, in 
view of Lemma 5, n0h < j < nh for some 1 < h < m. Let R denote the analytic sub­
group of G having as Lie algebra the ideal of q generated by the vectors Xnh+i,. ..,Xn 

(cf. Propositions 2.2 and 2.4). Then there is y G R such that g = y exp(xnhXnh + • • • + 
xnoh+iXnoh+i)expxnohXnoh • • -expxiXiz.Letz, = exptZj G R. SinceZtRzT1 = R,ztzzJl = 
z, there is yt G /?, v, = ztyzjl such that ztgzjl = yt exp é ^ f o ^ + • • • + xnoh+iXnoh+i) • 
expxnohXnoh • • -expx\X\z. By definition of the a\h, a2h there is t G R such that 
etadz(xnhXnh + • • • +xrto/i+iXno,+i) ^ JT^X^ + • • • + */IOfc+iXWofc+i. Hence the lemma. 

From the above lemmas we have the following: 

COROLLARY 3.8. Let * denote the product with respect to the group QN X M. Then 
y * S — yg> S * y — gy> 8 £ Z(G), y G G. In particular, V is also a subgroup ofQ^ x M. 

Let q0 = {X G q : 5(X/)X = 0,adZ(X) - 0,/ = 1,...£,Z G m}. We can easily 
see that qo is generated by the vectors {Xj : S(Xt)Xj = 0, adZ(Z7) = 0, / = 1, . . . , k, Z G 
m,j — 1 , . . . , n} and that it is a nilpotent subalgebra of q. We denote by Q0 the analytic 
subgroup of Q having qo as its Lie algebra. 

We have the following corollary to Lemmas 3.6 and 3.7. 

COROLLARY 3.9. If g G Z(G), g = xz, x G Q, z G M, f/iéw * G g0. /fewce rfe^ w 
X G qo swc/z ̂ /zarx = expZ (cf. [22]). 

PROOF OF PROPOSITION 3.3. (i) follows from Corollary 3.8. So, we only have to 
prove (ii). To this end, let us consider the filtration 

q = r2 2 rt 2 r2 2 • • • 2 rm 2 rw+i = {0} 

of q constructed in Proposition 2.2. and denote by R\,..., Rm the analytic subgroups of 
G having as Lie algebras r 1,.. . , xm respectively. Let Do be the image of Ti by the map 
Q —* Q/N. Then Do is isomorphic to Zb° for some bo < k. It follows from Corollary 3.9, 
that there are vectors Y\,...,Ybo such that 

a) Yu • • •, Ybo G q0, exp Yu... ,exp Ybo G H and 
b) the images of exp Y\,..., exp Ybo by the map Q—+Q/N generate Do. 

Let Bo the subgroup of T\ generated by exp Y\,..., exp Ybo. Then Bo is isomorphic 
with Zb° (recall that T\ is abelian). Moreover there is a subgroup B0 of T\ such that 

Ti = Bo x B'0, B
fo Ç N, B\ isomorphic with Z*o, b0+b0 = d. 

Let Di be the image of Bf
0 by the map N —> N/R2 . Then Di is isomorphic to Z^1 for some 

b\ < n\ —k. Again, it follows from Corollary 8.9 that there are vectors Ybo+i,..., Ybo+bl G 
q such that 

a) Ybo+i,..., yfto+él G q0 H n, exp Ybo+i,..., exp 1%,̂ ,, ̂ G Ti and 
b) the images of exp Ybo+\,..., exp Ybo+bl by the map N —+ N/R2 generate D\. 
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Let #i the subgroup of B'Q generated by exp Yb0+\,..., exp Yb0+b\ • Then B\ is isomor­
phic with Z^1 and there is a subgroup B[ of B'0 such that 

Bf
0 = B\ x B[, B[ Ç R2, B\ isomorphic with Z \ b\ + b\ = b'0. 

Repeating the same argument we can construct for all / = 2 , . . . , m subgroups Bt, B\ 
of Ti and vectors Yb^+x,..., !%_,+&,• £ Qo such that 

a) B\_x = Bt x B[, B[ Ç Ri+U Tl = £0 x • • • x Bm, d = fr0 + • • • + K, 
b) yjb,._i+i» • • • » Ybi-i+bi € c\o H r,-, exp F^+i,.. . , exp yfco+fcl generate 5/ and 
c) the images of exp Ybt_l+\,..., exp IVi+fc, b y t n e m a P Q ~^ Rt/Ri+\ generate 

the image of B[_x by the same map. 
Now we choose vectors Xix,... ,Xid G qo from the basis {Xi,. ..,Xn} of q so that 

0 < ij < noi for 0 < j < bo, nh_\ < ij < nQh for bh-\ <j<bh and h > 1 and so that 
{Xi, < * < w, / 7̂  //, 1 <j<d, Y\,..., F</} continues to be a basis of q. The new basis 
of q obtained by replacing the vectors X,,,... ,X/d by the vectors Y\,...,Yd respectively 
satisfies (ii). 

3.3 The non-simply connected case. We call nil-shadow Q^ of Q the group QN = QN/^\ 
and we put GM = QN X M/V. It follows from Corollary 3.8 that G and G/v are identical 
as differential manifolds . We fix a basis {X„,... ,Xi} of q as in Proposition 3.3. 

We define 0/ = T(= R/Z), if exp X, G Tx and 0/ = R, if not, i= 1,.. . ,n and we put 
O = On x • • • x Oi. 

As in the simply connected case, we have the diffeomorphisms, which we shall also 
denote by <j>, <J>N : 

(/>: 0 —» Q, (j> : x = (xn,... ,*i) —> expxnXn • • -exp^iXi 

</>#: O —> ()#, <t>N-x= (xn,... ,xi) —• expxniVXn • • • expxi^Xi. 

Using these difeomorphisms , we identify 2 , g# with 0 and Q xT M, QN x M with 
O x M as differential manifolds. The map, which we shall also denote by O 

O: O x M -» G = £M, O: (JC,Z) -> 0(x)z 

becomes a finite covering map for G. Using this map we identify, as differential mani­
folds, the groups G and GN with O x M/T, where T = T' /T\A. 

From what has been proved in Section 3.2 , we have the following 

COROLLARY 3.10. Let g G G. Then, there are x — expjcnXn • • -expxjXi G Q and 
z^M such that g = xz. If we also have g — x'z'forx' = expx^Xn • • • expjCjXi G Q,z' G 
M, then x\ — JC,-, whenever 0/ = IR. 

We denote by g,v the Lie algebra of GN and by [.,. ]# the Lie product in qN. Notice 
that QM — qyv + tn and that [q#, m]jv = 0. We identify the elements of gyv with the left 
invariant vector fields on G#. 

If X G q is a left invariant vector field on G, X G q, then we denote by yyX G q^ the 
left invariant vector field on GM that satisfies #X(0) = X(0). If E = (X, Z) is a vector field 
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on 0 x M, then we write E = X + Z. With these changes in the notations (3.8) remains 
true, i.e. 

