RINGS CHARACTERIZED BY CYCLIC MODULES

by DINH VAN HUYNH and PHAN DAN

(Received 22 October, 1987; revised 10 June, 1988)

1. Introduction. A ring R is called right PCI if every proper cyclic right R-module is injective, i.e. if C is a cyclic right R-module then $C_R \cong R_R$ or C_R is injective. By [2] and [3], if R is a non-artinian right PCI ring then R is a right hereditary right noetherian simple domain. Such a domain is called a right PCI domain. The existence of right PCI domains is guaranteed by an example given in [2]. As generalizations of right PCI rings, several classes of rings have been introduced and investigated, for example right CDPI rings, right CPOI rings (see [8], [6]). In Section 2 we define right PCS, right CPOS and right CPS rings and study the relationship between all these rings.

In Section 3 we consider rings each of whose cyclic right modules is a direct sum of an injective module and a semisimple module (briefly, CIS rings). By [4, Theorem 2.6], a ring R is CIS if and only if R is a generalized uniserial ring with $J^2 = 0$, where J is the Jacobson radical of R. We shall prove that a ring R is CIS if and only if every right R-module is a direct sum of a projective module and a semisimple module.

2. Definitions and results. Throughout, rings mean associative rings with identity and all modules are unitary. For a module M over a ring R, we write M_R to indicate that M is a right R-module, the socle of M is denoted by Soc(M). If M = Soc(M), M is called semisimple. Following Smith [8], a ring R is called right CPOI (resp. right CDPI) if every cyclic right R-module is projective or injective (resp. a direct sum of a projective module and an injective module). Clearly there are implications:

right PCI ⇒ right CPOI ⇒ right CDPI.

Now, a ring R is called right CPS if every cyclic right R-module is a direct sum of a projective module and a semisimple module. Further, a ring R is called right PCS if every proper cyclic right R-module is semisimple. Finally, a ring R is called right CPOS if every cyclic right R-module is projective or semisimple. From the definitions we easily see the implications:

right PCS ⇒ right CPOS ⇒ right CPS.

THEOREM 1. Let R be a ring with Jacobson radical J.

- (I) The following statements hold:
- (a) R is a right CPOI ring if and only if R is right CPOS with J = 0;
- (b) R is right CPOS with $J \neq 0$ if and only if $R_R = U \oplus S$, where U_R is uniform having (composition) length 2 and S_R is semisimple;
 - (c) R is right PCI if and only if R is right PCS with J = 0;
- (d) R is right PCS with $J \neq 0$ if and only if J is the maximal and minimal right ideal of R.

Glasgow Math. J. 31 (1989) 251-256.

- (II) If R is right CPS then the following conditions are equivalent:
 - (i) R is right CDPI;
- (ii) J_R is projective;
- (iii) R is right non-singular.

For the proof of Theorem 1 we need the following lemma.

LEMMA 2. Let R be a right CPS ring with Jacobson radical J. Then:

- (a) R_R is a direct sum of noetherian uniform modules;
- (b) J_R is semisimple.

Proof. By [1, Theorem 3.1], every right CPS ring is right noetherian. Hence R has the following decomposition

$$R_R = e_1 R \oplus \ldots \oplus e_n R,$$

where $\{e_i\}_{i=1}^n$ is a set of orthogonal idempotents of R and each e_iR is indecomposable. We shall show that each e_iR is uniform.

We set $e = e_i$ for a fixed i and consider the right R-module eR. Let M be a non-zero submodule of eR. By assumption there are submodules M_1 , M_2 of eR containing M such that

$$eR/M = M_1/M \oplus M_2/M$$

where M_1/M is projective and M_2/M is semisimple. It follows that eR/M_2 is projective. Hence $eR = M_2 \oplus C$ for some submodule C of eR. Since eR is indecomposable, C has to be zero, i.e. eR/M is semi-simple. Now let H be a submodule of eR with $M \cap H = 0$. Then there exists a submodule B of eR containing M such that

$$eR/M = B/M \oplus (M+H)/M$$
.

From this it follows that $eR = B \oplus H$. Hence H = 0, showing that eR is uniform, i.e. (a) holds.

