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AN APPLICATION OF HOMOGENIZATION THEORY
TO HARMONIC ANALYSIS:
HARNACK INEQUALITIES AND RIESZ TRANSFORMS
ON LIE GROUPS OF POLYNOMIAL GROWTH

G. ALEXOPOULOS

ABSTRACT.  We prove a homogenization formula for a sub-Laplacian L = —(E,v2 +
cee E,z,) (Ey,...,E, are left invariant Hormander vector fields) on a connected Lie
group G of polynomial growth. Then using a rescaling argumentinspired from M. Avel-
laneda and F. H. Lin [2], we prove Harnack inequalities for the positive solutions of the
equation (9/dr + L)u = 0. Using these inequalities and further exploiting the alge-
braic structure of G we prove that the Riesz transforms E;L’ %, L %E,», 1 <i<p,are
boundedon L9, 1 < g < +00 and from L' to weak-L'.

RESUME.  On démontre une formule de homogenéisation pour un sous-Laplacien
L= —(E,2 +eo E,Z,) (E,..., E, sont des champs de vecteurs de Hormander invariants
a gauche) sur un group de Lie G connexe, a croissance polynémiale du volume. Apres,
en utilisant un argument de rescalarisation inspiré de M. Avellaneda et F. H. Lin [2], on
démontre des inégalités de Harnack pour les solutions positives de I’equation (9/dr +
L)u = 0. En utilisant ces inégalités et en exploitant la structure algébrique de G, on
démontre que les transformés de Riesz E;L™ %, L’%E,-, 1 <i < p sont bornés sur L7,
1 < g <+ooetdelL! dans L'-faible.

0. Introduction. Let G be a connected Lie group of polynomial growth, i.e. if dg
is a left invariant Haar measure and V a compact neighborhood of the identity element e
of G, then there are constants ¢, d > 0 such that dg-measure(V") < cn?, n € N. Notice
that the connected nilpotent Lie groups are of polynomial growth.

Let us also identify the elements of the Lie algebra g of G with the left invariant vector
fields on G and consider Ej, ..., E, € g that satisfy Hormander’s condition i.e. together
with their successive Lie brackets [E,-I JAE,, .. Ei]-- -], they generate g. To these vector
fields it is associated, in a canonical way, a left invariant distance dg(.,.) on G, called
control distance. This distanse has the property that (cf. [24]) if Sg(x,) = {y € G,
de(x,y) < t},x € G, t > 0, then there is ¢ € N such that

0.1 Se(e,n) C V", V" C Se(e,cn), n € N.

Moreover the operators L = —(E2? + -+ + E,z,) and 0/0t + L, according to a classical
theorem of L. Hormander [15], are hypoelliptic.
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The purpose of this paper is to explain how ideas inspired from Homogenization the-
ory can be used to answer questions concerning the Harmonic analysis on G. More pre-
cisely, we prove a homogenization formula for the operator L. This formula is similar
to the one already known for second order uniformly elliptic differential operators with
periodic coefficients on R". The novelty here is that we deal with hypoelliptic operators
whose coefficients are functions defined on a compact Lie group and not periodic and
that the homogenised operator Ly is a left invariant sub-Laplacian (i.e. like L, it is a sum
of squares of left invariant vector fields that satisfy Hormander’s condition ), defined on
a homogeneous nilpotent Lie group Ny and invariant with respect to its dilation struc-
ture. Ny is uniquely determined from the algebraic structure of G. Then using a rescaling
argument inspired from M. Avellaneda and F. H. Lin [2] and [3] and further exploiting
the algebraic structure of G, we obtain the following results.

THEOREM 1. Let G,E\,...,E, and L be as above. Then for every integer k > 0,
1 <i<pand0<a<b<1there exists c > 0 such that

ak
‘ﬂEiu(at,x)’ < tubty), t>1,x€G

forallu > 0 such that (9/9t+ L)u = 0 in (0,1) X Sg(x, /).

THEOREM 2. Let G,E\,...,E, and L be as above. Then the Riesz transforms E;L~ %,
L‘%Ei, 1 <i<p(cf [21]), are bounded on 11,1 < q < 0o and from L' to weak-L'.

Theorem 2 has been proved, in the case where G is a stratified nilpotent Lie group
and L is invariant with respect to its dilation structure by M. Christ and D. Geller [8] and
for general nilpotent Lie groups by N. Lohoué and N. Th. Varopoulos [18].

When G is nilpotent then Theorem 1 is a particular case of a more general result of
N. Th. Varopoulos [24], namely for all integers &, £ > 0O there is ¢, > O such that

ak
0.2) ‘WEil . -E,,u(at,x)‘ <t tubtx), 1>1,x€G

for all u > 0 such that (9/dt + L)u = 0, in (0,) X Sg(x, /1).

These inequalities are also true for 0 < ¢ < 1 (¢f. N. Th. Varopoulos [23]), but this is
a result of the local theory of operators of the type sum of squares of vector fields that
satisfy Hormander’s condition.

The motivating example is the universal covering of the group of Euclidean motions
on the plane, which is a three dimensional solvable Lie group of polynomial growth. As
we shall see in Section 1, every operator L as above, on this group, can be expressed
as a second order differential operator on R® with periodic coefficients. We shall give in
Section 1, a specific example of a sub-Laplacian L = —(E? + E3 + E3), for which there
are families of functions u;, v;,# > 1 and ¢ > 0 such that

©.3) w0, Lu=0inSge.n. |Elu@] > Sute), ue)>c.r>1
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HARNACK INEQUALITIES 693

(0.4) v € C(G), |E3vill2 > tl|Lvils £ > 1.

Clearly, (0.3) shows that the inequalities (0.2) are not true, for ¢ > 2, for general
non-nilpotent Lie groups of polynomial growth and (0.4) that the higher order Riesz
transforms, E2L~!, L='E?, 1 <i < p, in general, are not bounded, even on L.

In Section 1 we shall discuss the universal covering of the group of the Euclidean
motions on the plane and we shall show how (0.3), (0.4) and Theorems 1 and 2 can be
proved in this particular case. In the subsequent sections we shall show how these results
can be proved in the general case.

To simplify the notation, we shall use the summation convention for repeated indices
throughout this paper.

ACKNOWLEDGEMENTS. I wish to thank my advisor N. Th. Varopoulos for introduc-
ing me to these problems and for his constant help and encouragement and M. Avellaneda
for several helpful discussions.

1. The motivating example. Let O be a simply connected Lie group of dimension
three and assume that there is a basis {X;, X2, X3 } of its Lie algebra q (the elements of g
are identified with the left invariant vector fields on Q) such that

[X1,X2] = X3, [X1,X3] = — X5, [X2,X3]1=0.

Identifying the analytic subgroups of Q whose Lie algebra is generated by {X», X3} and
{X,} with R? and R respectively, we can see that Q is isomorphic to the semidirect prod-
uct R? X, R where the action 7 of R on R? is given by 7: R — L(R?): x — rot,, rot, being
the counterclockwise rotation by angle x and L(R?) the space of linear tranformations of
R2.

Q is isomorphic to the universal covering of the group of Euclidean motions on the
plane. It is a (non-nilpotent) solvable Lie group of polynomial growth.

Let

Ei =X, B, = X; +Xp, E3 = X3 and L = —(E} + E} + E2).

We are going to show how Theorems 1 and 2 can be proved in this specific example,
construct the families of functions u; and v,,t > 1 mentioned in (0.3) and (0.4) and
explain why it is natural to use Homogenization theory.

The fundamental remark is that, if we identify Q with R, using the exponential co-
ordinates of the second kind, then L becomes a second order differential operator with
periodic coefficients on R3.

By exponential coordinates of the second kind, we understand the diffeomorphism

$:R>— Q, ¢: (x3,x2,x1) — expx3 X3 expx2 X, expx X).

If x = (x3,x,x1) then we have that

(1.1) dcz)"X] ) = _8_ d(j)"Xz(x) = COS X| _8_ + sinx; =—
ox) ox; 0x3
)
d¢™ X3(x) = —sinx o + COS X] -
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Let us now identify Q with R? (as differential manifolds). Then L becomes a uniformly
elliptic differential operator, which can be written in divergence form L =
—%ag(x)g%, with ayn = 2, a)y = azz = 1, ayjp = a1 = COSXy, a3 = Az = Sil’le
and ay3 = a3z; = 0 and the control distance dg(. , .) associated to the vector fields E|, E»,
E; equivalent to the Euclidean one i.e. 3b > a > O such thata|x—y| < dg(x,y) < blx—y],
x,y € R,

Moreover, if L. = —a%a,-j(g)é%_ and E. ;(x) = E«(%),i=1,2,3,0 <& < 1and B, 1)
is the Euclidean unit ball then proving the inequalities (0. 2) is equivalent to proving that
forallk,f € Z,k, ¢ > 0and 0 < a < b < 1 there is ¢ > O such that

ok

=
for all u. > 0 satisfying (0/dr + L.)u. = 0in (0, 1) x B(0, 1), which is a problem of
Homogenization theory.

Results from Homogenization theory (cf. [2], [4]). Let L = ~D—i—a,'j(x)a% be a uni-
formly elliptic operator in R" and assume that its coefficients a;(x) are periodic (i.e.
a;j(x +z) = a;j(x),x € R",z € Z") and Holder continuous (i.e. there is « € (0, 1) and
M > 0 Such that “a,'j(x)”c‘a(Rn S M)

We denote by ¥/,j = 1,...,n the unique solutions of the problem

(1.2) E.. - E.,ul(a, 0)! <cu.(b,0), 0<e<l

L —x) =0, ¥(x+2) = ¥ (x), xeER", z€ 7", /ij(x)dx =0, D=1[0,1]".

The functions y/ are called correctors.
We denote by Ly = —a—i—q,-jg the homogenised operator whose coefficients g;; are
i j
the constants defined by

0 .
qij = /D[aij - amEXJ(X) dx, D = [0, 1"

It can be shown that Ly is an elliptic operator (cf. [4]).

Let L. = —%a,—j(f)é%,() < e < L Letalsof € L"¥(B(0,1)).6 > 0,g €
C""(&)B(O, 1)), 0 < v < 1 and denote by u., 0 < ¢ < 1, the solutions of the prob-
lem
(1.3). L.u. =fin B(0,1), u. = gonodB(0,1), 0 <e < 1.

We have the following results.

THEOREM 1.1 (cf. [4]). Let u.,, 0 < e < 1 be as above. Then u. — ug, (¢ — 0),
uniformly on the compact subsets of B(0, 1).