(3.9) (X + Z)(x,z) = ***5(**} • • • e*l5TO AdzOvX)fe z) + Z(JC,z), 

X G q, Z G m, x = (*„,...,JCI) G 0,z G M. 

4. The volume growth. Let G be a connected Lie group of polynomial growth, dg 
a left invariant Haar measure on G. 

We shall use the notations of Section 3. As explained in that section we identify Q xTM 
and QN X M with 0 x M as differential manifolds and G and G# with Q xT M/T. 

no,n\,...,nm are as in Section 2 and we put 

a(0 = 0, if 0/ = T, a(i) = y, if 0/ = R and rij-\ < i < rij, i = 1,... ,n 

d= £ (7(i). 
l </<« 

Let E\9...,EP be as in Theorem 1, /.e. left invariant vector fields on G that satisfy 
Hôrmander's condition. The control distance dE(.,.) associated to these vector fields 
is defined as follows (cf. [6], [24]): 

We call an absolutely continuous path 7: [0,1] —> G admissible if and only if 7(0 = 
a\(t)E\ + • • • + ap(t)Ep for almost all / G [0,1] and we put |7(0|2 = a\(t) + • • • + a2

p(t). 
Then we define 

dE(x,y) = inf J A |7 (0 |^ , 7 admissible path such that 7(0) = JC,7(1) = y | . 

We put ^(JC, r) = {yGG: dE(x,y) < t}9 x G G, f > 0. 
We want to describe the shape of the balls SE(e9 t)9 t > 1 and to estimate the dg-

measure(S£(e, /)). To this end we shall need some notations. If g G G, g = xz, z G M, 
* G Q, x = (xn,...,x\ ), then we put 

gt = xtz,xt = (f*n)xn,...,f*
l)xi), t>0. 

D(gy t) = {heG:h = yw,weM,yeQ9y = (yn,.--,yi), 

Xi - f{ï) < yt < Xi + f{ï) for <T(0 ^ 0,1 < / < / * } , t > 0. 

We also put D, = £>(<?, 0 and D = D(e, 1). 

PROPOSITION 4.1. Létf SE(x, t) and Dt be as above. Then there is c > 0 such that 

SE(e, c~lt)ÇDtÇ SE(e, ct\ t > 1 

c~1^ < dg-measure (SE(ej)) < cf1, t > 1. 

PROOF. AS we see from (0.1), the balls SE(ej), t > 0, behave for large t in the 
same way as the powers V", n G N of a compact neighborhood V of e. Hence the vec­
tor fields {E\ ,...,EP} can be replaced with a basis {Xn,..., X\, ZQ, . . . , Z_r} of the Lie 
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algebra q of G, Zo,.. . , Z_r G m. Also it follows from Corollary 3.10, that it is enough 
to prove the proposition in the case F — {e}. Furthermore, it follows from (3.9), that 
{Xn,...,Xi,Zb,..., Z-r} can be replaced by {wXn,..., NX\, Zo,. . . , Z_r} and then the 
proposition becomes a wellknown result (cf. [12], [14], [25]). 

Arguing in the same way as in the above proposition, we can prove the following 
lemma which we shall need later on. 

LEMMA 4.2. Let SE(g, t), D(g, t) and D be as above. Then there is A > 0 and // G N 
such that for all g G D, R G (0,1] and t > to — to(R), we have 

SsigutR) C D(ghAtRh D(gt,tR) C S£fe„Atf i). 

5. Generalisations of some classical results of Homogenization theory. Let G be 
a connected Lie group of polynomial growth. 

Let Ei,...,Ep and L be as in Theorem 1, i.e. E\,..., Ep are left invariant vector fields 
on G that satisfy Hormander's condition and L = —(É\ + • • • + E2). 

The purpose of this section is to show how some classical results of Homogenization 
Theory (cf. [4]) can be generalised in our context. In particular, we shall prove a homoge­
nization formula for the operator L. The homogenized operator LH will be a left invariant 
sub-Laplacian defined on a limit group NH. NH is a homogeneous nilpotent Lie group, 
determined uniquely from the algebraic structure of G. L# is invariant with respect to the 
dilation structure of NH and depends on both G and L. The importance of NH and LH lies 
in the information they provide about the geometry of G and the behavior of L at infinity. 

Let g, M, T, 0, QM, GM and Q xT M be as in Section 3. As explained in that section, 
we identify, as differential manifolds, Q and QN with 0, Q xT M and QNxM with 0 x M 
and GN, QN x M/T and Q x r M / r with G. 

We fix a basis {Xn,... ,Xi,Zb,... ,Z_r} of g, with {Xn,... ,X\} a basis of q as in 
Proposition 3.3 and {Zo,..., Z_r} a basis of m. 

no,n\,...,nm are as in Section 2, D(g, i),DuD as in Section 4 and cr(f), / = 1, . . . , n 
as in (4.1). 

5.1 The dilation. We denote by T£, 0 < e < 1 the dilation o f O x M defined by 

r£: O x M — 0 x M, r£: ((*„,... ,*0,z) — (V ( n ) x„, . . . , £a(1)jq),z). 

As we can see from Corollary 3.10, re induces a dilation on G, which we shall also 
denote by re, by putting r£(xz) = TÊ(JC)Z, X G <2, z G M. 

We put 

££ , = ^ *-,(£/), i - l , . . . , /7andL£ = - ( ^ + • • - + E2
tp\ 0 < e < 1. 

5.2 r/z^ compactness. If (S,JC) G R x G and w G C°°([5 — p2,s\) x SE(x,p)), then we 
write 

Osc(w,s,jc,p) = sup{|w(/,v) - u(t\y% (t,y),(t',y') e [s - p2,s] x SE(x,p)}. 
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THEOREM 5.1 (cf. [19]). For every 0 < 6 < 1, there is0<a<0 such that 

Osc(u,s,x,6p) < aOsc(u,s,x,p), (s,x) G R x G 

forallu G C°°([s - p2,s] x SE(x, p)) such that (d/dt + L)u = 0 in [s - p2,s] xSE(x,p), 
p> 0. 

The above theorem provides a compactness on the space of functions u£, satisfying 

(5.1) Halloo < 1, (d/dt + L£)ue = 0 i n ( - l , l ) x D , 0 < <• < 1. 

In particular we have the following: 

PROPOSITION 5.2. Let u£, 0 < e < 1 be a family of functions satisfying (5.1). Then 
there is a subsequence, also denoted by u£, such that 

u£ —• uo, (e —> 0) 

uniformly on the compact subsets of (—1,1) x D. Moreover, uo(t,g) — uo(t, gf), for all 
g,gf G D, g — xz, g' — xfz, x,xr G Q, z,z' G M, x = (xn,... ,x\), xf = (x/

n,... ,xj) such 
thatxi = x't ifOi = IR, * = 1, . . . , n. 

PROOF. From Lemma 4.2 and with the same notations we have that there are con­
stants 0 < r < 1,1 < C <B<Amdfi,i/ G N, \i < v such that for all g <ED,Re (0,r) 
and t large enough, we have 

WgutR) Ç SE(gt,ORh Ç SE(gt,BtRï) Ç D(gt,AtRh. 

