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1. Introduction. A ring R is called right PCI if every proper cyclic right R-module
is injective, i.e. if C is a cyclic right /?-module then CR = RR or CR is injective. By [2] and
[3], if R is a non-artinian right PCI ring then R is a right hereditary right noetherian
simple domain. Such a domain is called a right PCI domain. The existence of right PCI
domains is guaranteed by an example given in [2]. As generalizations of right PCI rings,
several classes of rings have been introduced and investigated, for example right CDPI
rings, right CPOI rings (see [8], [6]). In Section 2 we define right PCS, right CPOS and
right CPS rings and study the relationship between all these rings.

In Section 3 we consider rings each of whose cyclic right modules is a direct sum of
an injective module and a semisimple module (briefly, CIS rings). By [4, Theorem 2.6], a
ring R is CIS if and only if R is a generalized uniserial ring with J2 = 0, where J is the
Jacobson radical of R. We shall prove that a ring R is CIS if and only if every right
/^-module is a direct sum of a projective module and a semisimple module.

2. Definitions and results. Throughout, rings mean associative rings with identity
and all modules are unitary. For a module M over a ring R, we write MR to indicate that
M is a right /?-module, the socle of M is denoted by Soc(M). If M = Soc(M), M is called
semisimple. Following Smith [8], a ring R is called right CPOI (resp. right CDPI) if every
cyclic right i?-module is projective or injective (resp. a direct sum of a projective module
and an injective module). Clearly there are implications:

right PCI => right CPOI => right CDPI.

Now, a ring R is called right CPS if every cyclic right R-module is a direct sum of a
projective module and a semisimple module. Further, a ring R is called right PCS if every
proper cyclic right R-module is semisimple. Finally, a ring R is called right CPOS if every
cyclic right /?-module is projective or semisimple. From the definitions we easily see the
implications:

right PCS ^ right CPOS => right CPS.

THEOREM 1. Let R be a ring with Jacobson radical J.
(I) The following statements hold:
(a) Ris a right CPOI ring if and only if R is right CPOS with J = 0;
(b) R is right CPOS with J # 0 if and only ifRR = U@S, where UR is uniform having

(composition) length 2 and SR is semisimple;
(c) R is right PCI if and only if R is right PCS with J = 0;
(d) R is right PCS with J =£ 0 if and only if J is the maximal and minimal right ideal

ofR.
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(II) If R is right CPS then the following conditions are equivalent:
(i) R is right CDPI;

(ii) JR is projective;
(iii) R is right non-singular.

For the proof of Theorem 1 we need the following lemma.

LEMMA 2. Let R be a right CPS ring with Jacobson radical J. Then:
(a) RR is a direct sum of noetherian uniform modules;
(b) JR is semisimple.

Proof. By [1, Theorem 3.1], every right CPS ring is right noetherian. Hence R has
the following decomposition

RR = exR ©. . . 0 enR,

where {e,}"=i is a set of orthogonal idempotents of R and each etR is indecomposable. We
shall show that each etR is uniform.

We set e = e,- for a fixed i and consider the right R-module eR. Let M be a non-zero
submodule of eR. By assumption there are submodules Mu M2 of eR containing M such
that

eR/M = MJM © M2/M,

where MJM is projective and M2/M is semisimple. It follows that eR/M2 is projective.
Hence eR = M2®C for some submodule C of eR. Since eR is indecomposable, C has to
be zero, i.e. eR/M is semi-simple. Now let H be a submodule of eR with MC\H = 0.
Then there exists a submodule B of eR containing M such that

(M + H)/M.

From this it follows that eR = B®H. Hence H = 0, showing that eR is uniform, i.e. (a)
holds.

For (b), let /(e,i?) be the Jacobson radical of e,i?. Then

J = J(eiR)®...®J(enR).

By (a), for each non-zero submodule M of etR, efi/M is semisimple. Therefore M is an
intersection of finitely many maximal submodules of etR. It follows that M 2/(e,7?). This
shows that J{etR) is simple if J{etR) is non-zero. Thus JR is semisimple.