THEOREM 1.2 (¢f. M. AVELLANEDA AND F. H. LIN [2]). Letu., 0 < e < 1 be as
above. Then there is a constant ¢ > 0 depending only on o, M, n, v, § and independent
of € such that

(1.4) [Tty < c(181ew @0y + 1 ll ey -
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In our example, we have that
1
X' =0, X*(x) = zsmm, ) = —7 c0s Xy

and 5 5 5
3 5
Lo = *(ﬁ*zw +Za_x§)‘

L. can also be written as

9’ x 0 9? 9? 9?
Lo=-2-—-2 —— —25in————— — =— — —5
(1.5) ¢ ox? M 0x10x; s oxjox3 0x3  0x}
' X1 i 1 X1 8

€ edxy € cos ?5;3
The Harnack inequalities. For £ = 1, (1.2) is a parabolic analogue of (1.4) and it
can be proved in a similar way (for details, see Section 7).
Let us now see why (1.2) is not true for £ > 2. Letustake f = 0and g = x3 + 2 in
(1.3). Then up = x3 + 2 . Hence uy > 0, %u = 1and %uo = %uo =0.
Since LE%uE = %Leug =0,i = 2,3, it follows from Theorem 1.1 that

0 0 )
5;!45 — a—iuo, (e—0),i=2,3

uniformly on the compact subsets of B(0, 1).
Moreover , it follows from Theorem 1.2 that there is ¢ > O such that

(1.6) u. — ug and

(1.7 ug(x)|<c,x€B(01)z-—1231—23

‘ax, ox;
Now, (1.5),(1.6) and (1.7) imply that

82

1
axzus(o) ~ _3 (E - 0)

It follows that the family of functions u,, t > 1 defined by u,(x) = u.(ex), € = % satisfy
0.3).

The Riesz transforms. The construction of the family v, # > 1, mentioned in (0.4) is
similar to the construction of the family u;, > 1 above, i.e. we can consider, in (1.3),
g =0andf = Loy, where ¢ € C8°(B(O, ])) is such that %«p # 0 and then proceed in
the same way.

Let us now see how we can prove that the Riesz transforms EfL*% and L3 i 1=
1,2,3 are bounded on L7, 1 < g < +00 and from L' to weak-L!.

It follows from the observation

S ELel3 =~ ¥ (B 79, L729) = (L 729, L77¢) = ||p|f}

1<i<3 1<i<3
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that the tranforms E,»L‘% , as well as their adjoints L‘%E,-, are bounded on L%. So it is
enough to prove that they are bounded from L' to weak-L'. Then by interpolation we
can prove that they are bounded on L7, 1 < ¢ < 2 and by duality on L9, 2 < g < 00
(¢f- [20D).

Let us use the notation EJ’ K(x,y) to denote the derivative of the kernel K(x,y) with
respect to the variable y with respect to the vector field E;.

Let Ki(x, y) be the kernel of the transform E;L™ 2.

If p.(x,y) is the heat kernel (i.e. the fundamental solution of the equation (9 /dt+L)u =
0) then

, 00 R
(18) Koy = [T Ep ey drand EKixy) = [T EEp(xy)dr.

Since the function u(t, y) = Elp,(x, y) satisfies (d / ot+L)u = 0, Theorem 1 can be applied
to both Efp,(x,y) and Ejy E7p:(x,y) and using well known Gaussian estimates of the heat
kernel p;(x,y) (cf. [1]) we can deduce from (1.8) that there is ¢ > 0 such that

(1.9) Ki(x,y)| < ——. and |E/Ki(x,y)| <

<
[x =P l” b=y

It is well known that once we have the estimates (1.9) then it can be proved that EiL?
is bounded from L' to weak-L! (cf. [20]).

Unfortunately, the estimates (1.9) are not availlable for the kernels K} (x,y) of the
tranforms L‘%Ei , since in that case we have that

(1.10)  Ki(xy) = /0°° 12 Epi(x,y)dr and EK; (x,y) = /0°° EEpx.y)d.

and, as we have seen, the Harnack inequalities needed to estimate E;Ef p:(x,y) are not
true.

The way to get around this difficulty, is to observe , as it is clear from (1.1), that the
natural fields to use are the a%, and not the E;, i = 1,2, 3. Indeed, in that case we can take

advantage of the fact that fori = 2, 3, a%- and L commute and obtain the desired estimates
for %-a%p,(x y), i =2,3,j = 1,2,3 applying Theorem 1 twice and then prove that the
transforms L“ - and L‘i - are bounded from L' to weak-L' (their L* boundedness
follows from that of the transforms L% E;, i = 1,2,3, proved above).

In order to prove that the transform L a—‘zl, is bounded from L' to weak-L', we argue

as follows. We consider the transform L™ H where the vector field H is defined by

H= —a—+(—a—x2)i+(—a— 3)—a— = i+1cosx1—a—+lsinx|i

8x1 axl axZ a)q X 8x3 8x| 2 8x2 2 8x3 '
Observe that
0 1 9> 9 9? ) 0?
5x—1H = —§<L+ 8—x2 + — " % + COS x| 190 + sin x; axlaxg)'
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So, as it has already been explained above, we can estimate a%Hp,(x, v, i=123
applying Theorem 1 twice and prove the estimates (1.8) for the kernel Ky(x,y) of the
transform L~ H , which in turn implies that L 3H , hence L3 5?(—', is bounded from L! to
weak-L!.

In the following sections, we shall generalise these ideas in any connected Lie group
of polynomial growth.

2. The structure of the Lie algebra. Let g be a Lie algebra and denote by g, n
and m respectively the radical, the nil-radical and a Levi sub-algebra of g. g and n are,
respectively, solvable and nilpotentideals and m a semisimple subalgebra of g. Moreover

(cf. [22])
2.1 nCaq,g=q+m, gNm={0}, [q,9] C n.

We denote by 7 the natural map 7: q — q/n and we putk = dim(q/n).

We denote by adX = S(X) + K(X) the Jordan decomposition of the derivation
ad X(Y) = [X, Y], X € g. S(X) is the semisimple and K(Y) the nilpotent part. It is well
known that

(1) S(X) and K(X) are derivations of g (cf. [22]).
(ii) There are real polynomials s(x) and k(x) such that

2.2) S(X) = s(ad X) and K(X) = k(ad X)
(cf. [16]).
(iii)
(2.3) [$(X), K(X)] = 0.

Notice that the fact that ad X(X) = [X,X] = 0, X € g implies that the constant

ke

coefficients of the polynomials k(x), hence also of the polynomials s(x), are zero.

LEMMA 1.1. There are vectors Yy, ..., Y, € q such that
a) [S(Y),S(Y)] =0,[Z,Y]=0,1<ij<k Zem,
b) {m(Y)),...,m(Y)} is a basis of a/n.

PROOF. Let {Zy,...,Z} any choice of vectors of g such that {n(Z;),...,m(Z;)} isa
basis of q / n. To prove the lemma it is enough to prove that for every integer 1 <m < k
we can choose vectors Yi,...,Y,, € q such that

2.4) [SY),S¥)1 =0, [2,Y:]1=0,1<i,j<m,Zem

{r(Y1), ..., 7(Ym), 7(Zpns1), ..., m(Z;)} basis of q /.
(2.4) will be proved by induction on m. Form = 1 observe that (2.1) together with the fact
that m is semisimple imply that g has a subspace b which is complementary to n, i.e. such

that g = bé®n and adZ(b)= {0},Z € m (¢f. [16]).For ¥, we choose any nonzero element
of b such that n(Y)) is linearly independent from the vectors m(Z,), ..., m(Z;). Assume
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now that (2.4) is true form = j,1 < j < k. To prove that it is also true form = j + 1
assume that the vectors Y, ..., ¥; have been chosen and consider the linear space b that
is generated by n and the vectors Zj,i, ..., Z;. It follows from the fact that [q, g] C n that
b is actually an ideal of g. Furthermore 1 is an invariant subspace of b with respect to the
Lie algebra of linear tranformations generated by the {ad Z,S(Y;),Z € m,1 < i < j}.
Hence, D has a subspace b that is complementary to n, i.e. such that d = b & n and
adZ(b) = {0}, Z € m, S(Y;)(b) = {0}, 1 < i < j. For Y;;; we choose any nonzero
element of b such that m(Y},, ) is linearly independent from the vectors m(Z;»), . . ., m(Zy).
S(Yj+1) will commute with the derivations S(Y1),..,S8(Y;) because of (2.2) and the fact
that S(Y)Y;;; = 0, 1 <i <. This proves (2.4) and the lemma follows.

PROPOSITION 2.2.  There are vectors X\, ..., Xy € 9,k = dimq/n, X,.... Xk € q,
k = dimq/n, such that
a) SXpX; =0,adZX;))=0,Zem, 1 <i,j <k
b) {m(Xy),...,7(Xx)} is a basis of g / n.

PROOF. LetY),...,Y; € g as in the Lemma 2.1 above and denote by 3 be the Lie
algebra of linear transformations of q generated by ad Z, S(¥;), Z € m, 1 <i <k.nis
invariant with respect to 8. Hence, there is a complementary subspace b to n such that

=n®band A(b) C b,A € 3 (cf. [16]). (2.1) and (2.3) imply that ad Z(b) = S(Y;)b =
{0},Zem,1 <i<k

Let Ny,...,Ny € nsuchthatX; = Y; — N; € b, i = 1,...,k The vectors Xi,...,X,
have all the properties required by the proposition: they satisfy b) since they form a
basis of b. It is also clear that ad Z(X;) = 0,Z € m. So it only remains to verify that
S(X;)X; = 0. This will follow from the fact that S(X;) = S(Y;). This assertion is proved as
follows. First we observe that S(Y;)X; = 0 and that S(Y;)N; = S(Y;)Y; —S(Y;)X; = 0. Next
we observe that since K(Y;) is a derivation we have that [K(Y;),ad N;] = ad(K(Yi)N,-),
which combined with the fact that K(¥;)N; € n implies that the linear transformation
[K(Y;),ad NV;] is nilpotent. This in turn implies that although the K(Y;) and ad N; do not
commute, we can nevertheless find m € N such that (K (Y;)+ad N;)m =0, i.e K(Y;))+ad N;
is a nilpotent transformation. In other words we have proved that S(Y¥;) and K(Y;) +ad N;
are semisimple and nilpotent transformations respectively and that they commute. Since
ad X; = S(Y)+K(Y;)+ad N, it follows from the uniqueness of the Jordan decomposition
that S(Y;) is the semisimple part of ad X; and the proposition follows.

In what follows we shall consider and fix, once and for all, vectors X,...,X; € q
having the properties described in the above proposition.

The nil-shadow qn of q. We can easily see that the conditions

(Xi, Xjlv = [Xi, Xj), [Xi, YIv = KXDY, [V, ZIn=[Y,Z], | <i,j<k Y, Zen

define a unique product [.,. ]y on the linear space q. We can verify directly (writing the
elements X of g as asum X = X’+Y with X’ alinear combination of the vectors X, ..., X
and Y € n) that [.,. ]y satisfies the Jacobi identity. So, gy = (q,[.,.]n) is a Lie algebra,
which is also nilpotent. gy is called the nil-shadow of .
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The filtration of q. We put r; = q and t;; = [vy, ]y, § > 1. Then, since qy is
nilpotent, we have the following filtration of g :

q=112n212 - D1p D tua = {0}, tn# {0}

PROPOSITION 2.3. I)t; D n D 1y,

2) viisanideal of g, i=1,2,...

3) There are subspaces ay, ...,y of q such that

a) adZ(a;)) Ca, SX)a; Ca, Zem,j=1,....ki=1,....m

b)ri=a0,;,5 - Da,and

c) a; = ag; D ay; D ay, where ag; = {Y € a;,5X;)Y = 0,1 <j < k,adZ(Y) =
0,Z € m}, agibay = {Y S ('(,‘,S(Xj)Y =0,1 <j< k}, adZ(a;;)) Cay, ZEm,
S(Xpaz C az, 1 <j <k adZ(ay) C ay, Z € m.