On the other hand (d/dt + L£)u£ = 0 in (-1,1) x D if and only if (d/dt + L)vt = 0 in 
(-t2j2) x D, where f = 1/e and v,(j,g) = u£{e2s,r£(g)). 

So, applying Theorem 5.1 above we have that, for all 6 > 0 and ( f , g ) G ( - l , l ) x D 
there is a neighborhood (t — s,t + s) x D(g, r) Ç (— 1,1) x D, r,s > 0 of (t,g) and 
£i G (0,1) such that \u£(b, h) - u£(b\ ti)\ < 8, (b, h), (&', h!) G (t-s,t + s)x D(g, r), 
s < £\ and the proposition follows. 

Let Oc = {x = (xn,... ,*i) G 0 : xt = 0 if 0/ = R, / = 1,... ,n}, 0# = 0 /O c 

and denote by DH the image of D by the map 7r defined by ir(g) = x + Oc, g = xz, 
x G <2, z G M (it follows from Corollary 3.10, that n is well defined). Then we have the 
following: 

COROLLARY 5.3. The limit function wo of the Proposition 5.2 can be viewed as a 
function defined on DH-

5.3 The limit group NH- Let K(X) and ct\,..., am be as in Section 2. Then we have the 
direct sum decomposition 

q = cti 0 - - - e c w 

We denote by [.,. ]// the unique product on the linear space q satisfying for X G et; 
and Y G et/ 

[X, 7]// = prfl ..[X, Fk, if i +7 < m and [X, F k = 0, if i +7 > m. 
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It is easy to see that [.,.]# satisfies the Jacobi identity (observe that if Z G ah and X, Y 
are as above then it follows from the way the spaces r/, a,-, / = 1,... ,m were defined 
that [X, [7, Z\H]H = pr0.+/tfc[x, [F,Z]N]^). So, q„ = (q, [.,. ]H) is a nilpotent Lie algebra 
which is also stratified. 

Let QH be a simply connected Lie group that admits q# as its Lie algebra. If X G q# 
then we denote by #X the left invariant vector field on QH satisfying #X(e) = X (e is the 
identity element of QH). Using the exponential coordinates of the second kind 

</>//: W1 —» g//, <£: (*«, • • • ,*i) —> expxn//X„ • • • expxu/Xi 

we identify QH with Rn. 
Let b be the subalgebra of qH generated by the vectors {X; : 0/ = T, i — 1 , . . . , n} 

and denote by C the analytic subgroup of QH having b as its Lie algebra. 
The limit group NH is defined to be the quotientNH — QH/ C. It is a stratified nilpotent 

Lie group. 
Observe that if we identify NH, as a differential manifold, with 0H (using the expo­

nential coordinates of the second kind) then Corollary 5.3 implies the following 

COROLLARY 5.4. The limit function wo in the Proposition 5.2 can be viewed as a 
function defined on NH. 

CONVENTION. For simplicity, in what follows, we shall assume that T is trivial and 
hence that G = Q xT M. So the elements of G will be the pairs (x, z), x G Q, z £ M. 
Because of Corollary 3.10, as we have seen so far and as it can be easily verified this 
presents no loss of generality. 

5.4 The coefficients of the operator L. To simplify notation we shall denote by 3 n , . . . , 31, 
3o,. . . , 3_ r respectively the vector fields ^ , . . . , J - , Z o , . . . , Z_r. 

Let us fix a vector field Eh, 1 < h < p. Then from (3.4) and (3.9) and with the same 
notations we have that 

Eh = (ah
n + bh

n)dn + • • •. Ha'L, + ** r)d_r 

where 

(5.2) 

and 

(5.3) 

a?(*,z) - <*?(*, *,z), bh
t(x,z) = fi(x,x,z), 

oq(x,y,z) = prA\ ]T 
LA 1cr( l )+---+A (_ 1cr( i - l )=cr(0- l 

xAl •••JCA'-1 

£V l(X/_i) • • • £Al(XOJe*5™ • • • ^ l 5 ( X l ) Adz\(Eh) 

tf(x,y,z) = pvi{\ £ ^ • • • ^ - i 1 

1 LAICT(1)+—+Ai_!cr(i—l)<or(0—1 

KXi-l(Xi-i) • • -kXl(Xi)\<?kS(Xk) • • .^ l 5 ( X l ) Ad *}(£*), 

x=(xn,... ,x\\ y = (y„,... ,yi), x, v G O, z G M, -r < i < n. 
We have the following proposition which is a direct consequence of the above defini­

tions and the way the vectorsXi,... ,Xn were chosen (cf Propositions 2.4 and 3.3). 
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PROPOSITION 5.5. The coefficients ah
t (x9 y, z) and$l(x, y, z) have the following prop­

erties: 
1) a*l(x,y,z) —constant, for —r<i< k9 

2) ifk<i<m, then a^(x9 y, z) = oc) (y9 z) and it is periodic with respect to y, 
3) ifn\ < i < n, then a^(x9 y, z) and fflix, y9 z) can be written as finite sums of terms 

of the form p(x)(f(y)f(z), where p(x) — cxil • • -xit, c G R, 1 < ij< i, 1 <j<£, 
Piy) = cos ayj or sin ayj for some 1 <j<k, hence a periodic function and f(z) 
a C°° function defined on M and 

4) ${x9y9z) - 0 , -r < i < n{. 

Let [.,.]// be as in Section 5.3 and denote by KH(Xt)9 1 < / < n the linear transfor­
mations of q defined by 

KH{Xt)Z = 0, Z e m, KH(Xi)Xj = 0, j < i and K„(Xi)Xj = [Xi9Xj]H9 i <j. 

Then (5.2) becomes 

(5.4) ah
i(x9y9z) = p r , . ^ - 1 * » ^ •. V & ( j r , V * W ) • -<?lSm Adz](Eh). 

and from this we have 

(5.5) ct(x,y9z)= E a ^ ^ p r , ^ - ' ^ ^ - ^ . - ^ ^ ' ^ ^ ) . 

Let us put, for — r < i9 j < n 

(Xij(x9y,z)= E och
i{x9y9z)alj{x9y9z) 

\<h<P 

Pij(x9y9z) = E [<$(x,y,z)$(x9y9z)+fi(x9y9z)^^^ 
i<h<p 

aij(x9z) = <Xij(x9x9z)9 bij(x9z) = fiij(x9x9z). 

Then we have (we use the summation convention for repeated indices) 

L = A + B9 where A — —d(aij(x9 z)dj and B = —d(bij(x9 z)dj. 

In the following proposition we have gathered some properties of the coefficients 
<Xij(x,y,z) and f3tj{x9y9z) which are immediate consequences of the definitions. 