For (b), let $J(e_iR)$ be the Jacobson radical of e_iR . Then

$$J = J(e_1R) \oplus \ldots \oplus J(e_nR).$$

By (a), for each non-zero submodule M of e_iR , e_iR/M is semisimple. Therefore M is an intersection of finitely many maximal submodules of e_iR . It follows that $M \supseteq J(e_iR)$. This shows that $J(e_iR)$ is simple if $J(e_iR)$ is non-zero. Thus J_R is semisimple.

Proof of (I) of Theorem 1. (a) Let R be a right CPOI ring. By [6, Theorem] or by [8, Theorem 2.12], $R = A \oplus B$, where A is a semiprime artinian ring and B is a right CPI domain. Then B is right noetherian and for each non-zero right ideal B_1 of B, B/B_1 is B-injective and each of its submodules is injective too. Therefore B/B_1 is injective and semisimple. From this we can easily see that R is right CPOS with J = 0.

Conversely, let R be right CPOS with J = 0. Then, in particular, R is right CPS. By Lemma 2,

$$R_R = e_1 R \oplus \ldots \oplus e_n R, \tag{1}$$

where $\{e_i\}_{i=1}^n$ is a set of orthogonal idempotents of R and each e_iR is uniform. If R is right artinian R is semisimple, in particular R is right CPOI. Suppose now that R is not right artinian. Then there is an e_iR , e_1R say, which is a non-artinian right R-module. Therefore e_1R contains a non-zero submodule M with $M \neq e_1R$. Since e_1R is uniform, for such a submodule M of e_1R , e_1R/M is semisimple by hypothesis. Hence $Soc(e_1R) = 0$. Since

$$R/M \cong e_1 R/M \oplus e_2 R \oplus \ldots \oplus e_m R$$

with non-projective e_1R/M , R/M has to be semisimple. Hence

$$A := \operatorname{Soc}(R_R) = e_2 R \oplus \ldots \oplus e_n R.$$

Put $B = e_1 R$; we have $R_R = A \oplus B$ with $Soc(B_R) = 0$. Clearly BA = 0. Furthermore, since $(AB)^2 = A(BA)B = 0$, it follows that $AB \subseteq J = 0$, proving that B is also an ideal of R. This shows that R is a direct sum of a semiprime artinian ring A and a right CPS domain B. Now, for each non-zero right ideal H of B, B/H is a semisimple right B-module. By [8], it follows that B is a right V-ring, i.e. each simple right B-module is injective. Hence B/H is an injective right B-module, proving that B is a right CPI domain. By [6, Theorem] or by [8, Theorem 2.12], R is right CPOI.

(b) Let R be a right CPOS ring with $J \neq 0$. As above, R_R has a decomposition (1). Since $J \neq 0$, there is an $e_i R$, $e_1 R$ say, such that $e_1 R$ is not simple. Let M be a proper non-zero submodule of $e_1 R$. Then as we have seen above, $e_1 R/M$ is semisimple and non-projective. Therefore $S = e_2 R \oplus \ldots \oplus e_n R$ is also semisimple. We have $J \subseteq e_1 R$. Hence by Lemma 2 and by the uniformity of $e_1 R$, J_R is simple. In particular R is right artinian; so $\operatorname{End}_R(e_1 R)$ is a local ring; it follows that $e_1 R$ has a unique maximal submodule. Hence J is the maximal and minimal submodule of $e_1 R$, or in other words, $e_1 R$ has composition length 2. Put $U = e_1 R$ and we have the decomposition of R in (b).

Conversely let R be a ring with a decomposition as in (b). Then the Jacobson radical J of R is the minimal submodule of U_R . Let A be a non-zero right ideal of R. It is enough to show that either A_R is a direct summand of R_R or R/A_R is semisimple. Suppose that A_R is not a direct summand of R_R . Then $A \cap J \neq 0$. It follows that $J \subseteq A$; therefore R/A_R is semisimple.

Since every right PCI (resp. right CPS) ring is a right CPOI (resp. right CPOS) ring, one can easily prove (c) and (d) by using (a) and (b), respectively.

Proof of (II) of Theorem 1. (i) \Rightarrow (iii) is clear.