PROOF. 1) follows from (2.1) and the way [.,. ]y was defined. 2) can be proved by
induction. It is trivially true for i = 1. So, assume that it is true for i = n. We are going
to verify that it is also true fori = n + 1.

Let Y € 1, Z € 1. If X € n, then adX([Y,Z]y) = [X, [V, Zlv], € twa C
. IfX € myZ € nand ¥ = X; for some 1 < j < &, then ad X([Xj, Z]y) =
ad XK(X;))Z = K(Xj))adX(Z) = [X;,ad X(Z)Iv € tp41, since ad X(X;) = O and K(X;)
is a polynomial in adX;. If X € m,Z = X, and Y = X; forsome 1 < j, { < k,
then ad X[X,, X;lv = adX[X,,X;] = 0.If Z € n, ¥ = X; and X = X, for some
1 <j, € <k, then ad X,([X;,Zly) = ad X, K(X;))Z = K(X)K(X)Z + SX)K(X)Z =
K(X)K(X;)Z+K(X;)S(X,)Z, since S(X,)X; = 0 and K(X;) is a polynomial in ad X;. Hence
ad X, ([X;, ZIv) = [X¢, [x,,Z]N]N +[X;, S(X()Z]n € Tps1. Finally, if X = X,, ¥ = X, and
Z = X; forsome 1 < h, £,j < k, then ad X,([X¢, X;I) = [Xi [Xe, XjIn ], € tas2 C toer.
Since the general case is a linear combination of the cases examined above, we conclude
that v, is also an ideal of g. This proves the inductive step and 2) follows.

3a) and 3b) follow from the observation that, according to 2), the spaces ty,..., L,
are invariant with respect to the Lie algebra of linear transformations of g generated by
the tranformations ad Z, S(X;), Z € m,i = 1,...,k (¢f. [16]). Given 3a) and 3b), 3c)
follows again from the observation that ag; and ag; @ ay; are invariant with respect to the
Lie algebra of linear transformations of q generated by the tranformations ad Z, S(X;),
Zem,i=1,...,k

Weputn = dimgq,ny = 0and n; = dim(a; @ - P a;),i = 1,...,m. Then

1<k<nm<---<ny=n.

The choice of the basis of q. Assume now that g , hence q is of type R, i.e. that all
the eigenvalues of the derivations ad X, X € g are purely imaginary (i.e. of the type
ia,a € R).

PROPOSITION 2.4. If g is of type R, then there is a basis {X\,..., X, } of q such that
1) Xy,...,Xy are as above and Xy, ..., X, € 1,
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2) {Xn 415, Xy }isabasisof q, i=1,...,m

3) {Xn #1s - Xng 1o A Xngis 15 - - - Xy, } and { X, 415 - - -, X, } are basis of ag;, ay; and
ay; respectively, i = 0,...,m and

4) the number of the vectors {an,+1, .. ,X,,i} is even and they can be combined in
pairs {Xp o1, X428 {Xj, Xjst oo o {Xn—1, X0, } s0 that for every pair
{X;,Xjs1} and every { = 1,...,k there is a; € R such that

(2.5) XX, = cosa X; +sina X,

€S(X[)Xj+l = —sin ang + COS wXM .

PROOF. For {X,, ,+1,...,Xn, } and {Xp,+1,. .., Xn, } we choose any basis of ag; and
ay; respectively, so that 1) is satisfied. In order to choose {Xn;ﬁ»l, e ,X,,l.} let us denote
by ay; ¢ the complexification of ay; and denote by S(X;)¢ the extension of S(X;) to a;¢,
i=1,...,k Since S(X))¢ is also semisimple, we can decompose ay; ¢ as az;p, B - -Pag;p,
where ay;p, = {Y € ayc,S(X;)e(Y) = ib,Y} and iby,...,ib, € iR are the different
eigenvalues of S(Xj)c. Since S(X()cS(Xj)c = SXj)cSXe)e, € = 1,...,k, SXp)c2ip, C
Wip,, S = 1,...,h. We can apply the same procedure to ay; 5, relative to any other S(X)¢.
This leads to a decomposition

(2.6) tc=01® - Dby

of ay;c into {S(Xj)c,j = 1,...,k}-invariant subspaces, such that the linear tranforma-
tions induced in the b, by every S(Xj)¢ are scalar multiplications by some ia, a € R.
Moreover the subspaces b, can be taken to be one-dimensional. Let us identify a,;¢
with {Z+iE,Z,E € ay} andputY = Z—iE,ReY = Z,ImY = Efor Y = Z+iE € ay,
Z,E € ayyand A = {Y, Y € A} for A C a;c. We observe that if ia, a € R,a # 0 is
an eigenvalue of S(X;)¢ then —ia is also an eigenvalue of the same multiplicity and that
if Y is an eigenvector for ia, Y # Othen ReY # 0,ImY # 0,ReY # ImY and Y is
an eigenvector for the eigenvalue —ia. Using this observation we can easily see that the
subspaces b, can be chosen in such a way, that the decomposition (2.6) can be written as

aic = b & Bi, @---®b, @b,

where by = {zYy,z € C} forsome Y, € ayc, Yo = Z+iE,Z,E€ ay, Z# E, Z,E # 0.

We take X, .1 = ReY;, X2 = ImY;,..., X, -1 = ReY;, X, = ImY,. We can
easily see that the basis of g, constructed in this way, satisfies the requirements of the
proposition.

CONVENTION. In the rest of this article we shall fix a basis {X, ..., X, } of g having
the properties described in the above proposition.
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3. The exponential coordinates of the second kind. Let G be a connected Lie
group of polynomial growth and g its Lie algebra. According to a wellknown theorem
of Y. Guivarc’h [14], g is of type R, i.e. all the eigenvalues of the derivations ad X(Y) =
[X, Y], X,Y € g are imaginary. We identify the elements of g with the left invariant vector
fields on G. We denote by Ad z the differential of the inner automorphim g — zgz~! of
G.

Let q,n and m be as in Section 2. Let S(X), K(X), X € g be as in Section 2 and the
basis {X,...,X,} of g as in Proposition 2.3.

Denote by Q, N and M the analytic subgroups of G having Lie algebras q,n and m
respectively. Q and N are closed normal analytic subgroups of G, solvable and nilpotent,
respectively and M a maximal semisimple analytic subgroup of G. The assumption that
G is of polynomial growth implies that M is compact and therefore closed. Moreover

3.1 G =QM, N C Qand Q/N is abelian.

When G is simply connected then O, N and M are also simply connected and QMM =
{e}. Hence G is isomorphic to the semidirect product Q@ X, M, where 7: z — Aut(Q): z —
7., Aut(Q) the set of automorphisms of Q and 7,(g) = zgz ', g € Q, z € M. When G is
not simply connected, then Q MM C center (M) and the mapping

OxX:M—G=0QM, (x,7) > xz

isacovering of G (cf. [22], p. 255, exercise 41). Hence there is a central discrete subgroup
I' of Q X, M, isomorphic with Q N M, such that G is isomorphic with Q x, M/T. The
fact that M is compact implies that I is finite.

PROPOSITION 3.1. Let X and Z be left invariant vector fields on Q X, M, X € q,
Z € m. Then

3.2) (X +2)(x,2) = (Addz(XN)(x), Z(z)), x€Q, zEM.

PROOF. Letx € Q,z € M, g = (x,z) and ¢t € R. Then the proposition follows from
the observation that

gexptZ = (x,z)exptZ = (x,zexp tZ)
gexptX = (x,2)exp tX = (xzexp Xz ') = (x expt Ad z(X), z).

3.1 The simply connected case. Let G be the universal covering of G. Then G is simply
connected and we denote by O, N and M the analytic subgroups of G whose Lie algebras
are g, n and m respectively.

It is well known (cf. [22]) that the map

OR" =0, ¢:x=(xn,...,x1) = eXPX, Xy - - - €Xp X1 X]

is a diffeomorphism, called exponential coordinates of the second kind.
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We want to give an expression for d¢ ', To this end, we shall need some notations.
We denote by adX; and K(X;) the linear transformations of q defined by

ad(X)X; = 0, fori > j and ad(X,)X; = ad(X,)X;, fori < j

K(X;)X; = 0, fori > jand K(X;))X; = K(X;)X;, fori <.
1t follows from (2.2) and the fact that S(X;)X; = 0, 1 <4, j < k that
(3.3) SXDK(X)) = KX)S(X), 1 <i,j <k

If B(x) = b,,(x)gi’—"- +--- +b1(x)% is a vector field on R", then we put pr; B(x) = b;(x).
We also use the same notation for the left invariant vector fields on Q, i.e. if E = ¢, X, +
-+ ++c1 Xy, then we put pr; E = ¢;.

We also put o(i) = j, if u;—; <i < nj(ng,...,n, are as in Section 2).

PROPOSITION 3.2. With the above notations we have
pr;do " E() = pr[en . i | ()
= pri[exnI«Xn) o R S .eXIS(Xl)}(E)
(3.4) = prl.{ [ > Xi‘l .. ,x;\i—l]
Ao(D)+-+ri_o(i—1)<o(i)—1

k/\i—l(Xi“I) .. ,k/\z(Xl)]eXkS(Xk) . -e"S(X')}(E).

PROOF. Clearly, the third equality in (3.4) is a more explicit version of the second
one and the second equality follows immediately from the first one using (3.3). So it is
enough to prove the first equality in (3.4).

Let g = expx, X, - -expx;X; € QandY(t) = gexptE, t > 0 an integral curve of E.
Then to prove the proposition it is enough to prove that

3.5) Y1) = exp(x,, +1pr, P 1alor | pradXy gy O(tz))X,,
' eXP(XZ +tpr, ex';&X‘E + 0([2)>X2 exp(x; +tpr; E)X).

(3.5) can be proved by induction on n: It is trivially true for n = 1. So assume that it is
true for n < £. To prove that it is also true for n = £ + 1, observe that it follows from the
Campell-Hausdorff formula that

exptE = exp H(ce1 Xper + -+ - +C1X))
= exp|(tcvs + O)) Xpar + - -+ (tcz + O()) Xa | exp i X,

Hence
3.6)
()

= expxge1 Xppp - eXpxi X exp[(tcm + O(tz))XM +o (tcz + O(tz))Xz]
exp —x; X; expx; X exp(x; + fcy)X

= expXr41Xpe1 - - -€Xp X2 Xz exp e"‘;ax‘ [(tcm + 0(t2)>Xg+] +---+ (tcz + O(tz))Xg]
exp(x1 + IC])X].
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Observing that the linear subspace of g generated by the vectors Xy,,...,X; is in fact
an ideal of the Lie algebra q we can see that it follows from (3.6) and the inductive
hypothesis that (3.5) is also true for n = ¢ + 1. This proves the inductive step and the
proposition follows.

Let Qy be a simply connected nilpotent Lie group that admits as Lie algebra the nil-
shadow qy of q. Oy is also called the nil-shadow of Q.

We identify the elements of qy with the left invariant vector fields on Qy and if X €
q then we denote by X the element of gy satisfying yX(0) = X(0). We extend the
transformations S(X), X € q and Adz, z € M to qy by putting S(X)yY = N(S(X)Y) and
Adz(vY) = N(Adz(Y))-

Using again the exponential coordinates of the second kind

ON:R"— On, & (Xny ..., x1) — eXp XN Xy - - -€XpXINX]

we can see that Qy is diffeomorphic with R”.