PROPOSITION 5.6. 1) The coefficients aij{x9y9z) and (3ij{x9y9z) are finite sums of 
terms of the form p(x)(f(y)f(z), where p(x) — cx{x • • -Xie, c E R, 1 < ih < maxO'j), 
1 < h < I, (f(y) — cos ayj or un ayj for some 1 <j<k, hence a periodic function and 

f(z) is a C°° function defined on M. 
2) otij{x9y9z) = (Xij(y9z), -r < i,j < n\. 
3) (Xij(x9y9z) = constant, —r<i,j< k. 
4) (3ij(x9y9z) = 0, -r < ij < n\. 

5.5 The correctors. The variables x9y9z used below are such that x9y E 0, x — 
(xn, ...9xi)9y = (yn9... 9yi)9 zeM. 
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To simplify notations we shall denote by Dn,.., D\, D 0 , . . . , D-r respectively the vec-
r fields f 
We put 

tor fields ^ , . . . , ^ , Z o , . . . , Z _ r . 

A(x) = -Di(Xij(x,y,z)Dj. 

If f(x, y, z) is a finite sum of functions periodic with respect to the variable y then we 
denote by ïïfl(f )(x) the mean of/, defined by 

2 R ( 0 « = lim - ^ - [ f(x,y,z)dydz 

where |D,| denotes the volume of Dt. 
The correctors x'C*»)^)» 1 <j<narc defined to be C°° functions satisfying 

(5.6) AWxJ(x, v, z) = - A a ^ x , y , z), 3W(x7) - 0. 

They are defined as follows: 
For 1 <j<n\ they are defined to be the unique solutions of the problem 

A(x)X
JX*, v, z) = - D ^ * , y, z), W ) = 0. 

Notice that, in view of Proposition 5.6, 

J2 Di(Xij(x,y,z)= J2 Diaij((yk,...,yi),z), l<j<nx 
—r<i<n —r<i<k 

which is a periodic function of mean zero and therefore the correctors x7, 1 < j < n\ are 
well defined. 

For n\ <j<n the correctors \j are defined by 

x!(x,y,z)= E x'^^prJ^-1^^0--^^^0]^). 

An immediate consequence of the definition is the following: 

PROPOSITION 5.7. l)A(x)(xj(x,y,z) -yj) = 0, 1 <j <n. 

2) xj(x,y,z) = Xj(x,(yk,...,y\),z), l<j<n. 
3) xj = 0fl<j<k. 
4) Ifk <j< n\, then x;(*,.y,z) = X;Cy^) and is periodic with respect toy. 

5.6 The homogenised operator LH- We put 

qtjix) = 3R{<Xij(x,y9 z) - ocu(x,y, z)Dtx\*,y, z)}, \<Uj<n 

and we denote by LQ the operator (defined in W1) 

Lo = -diqij(x)dj 

PROPOSITION 5.8. 1) q^x) = ^-(JC), 1 < i,j < n. 

2) qtjix) —constant, 1 <i,j<n\. 
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3) 
£ {prl[e"-^"^-')---e"k"(X')](Xl)} 

l<e,fj,<ni 

^ { p r ^ - ^ - ' > • • •ex^W)](X/i)}, 1 < ij < n. 

PROOF. 2) and 3) follow from the définitions and Propositions 5.6 and 5.7. To prove 
1) let us observe that 

qij(x) = Wt{(Dhyi)ahi(x9y9z)Dt\yj - x!(x,y,z)]} 

and that from the definition of the correctors ^,1 <j <n,vte have that 

m{[DhX
i(x^z)]ahi(x9y,z)Di{yj - tf(x,y,z)]} = 0. 

Hence 

(5.7) qij(x) = m{Dh\yi - X
i(x,y9z)]ahi(x,y9z)Di[yj - ^(x,y9z)]} 

and the proposition follows. 

LEMMA 5.9. The operator Lf
0 = — H\<ij<ni diqij(x)dj is an elliptic operator with 

constant coefficients in Wx. 

PROOF. Let £ = (£i , . . . , £„,) G Rni, £ ^ 0 and (c/ Proposition 5.7) 

/(**) = 6[yi - xl(y,z)] + • • • + Cn, tvn, - x"'(**)]• 

Then, from (5.7) we have that 

£ <?(,•&& = 2«{[^//(y, z ) l ^ (y . z)Dtf(y9 z)} 

and from Proposition 5.6 that 

W{[Dd(y,z)}oct,(y,z)DJ(y9z)} = ^ W ) 2 + • • • + (£ / ) 2 }-

So to prove the lemma it is enough to prove that 

m{(E]f)
2 + ... + (Epf)

2}^0 

To do this, since the function (E\f)2 + • • • + (Epf)2 is a finite sum of C°° functions 
<p(y9 z) periodic with respect to the variable y with z£M,M being compact, it is enough 
to prove that there is an open U Ç 0 xM and 1 <i <p such that E(f(y9 z) ^ 0, (y, z) G U. 
This follows from the observation that if Ejf(y9 z) — 0, V(y, z) G 0 x M then, since the 
vector fields E\9...9EP satisfy Hôrmander's condition, we would have that/(y, z) — c, 
V(y, z) G 0 x M and hence that 

£m + • • • + C/ij/i, = 6 x W ) + • • • + Uxni(y>z) + c 
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which is absurd since the second member of the above equality is a sum of functions 
periodic with respect to y. 

It follows from the above proposition that there are linearly independent vector fields 
F i , . . . , F„, inW11 with constant coefficients such that LQ = —(Y\+- • •+1^1). Let us denote 
by Wu • •., Wn, respectively the images of F i , . . . , Fni under the linear isomorphism of 
Wx with a\ that maps d( —» Xt, 1 < i < n\. Then it follows from Proposition 5.8 3) 
(recall that QH has been identified with Rn and that HW denotes the left invariant vector 
field on HQ satisfying j/W(e) = W, cf. Section 5.3) that 

Lo = -(HW2
l + .-. + HW2

n]) 

i.e. Lo is a left invariant sub-Laplacian on QH, which is also invariant with respect to the 
natural dilation structure of QH (cf. [12]). 

The homogenised operator Lu is defined to be the image of Lo by the natural map 
QH-+NH = QH/C (cf. Section 5.3). 

5.7 The homo g enization formula. Now we can state the following: 

PROPOSITION 5.10. Let UQ be as in Proposition 5.2, Du Ç Nu as in Corollary 5.3 and 
LH as above. Then UQ can be viewed as defined on DH and then it satisfies (d/dt+Lu)uo = 
0 m ( - l , l ) x D / / . 

Observe that it is enough to prove the above proposition in the case when G is simply 
connected. This observation simplifies the situation since when G is simply connected 
and 0 = W1. We shall not give though the details of the proof because it is exactly the 
same with the proof of the homogenization formula in the classical case of uniformly 
elliptic second order differential operators with periodic coefficients (cf. [4]). 

The only modification is that, since in our case we deal with hypoelliptic and not 
uniformly elliptic operators we have to replace D with some set of the type U x M, 
where U is a very regular, in the sense of J. M. Bony [6], neighborhood of 0 in 0 , i.e. it 
is such that 

(i) U — B\ n #2, where B\ and B^ are two Euclidean balls of W and 
(ii) if x G dU, hence x G Bt for some / G {1,2}, v = (vn , . . . , vi) is the vertical unit 

vector to the ball #, at the point x and the operators Le, 0 < e < 1 are written in 
divergence form as L£ — —3,a? 37 then 

YJ 4(*'Z)v/y/>0. 
\<ij<n 

Observe that since D can be scaled down to a subset of U x M, we can indeed replace 
it by U x M. 