Proof of (I) of Theorem 1. (a) Let R be a right CPOI ring. By [6, Theorem] or by [8,
Theorem 2.12], R =A (B B, where A is a semiprime artinian ring and B is a right CPI
domain. Then B is right noetherian and for each non-zero right ideal Bt of B, B/Bx is
fl-injective and each of its submodules is injective too. Therefore B/Bt is injective and
semisimple. From this we can easily see that R is right CPOS with / = 0.

Conversely, let R be right CPOS with / = 0. Then, in particular, R is right CPS. By
Lemma 2,

RR = e1R®...®enR, (1)
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where {e,}r=i is a set of orthogonal idempotents of R and each etR is uniform. If R is right
artinian R is semisimple, in particular R is right CPOI. Suppose now that R is not right
artinian. Then there is an etR, exR say, which is a non-artinian right R-module. Therefore
e^R contains a non-zero submodule M with M # e^R. Since e^R is uniform, for such a
submodule M of e ^ , exRlM is semisimple by hypothesis. Hence Soc{e{K) = 0. Since

i?/M a ejfl/M © e2/? ©.. .©<;„«

with non-projective e^R/M, R/M has to be semisimple. Hence

R) = e2R ©. . .

Put B = etR; we have flR = ,4 © B with Soc(B«) = 0. Clearly BA = 0. Furthermore, since
(AB)2 = A(BA)B = 0, it follows that AB c / = 0, proving that B is also an ideal of R. This
shows that R is a direct sum of a semiprime artinian ring A and a right CPS domain B.
Now, for each non-zero right ideal H of B, B/H is a semisimple right B-module. By [8], it
follows that B is a right V-ring, i.e. each simple right B-module is injective. Hence B/H is
an injective right B-module, proving that B is a right CPI domain. By [6, Theorem] or by
[8, Theorem 2.12], R is right CPOI.

(b) Let R be a right CPOS ring with /=£(). As above, RR has a decomposition (1).
Since / ^ 0 , there is an etR, exR say, such that exR is not simple. Let M be a proper
non-zero submodule of exR. Then as we have seen above, etR/M is semisimple and
non-projective. Therefore S = e2R © . . . © enR is also semisimple. We have / c exR.
Hence by Lemma 2 and by the uniformity of exR, JR is simple. In particular R is right
artinian; so EndR(etR) is a local ring; it follows that exR has a unique maximal
submodule. Hence / is the maximal and minimal submodule of exR, or in other words,
etR has composition length 2. Put U = exR and we have the decomposition of R in (b).

Conversely let R be a ring with a decomposition as in (b). Then the Jacobson radical
/ of R is the minimal submodule of UR. Let A be a non-zero right ideal of R. It is enough
to show that either AR is a direct summand of RR or R/AR is semisimple. Suppose that AR

is not a direct summand of RR. Then A f l / ^ 0 . It follows that / c.A; therefore ^A4R is
semisimple.

Since every right PCI (resp. right CPS) ring is a right CPOI (resp. right CPOS) ring,
one can easily prove (c) and (d) by using (a) and (b), respectively.

Proof of (II) of Theorem 1. (i) => (Hi) is clear.
(iii)=>(ii). By Lemma 2, JR is semisimple. Let M be any minimal submodule

of JR. Then for some non-zero meM, M = mR. Hence MR = R/r(m), where
r(m) = {x e R:mx = 0}. By (Hi), r(m) is not essential in RR. It follows that RR = r{m) © H
for some right ideal H of R which is 7?-isomorphic to MR. Hence MR is projective, proving
that JR is projective.

(ii)z>(i). Assume (ii). By Lemma 2, /RcSoc(/?R). Then / 2 = 0 and Soc(RR) =
JR © H, where HR is a direct sum of finitely many minimal right ideals of R (because a
right CPS ring is right noetherian having finite uniform dimension). Thus we can easily
check that HR is generated by an idempotent of R. Hence Soc(RR) is projective. To end
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the proof it is enough to show that any non-projective simple right /?-module is injective.
Let S be such a module and U a right ideal of R with a homomorphism cp of UR to SR. We
show that q> can be extended to an R -homomorphism of R to S. Without loss of
generality, we can assume that UR is essential in RR. If cp(U) = 0, the assertion is trivial.
Suppose that cp(U) # 0. We have 5 s= [//ker cp. If ker cp is not essential in UR then
UR = ker cp © T. Hence T^Soc(RR); so TR is projective, a contradiction to the
non-projectivity of SR (= TR). Hence ker cp has to be essential in UR. It follows that ker cp
is an essential right ideal of R. Since R is right CPS, it follows that R/ker cp is semisimple.
Hence there is a submodule L of i?R containing ker qp such that

RR/ker cp = t//ker <p © L/ker (p.