From now on, using the exponential coordinates of the second kind ¢ and ¢y, we shall
identify @ and Qy as differential manifolds with R".

It follows from (3.2) that if x = (x,,...,x;) € R" and E € g then

(3.7) E(x) = %S0 ... o"5&) By,
Using the diffeomorphism
O:R"xM— G=0M, ®:(x,7) — ¢(x)z

we identify the groups G and Qy X M as differential manifolds with R" x M. Also, if
E = (X,Z) is a vector field on R" x M then we write E = X + Z.
Putting (3.2) and (3.7) together we have that

(3.8) (X +Z)(x,2) = 5K ... M15XD) Ad 7(yX)(x, 2) + Z(x, 2),
Xeq, Zem, x=(x,,...,x1) ER", z € M.

3.2 The fundamental group of G.  As we have seen the universal cover G of G is isomor-
phic with the group Q X, M. Q X, M, being a simply connected space is the universal
covering of the group Q XM which in turn as we have seen is a finite cover of G (cf. [22],
p. 255, exercise 41).

Let T” be the fundamental group of G. Then I" is isomorphic to a finitely generated
discrete normal subgroupof G. Let T} = {g € " : g€ Q}andA = {g € " : g € M}.
Then the group T" of the finite covering Q X, M — G = OM: (x, z) — xz, is isomorphic
with T’ /T'|A. Moreover M is isomorphic with M /A, Q with Q/T'| and Q X, M with
G /T A. We shall identify these groups using the corresponding isomorphisms. Observe
that T’y is isomorphic with 24 for some d < n.

We are going to prove the following:
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PROPOSITION 3.3. Let I, and A be as above. Then
(i) T is also a subgroup of Qn X M (recall that G and Qn X M have been identified
as differential manifolds , hence T is a subset of Qn X M).
(ii) The basis {Xy,...,X1} of q can be chosen in such a way that it has the additional
property that

expXi,,...,expX;, generate I'y for some integers 1 < i) <--- <ig<n.

To prove the above proposition we shall need some lemmas.
We denote by Z(G), Z(Q), Z(M), Z(Qy) and Z(Qy x M) the centers of the groups G,
0, M, Qy and Qy X M respectively.

LEMMA34. Ifg=1x7,8 € Z(G),x € Q,2€ M, thenz € ZM)andxy = yx,y € M.

PROOF. Since g can be written in a unique way as a product g = xz, x € 0,z € M
and Vy € M, ygy™! = yxy 'yzy~!, and yxy~' € Q, yzy~! € M we have that yxy ! = x,

yzy~! = z,Vy € M. Hence the lemma.

LEMMA 3.5. Ifg = xz, x = expx, X, --expx; Xy, g € Z(G), x € O, 7 € M then
£&5X0) -e“S(X"Adz(X) =X X€q.

PROOF. It is enough to prove that ¢%5Xo) ... 85X Ad 7(X)) = X,, 1 < £ < n.
We have that X, € q; for some 1 < i < m (¢f. Proposition 2.2). Let R;,; be the an-
alytic subgroup of G that has r;,; as its Lie algebra. The fact that r,,; is an ideal of
g implies that R;,; is a normal subgroup of G. Now the lemma follows from the ob-
servation that if y, = exptX,, t € R, then gy,g~' = yexptY, where y € R, and
Y, = XSXe) '€Y‘S(X')Adz(Xp) € a;.

LEMMA 3.6. Ifg = expx,X, - -expx1 X1z € Z(G), z € M, then for all ¢ such that
x¢ # Owe have X)X, =0, i =1,...,k(ie.x; =0,n; <€ <n,l1 <j<mcf
Proposition 2.4).

PROOF. Assume that there is 1 < i < k for which the lemma is not true and put
j = inf{l:x, # 0,S(X;))X; # 0}. Then because of the way the basis {X,,...,X,} of
g was constructed (cf. Propositions 2.2 and 2.4) there is A such that either h = j — |
orh = j+1and a # 0 for which we have e*X; = cosaX; + sinaXj. Let r be
the linear subspace of q generated by the vectors Xj,i,...,X,, in the case h = j — 1,
or by the vectors Xj.2,...,X, in the case & = j + 1. Then t is an ideal of q. Let R
the analytic subgroup of G having r as its Lie algebra. Let also b = inf(j, k). Then
g = yexp(x;Xj +x,Xy) exp Xp+1 Xp+1 - - -€xpx1 X1z forsomey € R. Letz; = exptX;, r € R.
Since z; 'Rz, = R and z; 'zz; = z, there is y, € R such that 7, 'gz, = y, exp e5X)(x;X; +
XpXp) exp xp+1Xp+1 - -+ - €Xp X1 X1z, which contradicts the hypothesis that g € Z(G) since
there is ¢ € R such that ) (x;X; + x,X,,) # x;X; + x,X. The lemma follows.
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LEMMA 3.7. Ifg = expx,X, - -expx;Xiz € Z(G), z € M, then ad Z(X,) = 0 for all
Xy such thatx; # 0and Z € m (i.e. x,ng; < £ < n;, 1 < j <m, cf. Proposition 2.4).

PROOF. Letj = inf{{ : x; # 0and 3Z € m such that ad Z(X,) # 0}. Then, in
view of Lemma 5, ng, < j < ny, for some 1 < h < m. Let R denote the analytic sub-
group of G having as Lie algebra the ideal of g generated by the vectors Xopits o Xn
(cf. Propositions 2.2 and 2.4). Then there is y € R such that g = yexp(x,,X,, + -+
Xngy+1Xng+1) €XP Xng, Xy, - - -€xpx1 X1 2. Letz, = exptZ,t € R. Sincez,Rz; ! = R, 7,2z, =
z,thereisy, € R, y; = z,yz," such that z,gz,_l = y;exp e’“dZ(x,,hX,,h + o X a1 X 41)
€XP Xny Xny, * - - €Xpx1X12. By definition of the aj,, ay, there is t € R such that
€92 (% Xy, ++ + X1 Xngy+1) 7 Xy Xy, + * * * + Xng, 41X +1. Hence the lemma.

From the above lemmas we have the following:

COROLLARY 3.8. Let * denote the product with respect to the group Qn X M. Then
y*xg =Yg g*xy =gy g € Z(G), y € G. In particular, " is also a subgroup of Qn x M.

Letgo ={X €q: SX)X = 0,adZ(X) = 0,i = 1,...k,Z € m}. We can easily
see that qg is generated by the vectors {X; : S(X)X; = 0,adZ(X;) = 0,i = 1,...,k,Z €
m,j = 1,...,n} and that it is a nilpotent subalgebra of q. We denote by Qp the analytic
subgroup of Q having qo as its Lie algebra.

We have the following corollary to Lemmas 3.6 and 3.7.

COROLLARY 3.9. Ifg € Z(G), g = xz, x € O, z € M, then x € Qy. Hence there is
X € qq such that x = exp X (cf. [22]).

PROOF OF PROPOSITION 3.3. (i) follows from Corollary 3.8. So, we only have to
prove (ii). To this end, let us consider the filtration

=121 2132 DLy DLy = {0}

of g constructed in Proposition 2.2. and denote by Ry, ..., R,, the analytic subgroups of
G having as Lie algebras 1y, ..., t,, respectively. Let Dy be the image of I'; by the map
Q — Q/N . Then Dy is isomorphic to Z% for some by < k. It follows from Corollary 3.9,
that there are vectors Y1, ..., Y}, such that

a) Yi,...,Yy, €qo,expYy,...,exp Y, € I'1 and

b) the images of exp Y1,...,exp Ys, by the map Q — Q/N generate Dy.

Let By the subgroup of I'; generated by exp Y1,...,exp Y,. Then By is isomorphic

with Z%0 (recall that I} is abelian). Moreover there is a subgroup B;, of T'; such that

', = By x B), By C N, B} isomorphic with Z%, by + b} = d.

Let D; be the image of B}, by the map N — N/R; . Then D is isomorphic to Z** for some
by < nj—k. Again, it follows from Corollary 8.9 that there are vectors Y, .1, ..., Yp4p, €
g such that

a) Yb0+1, e Yb0+b| € goMn,exp Yb0+l» o €Xp Ypoup, € I'; and

b) the images of exp Yy 415 .- . ,€Xp Vi 4s, by the map N — N/R; generate D.
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Let B, the subgroup of B{) generated by exp Yy 41, ..., €Xp Yp.4b,. Then By is isomor-
phic with 7 and there is a subgroup B} of B}, such that

B) = B) x B}, B, C Ry, B} isomorphic with Z%, b, + b} = b},

Repeating the same argument we can construct for all i = 2,...,m subgroups B;, B!

of I'y and vectors Yp, +1,...,Yp,_ 45 € o such that
a) B, =BixXBj,B, CRixi,l1 =By X - XBp,d=by+-+bp,
b) Yo 4155 Yo 46, € G0N T4, €XP Ypouts . - ., €XP Ypup, generate B; and
c) the images of exp Y, +1,...,exp Yy, .5 by the map R; — R;/Ri,1 generate
the image of B]_, by the same map.

Now we choose vectors X; ,...,X;, € qo from the basis {Xl,...,X,,} of q so that
0< ij < ng; for 0 <j < by, np_y < ij < ng, forb,_; <j < b, and h > 1 and so that
X, <i<n, i# i1 <j<d, ",..., Y,} continues to be a basis of q. The new basis
of q obtained by replacing the vectors X;,, ..., X;, by the vectors Yy, ..., Y, respectively

satisfies (ii).

3.3 The non-simply connected case. We call nil-shadow Qy of Q the group Oy = Oy /T
and we put Gy = QN X M/F’. It follows from Corollary 3.8 that G and Gy are identical
as differential manifolds . We fix a basis {X,, ..., X} of g as in Proposition 3.3.

We define O; = T(= R/Z), ifexpX; € Ty and O; = R, if not, i = 1,...,n and we put
0=0,x---x0.

As in the simply connected case, we have the diffeomorphisms, which we shall also
denote by ¢, ¢y :

P:0—Q, ¢:x=(xp,...,X1) — eXpX Xy - - -€Xpx1 X

ON: O — On, ON i X = (X, ..., X1) — eXP XN Xy - - - €XpXINX].

Using these difeomorphisms , we identify Q, Oy with O and Q X, M, Qy X M with
0 X M as differential manifolds. The map, which we shall also denote by ®

O:0xM— G=0M, D:(x,2) — ¢p(x)z

becomes a finite covering map for G. Using this map we identify, as differential mani-
folds, the groups G and Gy with O x M /T, where I' = I’ /T"|A.
From what has been proved in Section 3.2 , we have the following

COROLLARY 3.10. Let g € G. Then, there are x = expx,X, ---expx;X| € Q and
7 € M such that g = xz. If we also have g = x'7' forx’ = expxX, - --expx{ X, € 0,7 €
M, then x; = x;, whenever 0; = R.

We denote by gy the Lie algebra of Gy and by [., . ]n the Lie product in gy. Notice
that gy = qn + m and that [gy, m]y = 0. We identify the elements of gy with the left
invariant vector fields on Gy.

If X € q is a left invariant vector field on G, X € g, then we denote by yX € gy the
left invariant vector field on Gy that satisfies yX(0) = X(0). If E = (X, Z) is a vector field
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on O x M, then we write E = X + Z. With these changes in the notations (3.8) remains
true, i.e.