To see that not only 0 but every y = (yn , . . . , yi ) G O has such a very regular neigh­
borhood U let us observe that a]- =const. 1 < ij < k. Hence, if £ ^ 0, £ = (£„,.. . , £i ), 
£*+i = ' • • = 6* = 0, then 

£ 4 6 £ , > 0 , 0 < e < l . 
l<ij<n 
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So the intersection U = B\ D B2 of the balls B\ and #2 of radius M + 5, centered at the 
points y + M£ and y — M£ respectively, for M large and 5 small enough is a very regular 
neighborhood of y. 

Apart from this modification the energy proof of the homogenization formula (cf. [4]) 
carries through without any change at all. 

6. The functions Fj, 1 < j < 112, Fy9 1 < i,j < n\. We shall use the notations 
of Section 5. In particular Dn,..., D\, Do,. . . , D-r denote, respectively the vector fields 
^ , . . . , ^ , Zo,.. . , Z_r and dn,..., 31 the vector fields ^ , . . . , £. 

Whenever the indices ij appear, in this section, we assume that, at the same time, we 
also have 0/ = 1R. 

The functions xp^(y,z), 1 < ij < n\ and \jj(y,z), n\ < j < «2, called second order 
correctors, are defined to be C°° functions that are finite sums of functions (p(y, z) which 
are periodic with respect to y and that satisfy 

A(x)xl)lJ = -ctij - ay + a^D^+Deiaii-x!) 

A(xW = -de<*ij - DePtj + D^a^d^) + Ma^D^) + dtqtj, Wl($) = 0 

Notice that the second members of the above equations are indeed finite sums of C°° 
functions ip(y,z), periodic with respect to y and with zero mean and therefore the func­
tions ijjv, 1 < ij < n\ and i?,n\ <j < ni are well defined. 

We put 

Fj(x,y,z) =Xj-XJ(y>z)> 

F](x,z) = eFj(T£-ix,T£-ix,z), 1 < j < nu 0 < £ < 1. 

Fj(x9y,z) = Xj - x!(x,y,z) - ^(y,z), 

FJ(x,z) = £2Fy(r£-ix,r£-iX,z), «1 <y <ri2, 0 <e <l. 

Fij(x, y, z) = xtXj - xtxJ(y, z) - XjXl(y, z) - \/jlJ(y, z\ 

F-yOCZ) = £2Fij(T£-iX,T£-iX,z), 1 < i,j < «l, 0 < £ < 1. 

Then we have 

(6.1) L£Fj(x,z) = LHxj, 1 < i < / ! 2 , 0 < e < 1, 

L£F^j(x,z) = LHXiXj, I <ij <n\, 0<e <1 

and 

(6.2) /*(*, z) — jcy, 1 < 7 < /12, /*(*,z) — */*/, 1 < ij < m 

as £ —» 0, uniformly on the compact subsets o f O x M . 
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7. The rescaling argument and the Harnack inequalities. In this section, we 
shall adapt a rescaling argument of M. Avellaneda and F. H. Lin [2], [3] and then we 
shall use this argument to prove certain Harnack inequalities for the positive solutions of 
the equation (d/dt + L)u = 0. In particular, we shall prove Theorem 1. 

We use the notation of Section 5. 
The functions FJ, 1 <j<ni and F\-, 1 < i,j < n\ are as in Section 6. The balls Dt 

and D are as in Section 4. 
From Lemma 7.1 through Lemma 7.4, when we use the indices ij at the same time 

we assume that 0/ = 0/ = R. 

LEMMA 7.1. For all fi G (0,1) there are 9 G (0,1), e0 G (0,1) and c > 0 such that 
for allO < e < £Q and all functions uE satisfying 

we have that 
(7.1) 

(— + L e W = 0 m ( — l , l ) x D , ||w£||oo < 1 

sup 
(trx,z)e(-92,d2)xDe 

ue(t,x,z)-A£
0- £ AejFj(x,z)~A£t 

l </<n, 

E A^F^(x,z)- £ A]F](x,z)\<02^ 
1 </J<AIJ n\<j<n2 

where AQ, A£, A£-, 1 <j < n% A?, 1 < i,j < n\ are constants satisfying 

\A£
0\ < c, \A£\ < c, \A£\ < c, 1 <j < n2, |A?-| < c, 1 < /, j < nx 

and 

1 <«V<Mi n\<j<ni 

PROOF. First we observe that there is / / > /z and c > 0 such that for all 0 G (0,1) 
and w satisfying 

( - + LH)U = 0 in (-1,1) x DH, \\u\loo < 1 

we have that 
(7.2) 

sup 
(t^z)e(-e\o2)xDe 

u(t,x,z) --A°-
1 </<«! 

-A°f 

2^ A^-x/ £ Â Xj 

where AQ, A0, A?, 1 < y < rc2, A?-, 1 < /,y < n\ are constants satisfying 

|Ag| < c, |A°| < c, |A°| < c, 1 < j < M2, |A°.| < c, 1 < i, j < n{ 

< cQ2^' 
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and 

1<«V<» n\<j<n2 

This follows from the fact that the homogenised operator L# is hypoelliptic (cf. [6]). 
Let us fix these values of 9 and c. If (7.1) weren't true then there would a sequence 

of functions u£m, em —-> 0, (m —-* oo) not satisfying (7.1). We can assume, by extracting 
a subsequence if necessary that, u£m —• «o> (m —> oo) uniformly on the compact subsets 
of (—1,1) x D, and then UQ would satisfy (7.2). 

Let us take A£™ = A0, A£
0

m = A°0, A]" = Ay°, 1 < j < n2, A\f = Ag-, 1 < ij < nx. 
Then using the assumption that the functions u£m do not satisfy (7.1) and passing to the 
limit we have that 

e2^ < sup 
(tjc,z)e(~92,e2)xD6 

u(Ux,z)-A°0- J2 AjXj-A°t 

\<ij<n\ n\<j<n2 ' 

for all 0 G (0,1) which is absurd. Hence the lemma. 

LEMMA 7.2. Let #, /i and eo be as in Lemma 7.1. Then there is a constant c > 0 such 
that for all m G N and e G (—1,1) swc/i f t o e < 9m~l£o and all uE satisfying 

^+L f)« f=0m(-l , l )xD, lk lU<l 

we /save f/iaf 

(7.3) 

sup \ue(t,x,z)-Ae
0-

m- E AJ'm/7(x,z)-Ae-mf 

- E 4m4(x,z)- E A ^ F ^ k r ^ 

where A^"1, A£-m, A£j'm, \ <j < n2, A\p, 1 < i, j < m are constants satisfying 

\A%"\ < c, \A£jn\ < c, \A^\ < c, 1 <j < n2, \A]f\ <c,\< i, j < m 

d 

(s+M A^t+ E A£fF:fn(x,z) + E AfmF^{x,z) 
i < y < " i «i</<«2 

= 0. 