Therefore R = L + U, ker (p = L n U, R/L = f//ker ipsS . Combining these facts, we get
that cp is extended to a homomorphism in HomR(7?K, SR), proving the injectivity of SR.

The proof of Theorem 1 is complete.

EXAMPLES. Let U and C be the fields of real and complex numbers, respectively.
Then the matrix ring

R-\U Cl

Mo cJ
has a decomposition RR = U(BS, where (/= , 5 = . Clearly UR is

uniform, having composition length 2, and SR is simple. Then, by Theorem 1 (I), (b), R is
a right CPOS ring. Moreover, R has the following properties:

(1) R is not a direct sum of a semiprime artinian ring and a right PCS domain;
(2) R is not a right PCS ring;
(3) R is not a right CPOI ring;
(4) R is a right CPS ring which is not right CDPI;
(5) the ring theoretic direct sum R © R is a right CPS ring which is not right CPOS.
The above assertions can be proved easily by using Theorem 1.
Denote by Z the ring of integers. Then Z/4Z is a PCS ring which is not PCI.
We do not know an example of a right noetherian right CDPI ring which is not right

CPS. We also do not know whether any right CDPI ring is right noetherian.

3. Characterizations of CIS rings. A module M is called uniserial if the set of
submodules of M is linearly ordered. A ring R is said to be right generalized uniserial if it
is right artinian and RR is a direct sum of uniserial modules. A generalized uniserial ring is
a ring which is right and left uniserial.

THEOREM 3. For a ring R with Jacobson radical J the following conditions are
equivalent:

(a) every cyclic right R-module is a direct sum of an injective module and a
semisimple module;
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(b) every right R-module is a direct sum of an injective module and a semisimple
module;

(c) every right R-module is a direct sum of a projective module and a semisimple
module;

(d) R is a generalized uniserial ring with J2 = 0.

Proof. (a)O(b)t>(d) are proved in [4, Theorem 2.6].
(d)^(c) . Assume (d). Let M be a right R-module. By [5, Theorem 25.4.2],

Af = ©,Af,, where each Af, is a finitely generated uniserial module. By [5, Theorem
18.23], for each Af,-, there exists a primitive idempotent e, and a submodule F of eft such
that Af, = e,/?/F. Since, by [4, Theorem 2.6], the length of eft is at most 2, M, is
projective or simple. Hence Af is a direct sum of a projective module and a semisimple
module.

(c)=>(d). Assume (c). By a well-known theorem of Kaplansky, every projective
module is a direct sum of countably generated modules. Hence (c) says that every right
/?-module is a direct sum of countably generated modules. Hence by [5, Theorem 20.23],
R is right artinian. Since R is right CPS, by Lemma 2, JR is semisimple and hence
J2 = 0. Also, by Lemma 2, RR = eft © . . . © enR, where {e,}"=1 is a set of orthogonal
idempotents of R and each eft is uniform. Suppose that, for a fixed i, the length of eft is
greater than 1 and let Af be the minimal submodule of eft. By (c), eft/M is semisimple,
i.e. Af is an intersection of maximal submodules of eft. But since R is right artinian, eft
has a unique maximal submodule. It follows that Af is a maximal submodule of eft. This
shows that the length of eft is 2. Further, denote by E(eft) the injective hull of eft. By
(c), E(eft) has to be projective because eft is uniform and not simple. By [5, Theorem
20.15], E(eft) is isomorphic to some eft with l < ; < n . Hence E(eft) has length 2. It
follows that E(eft) = eft, i.e. eft is injective. Now (d) follows from [4, Theorem 2.6].

The proof of Theorem 3 is complete.

We note that the statements of Theorem 3 are left-right symmetric. For short we call
a ring in Theorem 3 a CIS ring. One can prove that a ring R with nilpotent Jacobson
radical / is generalized uniserial if and only if R/J2 is a CIS ring.

Since a right PCI domain is not CIS, Theorem 3 is not true if the condition (c) is only
required for cyclic right R-modules.
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