(3.9) (X +2Z)(x,2) = e5&D .. MSXD Ad Z(vX)(x, 2) + Z(x, 2),
Xeq, Zem, x=Xy,...,x1) €0,z EM.

4. The volume growth. Let G be a connected Lie group of polynomial growth, dg
a left invariant Haar measure on G.

We shall use the notations of Section 3. As explained in that section we identify Q X, M
and Oy X M with O x M as differential manifolds and G and Gy with Q X, M /T.

no,ny,...,ny, are as in Section 2 and we put

O'(i)ZO, if@,':-[[, U(i):j, if@i: [R{andnjhl <i§nj, = 1,...,)1
d= 3 o).

1<i<n

Let Ei,...,E, be as in Theorem 1, i.e. left invariant vector fields on G that satisfy
Hormander’s condition. The control distance dg(.,.) associated to these vector fields
is defined as follows (cf. [6], [24]):

We call an absolutely continuous path ¥: [0, 1] — G admissible if and only if ¥(r) =
ai(DE; + - - + ap()E, for almost all + € [0, 1] and we put [Y(1)]> = aj(®) + - - - + a3().
Then we define

1
de(x,y) = inf{ /O ¥(1)| dt,”y admissible path such that Y(0) = x,¥(1) = y}.

We put Sp(x, ) = {y € G : de(x,y) <t},x € G, 1 > 0.

We want to describe the shape of the balls Sk(e,t), t > 1 and to estimate the dg-
measure(Sg(e, 1)). To this end we shall need some notations. If g € G, g = xz,z € M,
x €0, x=(x,...,x1), then we put

& =x2 x =", ..., Vx)), 1>0.
Dig.t)={heG:h=yw,weM,y€Q,y= On---, 1),
X — 170 <y <x;+ 17V foro(i) # 0,1 <i <n}, t >0.
We also put D, = D(e, t) and D = D(e, 1).
PROPOSITION 4.1.  Let Sg(x, t) and D, be as above. Then there is ¢ > 0 such that
Se(e,c™'1) €D, C Se(e,ct), t>1
¢ 't < dg-measure (Sg(e,1)) <ct!, > 1.

PROOF. As we see from (0.1), the balls Sg(e, ), t > 0, behave for large ¢ in the
same way as the powers V", n € N of a compact neighborhood V of e. Hence the vec-
tor fields {Ey, ..., E,} can be replaced with a basis {X,,...,X1,Z,...,Z_,} of the Lie
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algebra g of G, Zy,...,Z_, € m. Also it follows from Corollary 3.10, that it is enough
to prove the proposition in the case I' = {e}. Furthermore, it follows from (3.9), that
{Xn,....X1,Z0,...,Z_,} can be replaced by {yX,...,~nX1,Z0,...,Z_,} and then the
proposition becomes a wellknown result (cf. [12], [14], [25]).

Arguing in the same way as in the above proposition, we can prove the following
lemma which we shall need later on.

LEMMA 4.2. Let Sg(g,t),D(g,t) and D be as above. Then there is A > 0and p € N
such that forall g € D, R € (0,1] and t > ty = to(R), we have

Se(gu tR) C D(g, AR¥), D(g,,1R) C Sk(g; AtR¥).

5. Generalisations of some classical results of Homogenization theory. Let G be
a connected Lie group of polynomial growth.

Let Ey,...,E, and L be as in Theorem 1, i.e. Ey, ..., E, are left invariant vector fields
on G that satisfy Hérmander’s conditionand L = —(E} + - - - + E2).

The purpose of this section is to show how some classical results of Homogenization
Theory (cf. [4]) can be generalised in our context. In particular, we shall prove a homoge-
nization formula for the operator L. The homogenized operator Ly will be a left invariant
sub-Laplacian defined on a limit group Ny. Ny is a homogeneous nilpotent Lie group,
determined uniquely from the algebraic structure of G. Ly is invariant with respect to the
dilation structure of Ny and depends on both G and L. The importance of Ny and Ly lies
in the information they provide about the geometry of G and the behavior of L at infinity.

Let O, M, T, O, On, Gy and Q X, M be as in Section 3. As explained in that section,
we identify, as differential manifolds, Q and Qy with O, Q X, M and Qy X M with O x M
and Gy, Oy X M /T and Q X, M /T with G.

We fix a basis {X,,...,Xi,%,...,Z_,} of g, with {X,,...,X;} a basis of g as in
Proposition 3.3 and {Zy, ...,Z_,} abasis of m.

no,ny,...,", are as in Section 2, D(g, 1), Dy, D as in Section 4 and o(i), i = 1,...,n
as in (4.1).

5.1 The dilation. We denote by 7., 0 < ¢ < 1 the dilation of O X M defined by
. O0XM—0XM, 1.: ((x,,,...,xl),z) — ((E”(">x,,,...,5"(”x|),z).

As we can see from Corollary 3.10, 7. induces a dilation on G, which we shall also
denote by 7, by putting 7.(xz) = 7.(x)z, x € Q, 7 € M.
We put

1
E.i=-dr(E), i=1,. pandL. = —(EZ,+---+El,), 0<e<lL

5.2 The compactness. 1f (s,x) € R x G and u € C®([s — p?,s]) x S(x, p)), then we
write

Osc(u, 5,x, p) = sup{[u(t,y) — u(?',y")|, (t,y),(t,y") € [s — p*,s] x Sg(x, p)}.
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THEOREM 5.1 (cf. [19]). Forevery 0 <6 < 1, there is 0 < a < 0 such that
Osc(u, s,x,0p) < aOsc(u,s,x,p), (5,x) ERxG

forallu € C°°([s — %, 5] % Sg(x, p)) such that (9/0t+ Lyu = 0 in [s — p?, s] X Sk(x, p),
p> 0.

The above theorem provides a compactness on the space of functions i, satisfying

(5.1) luelloo <1, @/3t+Lu. =0in(—1,1)x D, 0<e<I.

In particular we have the following:

PROPOSITION 5.2. Let u.,0 < & < 1 be a family of functions satisfying (5.1). Then
there is a subsequence, also denoted by u., such that

u: — up, (€—0)

uniformly on the compact subsets of (—1,1) X D. Moreover, uy(t,g) = uo(t, g'), for all
88 €D g=x¢ =XzxX¥ €027 EM x=(xs,....,%1), X = (x},...,x}) such

thatx; = x. ifO; =R i=1,...,n

PROOF. From Lemma 4.2 and with the same notations we have that there are con-
stants 0 < r < 1,1 <C<B<Aand u,v € N, u <vsuchthatforallg € D,R € (0,r)
and ¢ large enough, we have

D(g..1R) C Sp(g:, CtR¥) C Sx(g:. BIR*) C D(g,, AR").

On the other hand (9/9f + L.)u. = 0in (—1,1) x D if and only if (9/0t+ L)v, = O in
(—%,%) x D, where t = 1/ and v(s, g) = u5(52s, 'rE(g)).

So, applying Theorem 5.1 above we have that, forall > O and (1,g) € (—1,1) x D
there is a neighborhood (¢ — s,¢ +s) X D(g,r) C (—1,1) X D, r,s > 0 of (t,g) and
€1 € (0, 1) such that |u.(b, h) — u.(b', )| < 6, (b,h), (b, h) € (t — 5, +5) X D(g, 1),
€ < 1 and the proposition follows.

Let O, = {x = (6p,...,.x1) €0 :x; = 0if O; = R,i = 1,...,n},04 = 0/0,
and denote by Dy the image of D by the map 7 defined by n(g) = x+ O, g = xg,
x € Q, z € M (it follows from Corollary 3.10, that 7 is well defined). Then we have the
following:

COROLLARY 5.3. The limit function ug of the Proposition 5.2 can be viewed as a
function defined on Dy.

5.3 The limit group Ny. Let K(X) and ay,...,a, be as in Section 2. Then we have the
direct sum decomposition
g=a; D - D ap.

We denote by [.,. ]y the unique product on the linear space q satisfying for X € q;
and Y € q;

X, Y]y = prn‘_ﬂ,[X‘ Yy, ifi+j <mand [X, Y]y =0, ifi+j > m.
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It is easy to see that [.,. ]y satisfies the Jacobi identity (observe thatif Z € a, and X, Y
are as above then it follows from the way the spaces v;, a;,i = 1,...,m were defined
that [X, [Y,Z]H]H = pra‘w[X, [Y,Z]N]N). So, ay = (q,[.,. ]n) is a nilpotent Lie algebra
which is also stratified.

Let Oy be a simply connected Lie group that admits qy as its Lie algebra. If X € qy
then we denote by yX the left invariant vector field on Qp satisfying yX(e) = X (e is the
identity element of Qy). Using the exponential coordinates of the second kind

o R" — On, ¢: (Xn, ..., X1) — eXp XXy - - -eXp X1 X}

we identify O with R”.

Let b be the subalgebra of qy generated by the vectors {X; : 0; = T,i = 1,...,n}
and denote by C the analytic subgroup of Qy having b as its Lie algebra.

The limit group Ny is defined to be the quotient Ny = Qp / C. It is a stratified nilpotent
Lie group.

Observe that if we identify Ny, as a differential manifold, with Oy (using the expo-
nential coordinates of the second kind) then Corollary 5.3 implies the following

COROLLARY 5.4. The limit function ug in the Proposition 5.2 can be viewed as a
function defined on Np.

CONVENTION. For simplicity, in what follows, we shall assume that I" is trivial and
hence that G = Q X, M. So the elements of G will be the pairs (x,2z), x € O,z € M.
Because of Corollary 3.10, as we have seen so far and as it can be easily verified this
presents no loss of generality.

5.4 The coefficients of the operator L. To simplify notation we shall denote by d,, ..., 01,
do, - . . , 0, respectively the vector fields %, e, 33—',20, o Zoy

Let us fix a vector field E;,, 1 < h < p. Then from (3.4) and (3.9) and with the same
notations we have that

Ey=(a"+b0,+ . +(d", +b" )o_,

where
al(x,2) = af(x,x,2), bl(x,2) = B(x,x,2),
al(x,y,2) = pr,-” 3 Xy
(5 2) AMo(D++X_o(i—D)=0(i)—1
kx""(X,;l) . _K/\I(Xl)]eykS(Xn Ce SXD Adz}(E;,)

and

Bl (x,y,2) = pri{[ > X))
(5 3) Mo+ _o(i—1)<o(i)—1

I-(A""(Xi—l)’ . _I_{/\I(Xl)]e)’kS(Xk) . _ey‘S<X1) Adz}(E;.),

X=Xnyer s X1), Y= Gnyeo s 1), 6y €0, zEM, —r <i<n.
We have the following proposition which is a direct consequence of the above defini-
tions and the way the vectors X, ..., X, were chosen (cf. Propositions 2.4 and 3.3).
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PROPOSITION 5.5.  The coefficients af’ (x,y,2) and B;’ (x,y, 2) have the following prop-
erties:

1) al(x,y,z) =constant, for —r < i <k,

2) ifk <i <ny, then cxf’(x, Y,2) = af’(y, 2) and it is periodic with respect to y,

3) ifn; <i<n,then aﬁ’(x, v,2) and ﬁf’ (x,y,2) can be written as finite sums of terms
of the form p(x) p(V)f (2), where p(x) = cx;, -+ xi,, c ER 1 <, <, 1 <j <,
@(y) = cosay; or sinay; for some 1 < j < k, hence a periodic function and f(z)
a C* function defined on M and

4) Bf’(x,y,z) =0, —r<i<n.