PROOF. The lemma will be proved by induction. For m = 1 we are in the case of 
Lemma 7.1. So assume that (7.3) is true for some m G N. We put 
(7.4) 

we(x,z) = em(2+">\u((e
2mt,T^x,z)-Ae

0'
m- E A£-mF€

j(T^xa)-Ae'mê2mt 
1 1<7<1| 

E 4"7*(7>a,z)- E A ; ^ ( T W ) 
l < y < « i nl<j<n2 
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Then we have that 

+ L£9- K = ° i n (-1.1) x D, Kl!*, < 1. 0/ 
Therefore it follows from Lemma 7.1 that, for e0~m < so we have that 
(7.5) 

sup \w((t,x,z)-Bl- Y BejF]rm(x,z)-Bet 
O*.z)e{-e2,02)x.Dll' 1 </<n, 

\<ij<n\ nl<j<n2 

< 92nt 

with 

B£
0\ < c, |££| < c, |£J| < c, 1 <j < n2, \B

£
tj\ < c , 1 < i, j < nx 

[^r+L, 
v3f 

Let us put 

A j ,m + 1 = ^ , m + g m / i ^ n , < y < n i , 

A^m+X = A\f + ff^Bj,, 1 < i,j < m. 

Then putting (7.4) and (7.5) together we have that 

sup 9-m{2+»)\ut(e
2mt,Tfrx,z)-A^m+x- Y A^FjiT^z) 

(V,z)e(-02,02)x£V, ' l</<n, 

_ A e , m + 1 ? _ £ A ^ + 1 4 ( T ^ , Z ) - Y A^FjiT^zUKe2*" 

1 </j<«i n\<j<n2 

and from this that 

sup 
(^ ,z )G(-^(^ i ) ,^ (m + i ) ) x D 

< g(m+l)(2+/i) 

which proves the inductive step and the lemma follows. 

COROLLARY 7.3. L^ £Q be as in Lemma 7.2. Then there is c > 0 such that for all 

e G (0, £o] flndf M u£ satisfying 

f— + L e W = 0m(—1,1) x D, ||we||oo < 1 
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we have that 

(7.6) sup 
{t^z)e{-{j-)\{j-)2)xD^ 

ue(t,x,z)-Al- Y, A^{xA<c(-) 
K K / i , I Xe0J 

where AQ, A£, AJ, 1 <j<n\ are constants satisfying 

\A£
0\<c, \A£\<c, \A]\<c, \<j<m. 

LEMMA 7.4. There is a constant c > 0 swc/i that for all u satisfying 

-+L\u = 0 in (-R2,R2) x D*, /? > 1 

We / l a v e f/ltftf 

(7.7) sup 
(u,z)e(-U)xZ) 

w(r, x, z) - A0 - - 5Z A [(*/ - Xyfc ^)] 
fl i < / < / i i 

where AQ, Ay, 1 <j<n\ are constants satisfying 

|A0| < c , \Aj\ < c , 1 < 7 < / i i . 

PROOF. The lemma follows from Corollary 7.3 and the observation that if u satisfies 

(-+L)u = 0in(-R2,R2)xDRy R> 1 

then the function u£ defined by u£(t,x,z) = u(R2t,TRX,z), e — \/R satisfies 

i-+L£\u£ = 0 i n ( - l , l ) x D . 

Let us recall that we have fixed a basis {X„,... ,Xi,Zb,...,Z_ r} of g, with 
{Xn,..., X\} a basis of q as in Proposition 3.3 and {Zo,..., Z-r} a basis of m. We have 
also identified the elements of g with the left invariant vector fields on G and if X G g 
then we denote by #X the left invariant vector field on G# (G and GN have been identified 
as differential manifolds) satisfying uX(e) — X(e) (cf. Section 3). Note that ATX; — X;, 
\<i<k. 

We put 

Hi=Zi+ £ W k * > - r < / < 0 , & = %+ £ XiW)NXj, \<i<k. 
k<j<fi] k<j<K] 

We have the following proposition, which follows from (7.7) and the fact that L is 
hypoelliptic (cf. [6]). 
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PROPOSITION 7.5. There is a constant c > 0 such that 

|X«K(0,<0| < £ | | K | U l < i < m . 

dt 
w(0, e) 

|Z ,K(0,e) |<d |w| |oo, -r<i<0 
K 

C C 

< ïpIMloo, \Xiu(0,e)\ < —2 ||w||oo, nx<i<n 

\XjHiu(0,e)\ < ^ | | M | | O O , - r < i < k, 1 <j < n, 

\ZjHiu(fl9e)\ < ^ | | M | | O O , ~r < i < K - r <j < 0 

for all u satisfying 

(-+L\U = 0 in (-R2,R2) x SE(e,R), R>1. 

We shall need the following result of L. Saloff-Coste [19]: 

THEOREM 7.6 (cf [19]). Given any 0 < a < b < l, 0 < 7 < l there is a 

constant c > 0 such that for all (s,g) £ R x G, R > 0 and every positive 0 < u G 

C°°([s - R2, s] x 5 £ (g ,#) satisfying d/dt + L)u = 0 in (s - R2, s) x SE(g,R) we have 

u(t,y) < cu(s,g)9 (t,y) E [s - bR2,s- aR2] x SE(g,lR). 

An immediate consequence of Proposition 7.5 and Theorem 7.6 is the following re­

sult, a particular case of which is Theorem 1. 

THEOREM 7.7. For every integer t > 0 and 0 < a < b < 1 there is a constant 

c > 0 such that for allt > 1 

Z(u(at, x) 

Xiu(at,x) 

—tXiu(at,x) 

—ZiNXju(at,x) 

< crl~îu(bt,x), -r <i < 0 

< crl~iu(bt,x), I <i <n 

< ct~E~lu(bt,x), n\ < i <n 

< ct~l~lu{bux\ -r<i<0,k <j < n 

-i-\ 

\zr-jXiNXju(at,x)\ < ct u(bt,x), 1 < / < n, k <j <n 
lot1 I 

—tXiHju(at,x) 

dl i 
zr-jZiHjU(at,x)\ 

< ct l [u(bt,x), I <i <n, -r <j < k 

-i-\, < ct l Lu(bt,x), I <i<n, —r <j < k 

for allu>0 such that (d/dt + L)u — 0 in (0, t) X SE(x, y/i). 
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8. The proof of Theorem 2. It is easy to see that the Riesz transforms Rt = E[L~ 2, 
1 < i < P and their adjoints R* = iT^Eu 1 < / < p are bounded in L2. This follows 

from the observation that 

E 11̂ 111 = - E(^~h^-^) = (uip9L-l^) = \\ip\\l 
1 <i<p 1 <i<p 

So we only need to prove that they are bounded from Ll to weak-l}. Then by interpolation 
we can prove that they are bounded on Lq, 1 < q < 2 and by duality on Lq, 2 < q < 00 
(cf [19]). 

We put 7(0 = dg-measure (SE{e, tfj. 
We denote by X^Kipcy) the derivative of the kernel K(x,y),x,y G G with respect to 

the vector field X and the variable v. 
We say that the kernel K(x,y) satisfies standard estimates if there is a constant c > 0 

such that 

(8.1) \K(x,y)\ < ,J . , \E]K(x,y)\ < C *,y G G, 1 < ," < p. 
7(</(*, y)) dE{x, y)l{dE(x, y)) 

We recall the following Gaussian estimate for the heat kernel pt{x,y) {i.e. the funda­
mental solution of the equation (d/dt + L)u = 0) due to N. Th. Varopoulos [24] (which 
we state here in a less sharp form): 
there are constants ci, Q > 0 such that 

dy^yY 
c\t 

( 8 . 2 ) c 1 7 ( ^ r 1 e x p ( - ^ ^ ) <pt(x,y) 

<C2KStrlap(-4^), *,yGG, f>0 . 
c2t 

Moreover since the operator L is self adjoint the heat kernel pt(x, y) is symmetric, i.e. 
pt(x,y) = pt(y,x), x,y G G, t > 0. 

We also recall the following small time Harnack inequalities also due to 
N. Th. Varopoulos [24]: 

For all integers £,JJL>0 and 0 < a < b < 1 there is a constant c > 0 such that 

(8.3) —tEix --E^u(at,x) < cre~2u(bt,x), x G G, 0 < t < 1 

for all u > 0 satifying {djdt+L)u = 0 in (0,0 x S^fo >/7). 
Let 7), £ > 0 be the semigroup of operators associated to L, i.e. Tt(p(x) = 

SPt(x,y)<p(y)dt. 
Then 

Ri(<p) = JQ r2EiTt(v)dUR]^) = jo r*Tt(Enp)dt. 

Hence the kernels Ki(x,y) and K*(x,y) of the operators R( and /?* respectively, 1 < 
i < p, are given by 

(8.4) *,-(*, y) = Jo t~Ex
iP,(x,y)dt, K*(x,y) = JQ t-iEy

iPt{x,y)dt. 
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Moreover 
roo i roo \ 

(8.5) &jK,ix,y) = jo t~E]E1pt{x,y)dt E]K*(x,y) = JQ r^E]Ey
iPt{x,y)dt. 

It follows from (8.3) and (8.4) and Theorem 1 that there is c > 0 such that 
(8.6) ItftojOl < ,/f , v \KKx,y)\ < ° x9y G G. 

l[dE(x,y)) l{dE(x,y)) 

The operators Riy \ < i < p. We observe that the function u(t, y) — E\pt(x, y) satisfies 
(3/df + L)u = 0. Hence applying Theorem 1 twice we can see that the kernel K((x,y) 
satisfies the standard estimates (8.1). Now, applying the theory of singular integral op­
erators on spaces of homogeneous type developed in [9] we get that the operators Rt, 
1 < i < p are bounded from L1 to weak-L1. 

The operators R\,\ < i < p. The problem in this case is that the estimates (8.1) are 
not satisfied by the kernels AT* (JC, y) of the operators #*, 1 < i <p. This is due to the fact 
that as we have seen in Section 1, the inequalities (8.2) are not true for I > 2, t > 1 and 
therefore we do not have the appropriate estimates for the EyEypt(x,y), 1 < ij < p. 

To get around this difficulty we shall consider the operators 

Tio(¥) = j0 r-2Tt(Ei<p)dt, Tn(if) = ^ t~Tt(E^)dt 

whose kernels, also denoted by Tio(x,y) and Tn(x,y) , are given by 

r\ i POO i 

Tnfry) = yo riEx
iPt{x,y)dt, Tn(x,y) = ^ r^Eypt{x,y)dt. 

Clearly #* = Tto + Tn. We shall prove that both T® and Tn are bounded from L1 to 
weak-L1 ,l<i<p. 

The operators T®, 1 < i < p. We observe that the kernel of the operator 7/o is 
integrable at infinity and singular near the diagonal. Actually it is the part of the kernel 
of the operator R* that is singular near the diagonal. Hence it is bounded on L2. Also 
using the inequalities (8.3) we see that the kernel Tto(x,y) satisfies the standard estimates 
(8.1). So, arguing in the same way as in the case of the operators /?;, we can prove that 
the operators T;o are bounded from l) to weak-L1. 

The operators Tt\, 1 < i < p. From now on, as in Section 7, when we use the indexy 
we assume that at the same time 0 ; = R. 

We shall need the following lemma whose proof will be given at the end of this section. 

LEMMA 8.1. For all k < j < n the operator Wj(ip) = J™ r^Tt(NXjtp)dt, whose 
kernel, also denoted by Wj(x,y), is given by Wj(x,y) = J^° r^uXy.pt(x,y)dt is bounded 
on L2 and since Wj(x,y) (which is a kernel integrable near the diagonal and singular at 
infinity) satisfies the standard estimates (8.1), Wj is bounded from L1 to weak-L1. 

The L1 to weak-L1 boundedness of Tn follows easily from the above lemma. Indeed, 
since the functions L;X;, k <j <n\are bounded, the operators WjEtxj(f) = W,-((£",• X"7')/) 
are bounded on L2 and from L1 to weak-L1. 
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Let us put 

T=Tn+ £ WjE^,H = Ei+ £ (EiX
jhXj. 

k<j<n\ k<j<n\ 

Then T is bounded on L2 and its kernel, also denoted by T(x, y) is given by 

nx,y) = fi°rlHypt(x,y)dt. 

Now it follows from Theorem 7.7 that T(x, y) satisfies the standard estimates (8.1). Hence 

T is bounded from L1 to weak-L1. This, together with the fact that the operators WjEi\\ 

k < j; < n\ are bounded from L1 to weak-L1, implies that the operator Tn is bounded 

from L1 to weak-L1, which completes the proof of Theorem 2. 

9. The proof of Lemma 8.1. Of course Lemma 8.1 can be proved using some ver­

sion of the Tl Theorem for spaces of homogeneous type (cf. [7], [10], [17]). We shall 

not follow this approach though. Instead we shall try to explain how the proof given in 

G. David and J. L. Journé [11] (in particular Section III of that paper) can be adapted in 

our case. The reader is referred to that paper for the omitted details. 

To simplify things we shall work with the control distance d(x, y) asssociated to the 

the basis {Xn,..., X\, ZQ, ..., Z_ r} of q instead of the control distance ^ ( x , v) associated 

to the fields {E\,...,EP} (cf. Section 4). For t > 1 the estimates (8.2) are still valid with 

dE(x,y) replaced by d(xyy). 

We put 5(JC, t) = {y£ G, d(x, y) <t},t> 0. 

The kernel Wj(x, y) is integrable near the diagonal and singular at infinity. Furthermore 

it is a standard kernel, since it follows from (8.2) and Theorem 7.7 that there is a constant 

c > 0 such that 

(8.7) \Wj(x,y)\ < 
-y(d(x,y))9 

\YyWj(x,y)\ < \YxWj(x,y)\ < 
d(x,y)l(d(x,y)Y J ' } - d(x,yyy(d(x,yj) 

for all JC,y G G,d(x,y) > 1. 