Let [.,.]y be as in Section 5.3 and denote by Kx(X;), 1 < i < n the linear transfor-
mations of g defined by
Ku(X)Z =0, Z € m, Ku(X)X; = 0, j <iand Ku(X)X; = [Xi, X;1u, i <.
Then (5.2) becomes
(5.4)  al(ey2) = pr,[es KD L pRUEDSKD L 1 SXD) Ad Z)(E,).

and from this we have

(5.5) Ay, = 3 of,2)prfen M) B o,

1<j<n,

Let us put, for —r <1i,j <n

a6 y,2) = 3 oxy 2 xy,2)
1<h<p

Bix,y,2) = 2 [l (3,28 (x,7,2) + B (x, %, 28} (%, 3,2) + B} (x, 5, D) (%, 3, 2) |
1<h<p

ajj(x,2) = a(x,x,2), bij(x,2) = By(x,x,2).
Then we have (we use the summation convention for repeated indices)
L=A+B, where A = ~aiaij(x, Z)aj and B = —aib,-j(x, Z)aj‘

In the following proposition we have gathered some properties of the coefficients
ayi(x, v, z) and f;;(x, y, z) which are immediate consequences of the definitions.

PROPOSITION 5.6. 1) The coefficients aj(x,y,z) and Bj(x,y,z) are finite sums of
terms of the form p(x)p(V)f(2), where p(x) = cx; - -xi,, ¢ € R 1 < i) < max(i,j),
1 <h < ¢, p(y) = cosay; or sinay; for some 1 < j < k, hence a periodic function and
f(2) is a C™ function defined on M.
2) aj(x,y,2) = aj(y,2), —r < i, j < ny.
3) ayi(x,y,2) = constant, —r < i, j < k.
4) Bijx,y,2) =0, —r < i, j <n.

5.5 The correctors. The variables x,y,z used below are such that x,y € O, x =
(Xm---,xl),y = (ym---»yl)sz eEM.
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To simplify notations we shall denote by D,,, .., Dy, Dy, ..., D_,respectively the vec-
tor fields 53—;, . 53—1,20, ez,
We put
A(x) = —=D;a;i(x,y,2)D;.

If f(x,y, z) is a finite sum of functions periodic with respect to the variable y then we
denote by I (f)(x) the mean of f, defined by

1

W0 = fim o [y dyde

where |D,| denotes the volume of D,.
The correctors Xf (x,¥,2), 1 <j < nare defined to be C* functions satisfying

(5.6) A (x,y,2) = —Diai(x,y,2), M) =0.

They are defined as follows:
For 1 <j < n) they are defined to be the unique solutions of the problem

AX (%, y,2) = —Diaji(x,y,2), M) = 0.

Notice that, in view of Proposition 5.6,

> Divlx,y,2) = Y DiO(ij<()’k,---vy1)vZ)v 1<j<m

—r<i<n —r<i<k

which is a periodic function of mean zero and therefore the correctors , 1 <j<njare
well defined.

For n; < j < nthe correctors )/ are defined by

Xj(x’y, 7) = Z Xl(y’ 2) prj[eﬁ’ﬁlf(}l(xjfl) .. _ex|kH(X1)](X£)‘

1<0<n,
An immediate consequence of the definition is the following:

PROPOSITION 5.7. 1) A()(x/(x,y.2) —y;) =0, 1 <j <n.

2) X¥@32) =X (% 0k o) 2), 1 <j<n
)X =01<j<k
4) Ifk <j < ny, then x/(x,y,z) = x/(y,2) and is periodic with respect to y.

5.6 The homogenised operator Ly. We put
;0 = M{ay(x,3.2) — e (6 y. DX (3,9}, 1< j<n
and we denote by Ly the operator (defined in R")
Lo = ~3ig(x)9;

PROPOSITION 5.8. 1) g;i(x) = g;i(x), 1 <i,j <n.
2) gij(x) =constant, 1 <1, j < ny.
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3) i i
Z {pri |:6{‘7171KH(X[—]) . gleH(Xﬂ](X[)}

1<,u<n

qgu{prj[ef‘rlkﬂ(x/—ﬂ .. .eXIkH(Xl)](X#)}, 1<ij<n.

PROOF.  2) and 3) follow from the definitions and Propositions 5.6 and 5.7. To prove
1) let us observe that

qij(x) = WM{(Dry)ane(x,y, 2D ly; — X' (x,y, )1}
and that from the definition of the correctors ¥/, 1 <j < n, we have that
WA{IDnx' (6, y, D tne (x, 3, DDy [y — X (x, 3, )1} = 0.
Hence
(5.7) gi(x) = M{Dyly: — x'(x, y, D]etne (x, v, D¢ ly; — X (%, 3, 21}

and the proposition follows.

LEMMA 5.9. The operator Ljy = — ¥ i<;j<n, 9iq;j(x)0; is an elliptic operator with
constant coefficients in R".

PROOE. Let & = (i,...,&,,) € R", € # 0 and (¢f. Proposition 5.7)
f6,0 =&l — X' 0, D)+ + &, [y, — X" (35 2],
Then, from (5.7) we have that

> gii€y = M{DWf (3, D)ot (3, DD f (v, 2)}

1<ij<n,
and from Proposition 5.6 that
WD . D). IDWf 3 2)} = M{ES) + -+ + (Enf)}
So to prove the lemma it is enough to prove that
WAESY +- -+ (Enf’} #0

To do this, since the function (E|f)? + - - - + (E,f)? is a finite sum of C* functions
¢ (y, 7) periodic with respect to the variable y with z € M, M being compact, it is enough
to prove that there isan open U C OxM and 1 <i < psuchthat Ef(y,2) # 0,(y,z) € U.
This follows from the observation that if Eif(y,z) = 0, Y(y,z) € O X M then, since the
vector fields Ey,. .., E, satisfy Hormander’s condition, we would have that f(y,z) = c,
Y(y,z) € O x M and hence that

£ly| +"'+€fl1yn| = leI()’»ZH"“+§n1Xn'(y’Z)+C
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which is absurd since the second member of the above equality is a sum of functions
periodic with respect to y.

It follows from the above proposition that there are linearly independent vector fields
Yi,..., Y, inR™ with constant coefficients such that Lj = —(Y{+- - -+Y7 ). Let us denote
by Wi,..., W, respectively the images of Yi,..., Y, under the linear isomorphism of
R™ with a; that maps d; — X;, 1 < i < ny. Then it follows from Proposition 5.8 3)
(recall that Qy has been identified with R" and that ;W denotes the left invariant vector
field on yQ satisfying yW(e) = W, cf. Section 5.3) that

Lo=—uWi+ - +uWy)

i.e. Ly is a left invariant sub-Laplacian on Qp, which is also invariant with respect to the
natural dilation structure of Qg (cf. [12]).

The homogenised operator Ly is defined to be the image of Ly by the natural map
Qn — Ny = Qu/C (cf. Section 5.3).

5.7 The homogenization formula. Now we can state the following:

PROPOSITION 5.10.  Let ug be as in Proposition 5.2, Dy C Ny as in Corollary 5.3 and
Ly as above. Then uq can be viewed as defined on Dy and then it satisfies (0 / 0t+Ly )ug =
0in(—1,1) X Dy.

Observe that it is enough to prove the above proposition in the case when G is simply
connected. This observation simplifies the situation since when G is simply connected
and O = R". We shall not give though the details of the proof because it is exactly the
same with the proof of the homogenization formula in the classical case of uniformly
elliptic second order differential operators with periodic coefficients (cf. [4]).

The only modification is that, since in our case we deal with hypoelliptic and not
uniformly elliptic operators we have to replace D with some set of the type U X M,
where U is a very regular, in the sense of J. M. Bony [6], neighborhood of 0in O, i.e. it
is such that

(i) U = B; N B,, where B; and B, are two Euclidean balls of R" and
(ii) if x € U, hence x € B; for some i € {1,2}, v = (vy,...,v;) is the vertical unit
vector to the ball B; at the point x and the operators L.,0 < ¢ < 1 are written in
divergence form as L. = —a,-a,.fja,- then
> aj(x,z)viv; > 0.
1<ij<n

Observe that since D can be scaled down to a subset of U X M, we can indeed replace
itby U x M.

To see that not only O but every y = (y,,...,¥1) € O has such a very regular neigh-
borhood U let us observe that afj =const. | <i,j <k.Hence,if{ #0,§ = (&,,...,&1),
Ekr1 = -+ = &n = 0, then

Y aE>0,0<e<1.

1<ij<n
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So the intersection U = B; M B, of the balls B; and B, of radius M + é, centered at the
points y + M¢ and y — ME respectively, for M large and 6 small enough is a very regular
neighborhood of y.

Apart from this modification the energy proof of the homogenization formula (cf. [4])
carries through without any change at all.

6. The functions F;, 1 < j < ny, Fj;, 1 <i,j < n;. We shall use the notations
of Section 5. In particular D,, ..., Dy, Dy, ..., D_, denote, respectively the vector fields
%,..., £—],Z{),...,Z,, and d,,, ..., 0; the vector fields 33— %'

Whenever the indices i, j appear, in this section, we assume that, at the same time, we
also have O; = R.

The functions ¥¥(y,z),1 < i,j < n; and W(,2), n1 <j < ny, called second order
correctors, are defined to be C* functions that are finite sums of functions ¢(y, z) which

are periodic with respect to y and that satisfy
AW = —ay — oy + oDy’ + De(api’)
+ DX’ + De(agx) + gy + gy M@Y) = 0.
AW = —dgay; — DB + De(@gu0ux’) + 0e(ae,Dux’) +9¢eqrjy MW) =0

Notice that the second members of the above equations are indeed finite sums of C*
functions ¢(y, z), periodic with respect to y and with zero mean and therefore the func-
tions ¥, 1 <i,j <njand ¥/,n; <j < n, are well defined.

We put

Fi(x,,2) =% — X(1:2),

Fi(x,2) = eFj(r.ax,7x,2), 1<j<m,0<e<l

Fi(x,y,2) = x — X x,52) —¥(,2),
Fj(x,z) = E2Fj(TE--1x,TE—1X,Z), n <j<m, 0<e<1.

Fi(x,y,2) = xixj — xiX (0, 2) — 5% (0, 2) — ¥/ (1, 2),
Fy(x,2) = €Fj(raxmax2), 1<ij<n, 0<e<1.

Then we have

6.1) LF(x2) =Ly, 1<i<nm, 0<e<l,
L.Fj(x,2) = Lyxixg, 1<i,j<n, 0<e<]1

and

(6.2) F)—x, 1<j<m, Fjxz—oxy 1<ij<m

as £ — 0, uniformly on the compact subsets of O X M.
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7. The rescaling argument and the Harnack inequalities. In this section, we
shall adapt a rescaling argument of M. Avellaneda and F. H. Lin [2], [3] and then we
shall use this argument to prove certain Harnack inequalities for the positive solutions of
the equation (d/9¢ + L)u = 0. In particular, we shall prove Theorem 1.

We use the notation of Section 5.

The functions Ff, 1 <j<npand Ffj, 1 <i,j < n are as in Section 6. The balls D,
and D are as in Section 4.

From Lemma 7.1 through Lemma 7.4, when we use the indices i, at the same time
we assume that O; = Q; = R.

LEMMA 7.1. Forall u € (0,1) there are 8 € (0,1), ¢ € (0, 1) and ¢ > O such that
forall 0 < e < gy and all functions u. satisfying

Jd .
(5+L)w =0 in (1) xD, fufjoo <1

we have that
(7.1)

sup
(tx2)€(—02,0)x Dy

ut,x,2) —Ag— > AfFj(x,2) — A%t
1<j<n,
- 2 AFix— Y AF(x z)\ <o
1<ij<n, nm<j<n,

where Ag, A%, A}, 1 <j < ny, A}

i 1 <i,j < ny are constants satisfying

|Ag| < ¢, |A

<o A <, 1<j<m, |Af| <c, 1<i,j<m

and

<%+LE)[A%+ > AR+ Y A;pj,(x,z)]:o

1<iy<n, i <j<n,

PROOF. First we observe that there is u’ > p and ¢ > 0 such that for all § € (0, 1)
and u satisfying

d :
(E +LH)“ =0in(=1,1) x Dy, lufloo <1

we have that
(7.2)

sup ‘u(t, x2) —A)— 3 x— A%
(1.x,2)E(—62,02)X Dy 1<j<n,

- Z Agxixj — E AJQ)CJ" < C92+“/
1<ij<m m<j<n,
where A7, A°, A, 1 <j < nz,A?j, 1 <i,j < n are constants satisfying

A <c A% < e, A0 <, 1<j<my |AY <e 1<ij<m
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and
(% +LH) [A0t+ Z Ag.xixj + Z A;)xj] =0.

1<ij<m n<j<ny

This follows from the fact that the homogenised operator Ly is hypoelliptic (cf. [6]).

Let us fix these values of 8 and c. If (7.1) weren’t true then there would a sequence
of functions u.,,, £, — 0, (m — 00) not satisfying (7.1). We can assume, by extracting
a subsequence if necessary that, u.,, — up, (m — 00) uniformly on the compact subsets
of (—1,1) x D, and then u would satisfy (7.2).

Let us take A" = A%, Aj" = AQ, A" = A, 1 < j <my, A7 = A}, 1 < i,j < ny.
Then using the assumption that the functions u,.,, do not satisfy (7.1) and passing to the
limit we have that

> < sup u(t,x,2) —AJ— Y A?xj — A%

(1,x,2)E(—062,6°)x Dy 1<j<n
0y 0. 244
- Y Axx— ¥ ij,’<c0
1<ij<m n<j<ny

for all 6 € (0, 1) which is absurd. Hence the lemma.
LEMMA 7.2. Let 0, i and €g be as in Lemma 7.1. Then there is a constant ¢ > 0 such
that forallm € N and € € (—1,1) such that ¢ < 6" 'y and all u. satisfying

d .
(& +L5>u5 =0in (=1, D) xD, |ufoo <1

we have that

sup ut,x,z) — A" — 3 Aj‘?"”Ff(x, 7) — A"t
(1.3) (tx,2) E(—67" 02 ) X Dy 1<j<n,
— Z Afjmpfj(x, 7) — Z Aj‘me(x, )l < g+
1<ij<nm n<j<n,

where Ag"™, A*"", A;"", 1 <j<nmy, Afj"", 1 <, j < ny are constants satisfying

A5 <, |A"] <, |AT <, 1 <j<m, |A7"| <c, 1 <4, j<m
0
(5 +L)[ames 3 AR+ B ATE"w)| =0

ot 1<ij<n n<j<m

PROOF. The lemma will be proved by induction. For m = 1 we are in the case of
Lemma 7.1. So assume that (7.3) is true for some m € N. We put
(7.4)
we(x,2) = 0" 4 (0°™t, Tgnx, D-A" - D A7 (Tgnx, 7) — ASTGPmy
1<j<n,

S APFerrd - Y A7FGrxd).

1<ij<m n<j<ny

https://doi.org/10.4153/CJM-1992-042-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1992-042-x

718 G. ALEXOPOULOS

Then we have that

0 .
<87 +L59~m)wg =0in (=L, 1)x D, |lw.]loo < 1.
Therefore it follows from Lemma 7.1 that, for é0~™ < ¢, we have that

(1.5)

sup  |wet,x,2)—By— Y BiF'"(x,2)— Bt
(1x,2)€(—62,62)xDy I<j<n
—= Y B - Y BE(ny <o
1<ij<n, n<j<n,
with
By <c, |B| <c |Bj| <, 1 <j<m,|Bj|<c,1<ij<n
a - - -m - —m
(E +L597rn)|iB“t+ > B;ijf’ 2+ Y B;Fj" (x,2)| =0.
1<ij<n, n<j<ny
Let us put

A(s),m+l _ A(e),m +9M(2+A‘JBE‘)A5""+1 =A"" +0™B°,
A;”"” = A" +9’"“+‘”Bj, 1<j<n,
A;""H =A;‘m +0"™B;, n <j<n,
AL = AT @B, 1< i<y,

Then putting (7.4) and (7.5) together we have that

sup 9""(2“‘).145(02”'1‘, TnX,7) — Ag‘”’” - > A;'mHF;(Tgm)C, 2)
(16,2)€(—62,6%) X Dyn 1<j<m

_ AE,m+lt _ Z A:}‘m*’lFfj(Tgmx, Z) _ Z A;""HF;(Tgmx, Z)’ < 92+/L

1<ij<n n<j<n,
and from this that
sup )u((t,x, Z) . A(’c)JVH‘l _ Z A;-,m+le(x, Z) o Af,m+lt
(t,x,z)e(—Bl"""'),ez""*")xDL,,H, ISS"I
g,m+l e,m+l e +1)(2+
— Z Aum F‘fj(-x’ Z) _ Z A] m F;(x, Z) < H(In )(2+p)
1<ij<n m<j<ny

which proves the inductive step and the lemma follows.

COROLLARY 7.3. Let €y be as in Lemma 7.2. Then there is ¢ > 0 such that for all
€ € (0, e0] and all u. satisfying

d .
(é? +Lg>u5 =0in(—1,1) x D, |juflos <1
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we have that

- €\?
(7.6) sup w(tx )= A= ¥ AF x| <o)
(txE(-(SP(5 XD < 1<j<m fo

where Ag, A, A;, 1 <j < ny are constants satisfying

45| < ¢, |A°] < c,

Al <c 1<j<n.

LEMMA 7.4. There is a constant ¢ > Q such that for all u satisfying

(% +L)u=0in (-K,R) x Dp, R>1

we have that

(7.7) sup

1 : c
ut,x,2) = Ao — — Y Al — X (%2 < =5 llullo
(tx2)E(=1,1)xD R

1<j<nmy

where Ay, A;, 1 < j < ny are constants satisfying

Ao < ¢, 4] <¢, 1 <j<ny.

PROOF.  The lemma follows from Corollary 7.3 and the observation that if u satisfies

d
(é—t+L>u —0in(—R%.R) x Dp, R>1

then the function u. defined by u.(t, x,z) = u(R*t,7gx,2), € = 1 /R satisfies

(% +L5)u5 = 0in(~1,1) x D.

Let us recall that we have fixed a basis {X,...,X1,%,...,Z_,} of g, with
{Xn,..., X1} abasis of q as in Proposition 3.3 and {Z, ..., Z_,} a basis of m. We have
also identified the elements of g with the left invariant vector fields on G and if X € g
then we denote by y X the left invariant vector field on Gy (G and Gy have been identified
as differential manifolds) satisfying yX(e) = X(e) (cf. Section 3). Note that yX; = X,
1<i<k

We put

H=2Z+ 5 ZONX, —r<i<0, H=Xi+ Y XOnX, 1<i<k
k<j<n; k<j<n,

We have the following proposition, which follows from (7.7) and the fact that L is
hypoelliptic (cf. [6]).
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PROPOSITION 7.5. There is ua constant ¢ > 0 such that

Xiu0,0) < Bl 1< i<,
[Zu@. )] < Zlluloo —r <i<0
)a w0, e)‘ 2Hu||oo, IXiu(0, ¢)| < 2Hu||oo, m<i<n
|X;Hiu(0, )| < Rgllullo@, —r<i<kl1<j<n,
ZHuO.0)| < o lulloo, —r <i<hk—r<j<0
for all u satisfying

(—g; +L)u — 0in(—R%,R%) x Sg(e,R), R>1.

We shall need the following result of L. Saloff-Coste [19]:

THEOREM 7.6 (cf. [19]). Givenany 0 < a < b < 1,0 < v < 1 there is a
constant ¢ > 0 such that for all (s,g) € R X G, R > 0 and every positive 0 < u €
C®([s — R?,s] x Sg(g, R) satisfying 9/t + Lyu = 0 in (s — R, s) X Sg(g, R) we have

u(t,y) < cu(s,g), (t,y) € [s — bR*, s — aR*] x Sg(g,YR).

An immediate consequence of Proposition 7.5 and Theorem 7.6 is the following re-
sult, a particular case of which is Theorem 1.

THEOREM 7.7. For every integer { > 0and 0 < a < b < 1 there is a constant
¢ > 0 such that forallt > 1

iaZZu(at x)‘<ct “Yubtx), —-r<i<o
'ateXu(at 0| e Hupry, 1<i<n
\a,Xu(at x)’ <"y, m<i<n

l&’ ,NXu(atx)\<ct b, x), —r<i<o, k<j<n
lg—pX,-NXju(at,x)l <erubrx), 1<i<n k<j<n

‘aZXHu(atx)'<ct“[ Yubt,x), 1<i<n, —r<j<k

‘WZ,-Hju(at,x)‘ <o lubnx), 1<i<n, —r<j<k

forall u> 0 such that (3/0t+ L)u = 0 in (0,1) X Sg(x, /1)
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8. The proof of Theorem 2. It is easy to see that the Riesz transforms R; = EiL_%,
1 < i < p and their adjoints R} = L‘%Ei, 1 <i < p are bounded in L2, This follows
from the observation that

R 1 _1
> Rl == 3 EL 0. L770) = (Lip, L7 p) = [l
1<i<p 1<i<p

So we only need to prove that they are bounded from L' to weak-L". Then by interpolation
we can prove that they are bounded on L1,1 < q < 2 and by dualityon 11,2 < g < 00
(cf- [19]).

We put Y(f) = dg-measure (SE(e, t)).

We denote by X”K(x, y) the derivative of the kernel K(x,y),x,y € G with respect to
the vector field X and the variable y.

We say that the kernel K(x, y) satisfies standard estimates if there is a constant ¢ > 0

such that
C

8. 1) [Kxy)| < i |EK(x,y)| < 2 xy€G, 1<i<p.

¥(dx,y) dp(x, y)Y(de(x, )’
We recall the following Gaussian estimate for the heat kernel p,(x,y) (i.e. the funda-

mental solution of the equation (9 / ot + L)u = 0) due to N. Th. Varopoulos [24] (which

we state here in a less sharp form):

there are constants ¢y, c; > 0 such that

d2(x,) )
cit

(8.2 7(vD) ™ exp( < i)

xy€G,t>0.