Let W* the adjoint of Wj. Then we have 

(8.8) Wjl = 0 , Wjl = 0 . 

Indeed, that W-l = 0 follows from (8.7) (cf. [11]). To see that Wjl = 0 let us write Wj as 

the limit, as A —-+ oo, of the operators WAJ whose kernels are given by jf t~ * ̂ Xy.pt(x, y) dt. 

Then, that Wjl = 0, follows from (8.7) and the observation that W*Aj I = 0, A > 1. 

Let d be as in Section 4. 

Le t / G CS°( ( -1 ,1 ) ) , / > 0, Jf(x)dx = 1 andfor^ = xz,z G M,x = (*„,... ,JCI) G Q 

(cf Section 3) put h(g) = U\<i<ntOi=Rf(xi) and 
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Let U be an open neighborhood of e which is the diffeomorphic image of a convex 
neighborhood U' of 0 under the exponential map 

(Xn, . . . ,X\,ZQ, • • • ,Z-r) —> exp(x nX n 4- • • - + JCiXi + ZoZo + • • • + Z - r Z _ r ) . 

Let D = n + r+ 1. 
Let ti G Cf(U),hf > 0Jh,(g)dg = 1. 
For g G U,g = exp(x„Xn + ---+xiXi + z0Zo + - • -+z_rZ_r),(x„,... ,X\,ZQ, . . . ,z- r) £ 

2 /£/'weput 

¥>«•(*) = ^z^^ /(exp[2-I 'feXn + • • -+xxXx + z0Zo + • • • + z_rZlr)]), / < 0, / € Z 

and (/?,(#) = 0 for all the other g G G. 
We put 

We also put 

V>i = </>i-V>,+i, / G z. 

#($) = 1, 0 < s < 2 ' , / < 0 , / 6 Z 

Pi(s) = 2\ 2l <s< 1, ; < 0 , / E Z 

2'' 
Pi(*) = -^-v s > i, ; < o, i G z 

/?;0) = 2" d \ 0 < 5 < 21", i > 0, i G Z 
21" 

Pi(5) = -^y , 5 > 2', / > 0, i G Z. 

Using the notations of [11], we denote by St, Ti, T[, T" the operators whose kernels 
also denoted by S/(JC, y), 7/(JC, y), T[(x, y), T"(x, y), are given by 

Si(x,y) = / / <Pi(v)Wj(xv,yw)(fi(w)dvdw 

Tt(x,y) — <Pi(y)Wj(xv,yw)x/ji(w) dvdw, T[{x,y) = / / \pi(v)Wj(xv, yw)<pi(w) dvdw 

T"(x, y) — \ \ i/ji(v)Wj(xv, yw)x[)(\v) dv dw. 

We have that 

£ Tt + T[ + T[' = 5_ M - S;v+1, M M G N. 
-M<i<N 

Observe that if K is a compact K Ç G, then there is c > 0, c = c(K, h, h1) such that 

(8.9) \Si(x,y)\ < (Uiiy)- ° x D - 1 \NXm(w)\ dudw < c2~d\ x,y G K. 
JJ (l+d(v,w)) 

Hence the operators 5/ converge weakly to 0 as / —-> oo. On the other hand, as / —» — oo, 
the 5/ converge to Wj. So, the operator E-M</<N ^I + ^/ + 7f converges weakly to W/, as 
i —• oo. It follows that to prove that Wj is bounded on L2, it is enough to prove that the 
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operators Tt, T-, T", i Glare bounded on L2 and that the sums E-M<K/V Tt, Y2-M<I<N T't 
and Y,-M<i<N T" converge strongly to bounded operators. To do this we have to apply 
Cotlar's lemma to the sequences of operators {T/}, {T-} and {7^'} (cf. [11]). For this, we 
need the following estimates for the kernel 7/(JC, V) ( it can be proved in the same way 
that the kernels T[(x, y) and Tf/(x, y) satisfy similar estimates too) 

(8.10) |7-(*,30| <cPi(d(x,yj) 

\Ti(x,y) - Tt(x\y)\ + |7Xy,Jt)-7-(y,y)| 

( 8 ' H ) < cmin(l, ^ 1 ) [Pi(d(x,y)) +Pi(dtf9yj)] 

(8.12) JTi(x,y)dy = 0, xeG 

(8.13) JTi(x,y)dx = 0, vG G 

(8.13) follows from (8.8) and (8.12) from the fact that J^(w) dw = 0. 
To prove (8.10) we shall distinguish different cases. When i < 0, d(xyy) < 2'10 then 

(8.10) follows from the fact that the kernel Tt(x,y) is integrable near the diagonal. 
When / < 0, 2'10 < d(x, y) < 1 then (8.10) follows from the observation that since 

J ifriiw) dw = 0, 

\Ti(x9y)\ = \JJtpi(y)[Wj(xv,yw) - Wj(xv,y)WiMdvdw\ 

< c2l J J (pi(v)\xlJi(w)\ dvdw = c2\ 

When i > 0, d(x,y) < 240 then (8.10) follows from (8.9). 
When i > 0, d(x,y) > 240 or i < 0, d(x,y) > 1 then (8.10) follows from the 

observation that since J} I/J(W)dw = 0 

\Ti(x,y)\ = \JJ<Pi(y)[Wj(xv,yw) - Wj(xv,yMi(w)dvdw 

< c „. ~\ ^,, / / (fi(v)ipi(w)dvdw = c d{x^5TT JJrtvMw)**» = c ^ - ^ . 

To prove (8.11) we observe that we can assume that d(x,xf) < 2l', because otherwise 
it follows from (8.10). The next thing to observe is that if y G {Xn,..., X\, Z 0 , . . . , Z_r} 
and YR is the right invariant vector field on G such that YR(e) = Y(e) then 

\YyTi(x,y)\ = \JJ w(v)Wj(xv,yw)YRxl)iMdvdw 

and arguing in the same way as for (8.10) we get 

(8.14) ^Ux^^cTp^y)). 

https://doi.org/10.4153/CJM-1992-042-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-042-x


726 G. ALEXOPOULOS 

Similarly 

(8.15) \YxTi(x,y)\ = jj{YR^i){v)Wj{xv,yw)^i{w)dvdw\ < c2l
Pl(d{x,y)). 

Now to prove (8.11) it is enough to to join the points x and x' with a piecewise smooth 
curve 7(0 of length |7| < 2*2 {cf. Section 4) and then use (8.14) and (8.15). 

Once we have (8.10), (8.11), (8.12) and (8.13), then we can prove {cf. [11]) that there 
is c > 0 such that 

\\Tirt\\w + \\T*T(\\w<c2-li^, i,lel 

an estimate which allows the application of Cotlar's lemma to the sequence of operators 
{Tt}. For the sequences of operators {Tf

t} and {Tf/} we can argue in a similar way. 
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