2
<en (! exp(—d——fg;y ) )

Moreover since the operator L is self adjoint the heat kernel p,(x, y) is symmetric, i.e.

pix,y) = pi(y, %), x,y € G, 1 > 0.
We also recall the following small time Harnack inequalities also due to

N. Th. Varopoulos [24]:
For all integers £, u > 0 and 0 < a < b < 1 there is a constant ¢ > 0 such that

af
(8.3) |55 Ejuat, 0] <o Fubr, x€G,0<r<1

for all u > 0 satifying (9/9t+ L)u = 0in (0, 1) X Sg(x, /7).
Let T;,t > 0 be the semigroup of operators associated to L, i.e. Typ(x) =

P, y)p(y) dt.
Then

Rip) = [T ET (0 dn Ri(p) = [ T TUEp)ar.

Hence the kernels K;(x,y) and K} (x, y) of the operators R; and R} respectively, 1
i < p, are given by

4 Koy = [TEpyd, Ky = [T Epx ) d.

IA
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Moreover
00 _— 00 1o
8.5) E}VKi(x, y) = [0 t’%EJYEfp,(x, y) dt E;K,« (x,y) = [0 t QE;E:p,(x, y) dt.
It follows from (8.3) and (8.4) and Theorem 1 that there is ¢ > 0 such that

C *
(8.6) |Ki(x,y)| < " , [Ki(xp)] < xy €G.

c

(de(x,y) Y(de(x, )’

The operators R;, 1 < i < p. We observe that the function u(t, y) = Ejp,(x, y) satisfies

€] / dt + Lyu = 0. Hence applying Theorem 1 twice we can see that the kernel K;(x,y)

satisfies the standard estimates (8.1). Now, applying the theory of singular integral op-

erators on spaces of homogeneous type developed in [9] we get that the operators R;,
1 <i < p are bounded from L' to weak-L!.

The operators R;,1 < i < p. The problem in this case is that the estimates (8.1) are
not satisfied by the kernels K} (x, y) of the operators R}, 1 < i < p. This is due to the fact
that as we have seen in Section 1, the inequalities (8.2) are not true for £ > 2,7 > | and
therefore we do not have the appropriate estimates for the E; E;pi(x,y), 1 <i,j < p.

To get around this difficulty we shall consider the operators

1 00 1
To(e) = [ i TE@)dr Ta(e) = [ 1 TiEp) dr

whose kernels, also denoted by Tjo(x, y) and T;;(x,y) , are given by

L % R
To(y) = [ T Epxydr, Tawy) = [ 173 Elpxy)dr.

Clearly RY = Tjo + Ti1. We shall prove that both Tj and 7;; are bounded from L' to
weak-L', 1 <i<p.

The operators Ty, 1 < i < p. We observe that the kernel of the operator Tj is
integrable at infinity and singular near the diagonal. Actually it is the part of the kernel
of the operator R} that is singular near the diagonal. Hence it is bounded on L*. Also
using the inequalities (8.3) we see that the kernel Tjy(x, y) satisfies the standard estimates
(8.1). So, arguing in the same way as in the case of the operators R;, we can prove that
the operators Tjy are bounded from L' to weak-L'.

The operators T;;, 1 < i < p. From now on, as in Section 7, when we use the index j
we assume that at the same time O; = R.

We shall need the following lemma whose proof will be given at the end of this section.

LEMMA 8.1. For all k < j < n the operator Wi(p) = [{° t’%T,(NXjnp) dt, whose
kernel, also denoted by Wi(x,y), is given by Wj(x,y) = [° 3 NX; pi(x, y)dt is bounded
on L? and since Wj(x,y) (which is a kernel integrable near the diagonal and singular at
infinity) satisfies the standard estimates (8.1), W; is bounded from L' to weak-L".

The L' to weak-L! boundedness of T;; follows easily from the above lemma. Indeed,
since the functions E;x/, k < j < n; are bounded, the operators W;Eix’ (f) = Wj((E,-xf f )
are bounded on L2 and from L' to weak-L!.
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Let us put
T=Ta+ Y, WEx,H=E+ Y (ExX\)nX.
k<j<n, k<j<m

Then T is bounded on L? and its kernel, also denoted by T(x, y) is given by

Ty = [ e Wp sy dr.

Now it follows from Theorem 7.7 that T(x, y) satisfies the standard estimates (8.1). Hence
T is bounded from L' to weak-L'. This, together with the fact that the operators W;E;x/,
k < j < nj are bounded from L' to weak-L!, implies that the operator T}, is bounded
from L' to weak-L', which completes the proof of Theorem 2.

9. The proof of Lemma 8.1. Of course Lemma 8.1 can be proved using some ver-
sion of the T1 Theorem for spaces of homogeneous type (cf. [7], [10], [17]). We shall
not follow this approach though. Instead we shall try to explain how the proof given in
G. David and J. L. Journé [11] (in particular Section III of that paper) can be adapted in
our case. The reader is referred to that paper for the omitted details.

To simplify things we shall work with the control distance d(x, y) asssociated to the
the basis {X,,...,X1,Z,...,Z_,} of g instead of the control distance dg(x, y) associated
to the fields {E\, ..., E,} (¢f. Section 4). For t > 1 the estimates (8.2) are still valid with
dg(x,y) replaced by d(x, y).

We put S(x,7) = {y € G,d(x,y) < t},t > 0.

The kernel W(x, y) is integrable near the diagonal and singular at infinity. Furthermore
it is a standard kernel, since it follows from (8.2) and Theorem 7.7 that there is a constant
¢ > 0 such that

C
8.7 Wilx,y)| < ——m,
( ) , J(x y)] ’Y(d(x,y))

[P W(x,y)| < . [P Wi y)| <

C C
d(x, yyy(d(x,)) d(x, yyy(d(x,))

forall x,y € G, d(x,y) > 1.
Let W} the adjoint of W;. Then we have

(8.8) Wil =0, Wl =0.

Indeed, that W;1 = 0 follows from (8.7) (cf. [11]). To see that W;'1 = 0 let us write W; as
the limit,as A — oo, of the operators Wy; whose kernels are given by " 3 NX; pix,y) dt.
Then, that WJ’-*l = 0, follows from (8.7) and the observation that W;jl =0,A>1.

Let d be as in Section 4.

Letf € C((—1,1)).f >0,/ f(x)dx = landforg = xz,2 € M,x = (xp,...,x1) € Q
(¢f. Section 3) put h(g) = Ili<i<n0-rf(x:) and

l s
pil®) = 5gh(r(®)), i20,i€l.
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Let U be an open neighborhood of e which is the diffeomorphic image of a convex
neighborhood U’ of 0 under the exponential map

(Xns o3 X1,200 -5 2-p) — €XPOX6u Xy + -+ 01Xy + 2020 + - - - + 2,2 ).

LetD=n+r+1.

Let i’ € C(U),h >0, [h'(g)dg = 1.

Forg € U,g = exp(xnXn+- - +x1X1 +20Z0+- - +2-+2_;),(Xn, ..., X1,205 .-, 2—r) €
2iU" we put

1 .

pilg) = ﬁh’(eXp[Z"(x,,X,, +ox Xy 42020+ +2,Z))), i<0,i€Z
and p;(g) = O for all the other g € G.

We put

Vi =Y — Y, (€L

We also put

pis)=1,0<s<2,i<0,i€Z
pis) =2, 2<s<1,i<0,i€?
2i
p,'(s)zﬁ,s>1,i<0,i€Z
pils) =274 0<s<2,i>0,i€Z

1

2 . .
p,»(s)zs—dﬁ, s>2,i>0,ie”.

Using the notations of [11], we denote by S;, T;, T}, T} the operators whose kernels
also denoted by Si(x,y), Ti(x,y), T/(x,y), T/'(x, y), are given by

Si63) = [ @)W, yw)piw) dvw

Tix.y) = [ [ i)W, ywyistw) dvaw, Tix,) = [ [ wio)Wv, yw)piow) dv dw
T/ = [[ )W, ywyvow) dva.

We have that

M;<N7}+T{+7'{' =S m—Snu, N,MEN.
M<i<

Observe that if K is a compact K C G, then there is ¢ > 0, ¢ = ¢(K, h, h’) such that

8.9  |Six,y)| < // @i(v)(l—d(—c—)yﬁlNXjapi(wN dudw <274 xyck.
+d(v,w

Hence the operators S; converge weakly to 0 as i — 00. On the other hand, as i — —oo,
the S; converge to W;. So, the operator ¥__y<;<y T + T} + T’ converges weakly to W, as
i — o0. It follows that to prove that W; is bounded on L2, it is enough to prove that the
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operators 7;, T/, T;', i € Z are bounded on L? and that the sums > _y<i<n Tis ¥ —m<i<n T
and ¥_y<;<n T/ converge strongly to bounded operators. To do this we have to apply
Cotlar’s lemma to the sequences of operators {7;}, {7/} and {7/} (¢f. [11]). For this, we
need the following estimates for the kernel T;(x,y) ( it can be proved in the same way
that the kernels 7}(x, y) and T/ (x, y) satisfy similar estimates too)

(8.10) |Tix,y)| < epi(d(x,))

ITl(x’y) - Ti(xl’y)l + |Ti(y’x)—Ti(y’x,)|

(8.11) dex ,
< cmin(l, %) [Pi(dx.y)) +pild(¥.y))]

(8.12) /T,-(x,y)dy =0, x€G

(8.13) /T,-(x,y)dsz, yEG

(8.13) follows from (8.8) and (8.12) from the fact that {{(w)dw = 0.
To prove (8.10) we shall distinguish different cases. When i < 0, d(x,y) < 2°10 then
(8.10) follows from the fact that the kernel T;(x, y) is integrable near the diagonal.
When i < 0, 2110 < d(x,y) < 1 then (8.10) follows from the observation that since
S iw)dw = 0,

T | = | [[ i)W 0, ) — Wi, o) v |
<2 // ©iW)|Vi(w)| dvdw = 2.

When i > 0, d(x,y) < 210 then (8.10) follows from (8.9).
When i > 0, d(x,y) > 2110 or i < 0, d(x,y) > 1 then (8.10) follows from the
observation that since f; Yy(w)dw = 0

T ] = | [ i)W, yw) — WiGaow, 301w dv )

21’
S CW // (p,‘(V)dJ,'(W)dVdW = CW.

To prove (8.11) we observe that we can assume that d(x, x') < 2/, because otherwise
it follows from (8.10). The next thing to observe is that if ¥ € {X,,,...,X;,Z,...,Z_,}
and Yy is the right invariant vector field on G such that Yz(e) = Y(e) then

PTien| = | [[ i)W yw) Ye(w) dv d
and arguing in the same way as for (8.10) we get

(8.14) [PTi(x,y)| < c2'pi(d(x,y)).
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Similarly
(8.15) YT p| = [[(rpdmIWitx, ywiti(w) dvw| < 2pi(d(x,)).

Now to prove (8.11) it is enough to to join the points x and x’ with a piecewise smooth
curve Y(t) of length |¥| < 2/2 (cf. Section 4) and then use (8.14) and (8.15).

Once we have (8.10), (8.11), (8.12) and (8.13), then we can prove (cf. [11]) that there
is ¢ > 0 such that

ITiTi e + T Tellizge 271, b€z

an estimate which allows the application of Cotlar’s lemma to the sequence of operators
{T;}. For the sequences of operators {7} and {T!'} we can argue in a similar way.
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