- (iii) \Rightarrow (ii). By Lemma 2, J_R is semisimple. Let M be any minimal submodule of J_R . Then for some non-zero $m \in M$, M = mR. Hence $M_R \cong R/r(m)$, where $r(m) = \{x \in R : mx = 0\}$. By (iii), r(m) is not essential in R_R . It follows that $R_R = r(m) \oplus H$ for some right ideal H of R which is R-isomorphic to M_R . Hence M_R is projective, proving that J_R is projective.
- (ii) \Rightarrow (i). Assume (ii). By Lemma 2, $J_R \subseteq \operatorname{Soc}(R_R)$. Then $J^2 = 0$ and $\operatorname{Soc}(R_R) = J_R \oplus H$, where H_R is a direct sum of finitely many minimal right ideals of R (because a right CPS ring is right noetherian having finite uniform dimension). Thus we can easily check that H_R is generated by an idempotent of R. Hence $\operatorname{Soc}(R_R)$ is projective. To end

the proof it is enough to show that any non-projective simple right R-module is injective. Let S be such a module and U a right ideal of R with a homomorphism φ of U_R to S_R . We show that φ can be extended to an R-homomorphism of R to S. Without loss of generality, we can assume that U_R is essential in R_R . If $\varphi(U) = 0$, the assertion is trivial. Suppose that $\varphi(U) \neq 0$. We have $S \cong U/\ker \varphi$. If $\ker \varphi$ is not essential in U_R then $U_R = \ker \varphi \oplus T$. Hence $T \subseteq \operatorname{Soc}(R_R)$; so T_R is projective, a contradiction to the non-projectivity of S_R ($\cong T_R$). Hence $\ker \varphi$ has to be essential in U_R . It follows that $\ker \varphi$ is an essential right ideal of R. Since R is right CPS, it follows that $R/\ker \varphi$ is semisimple. Hence there is a submodule L of R_R containing $\ker \varphi$ such that

$$R_R/\ker \varphi = U/\ker \varphi \oplus L/\ker \varphi$$
.

Therefore R = L + U, ker $\varphi = L \cap U$, $R/L \cong U/\ker \varphi \cong S$. Combining these facts, we get that φ is extended to a homomorphism in $\operatorname{Hom}_R(R_R, S_R)$, proving the injectivity of S_R . The proof of Theorem 1 is complete.

Examples. Let $\mathbb R$ and $\mathbb C$ be the fields of real and complex numbers, respectively. Then the matrix ring

$$R = \begin{bmatrix} \mathbb{R} & \mathbb{C} \\ 0 & \mathbb{C} \end{bmatrix}$$

has a decomposition $R_R = U \oplus S$, where $U = \begin{bmatrix} R & \mathbb{C} \\ 0 & 0 \end{bmatrix}$, $S = \begin{bmatrix} 0 & 0 \\ 0 & \mathbb{C} \end{bmatrix}$. Clearly U_R is uniform, having composition length 2, and S_R is simple. Then, by Theorem 1 (I), (b), R is a right CPOS ring. Moreover, R has the following properties:

- (1) R is not a direct sum of a semiprime artinian ring and a right PCS domain;
- (2) R is not a right PCS ring;
- (3) R is not a right CPOI ring;
- (4) R is a right CPS ring which is not right CDPI;
- (5) the ring theoretic direct sum $R \oplus R$ is a right CPS ring which is not right CPOS.

The above assertions can be proved easily by using Theorem 1.

Denote by \mathbb{Z} the ring of integers. Then $\mathbb{Z}/4\mathbb{Z}$ is a PCS ring which is not PCI.

We do not know an example of a right noetherian right CDPI ring which is not right CPS. We also do not know whether any right CDPI ring is right noetherian.

3. Characterizations of CIS rings. A module M is called uniserial if the set of submodules of M is linearly ordered. A ring R is said to be right generalized uniserial if it is right artinian and R_R is a direct sum of uniserial modules. A generalized uniserial ring is a ring which is right and left uniserial.

Theorem 3. For a ring R with Jacobson radical J the following conditions are equivalent:

(a) every cyclic right R-module is a direct sum of an injective module and a semisimple module;

- (b) every right R-module is a direct sum of an injective module and a semisimple module:
- (c) every right R-module is a direct sum of a projective module and a semisimple module;
 - (d) R is a generalized uniserial ring with $J^2 = 0$.
 - *Proof.* (a) \Leftrightarrow (b) \Leftrightarrow (d) are proved in [4, Theorem 2.6].
- (d) \Rightarrow (c). Assume (d). Let M be a right R-module. By [5, Theorem 25.4.2], $M = \bigoplus_i M_i$, where each M_i is a finitely generated uniserial module. By [5, Theorem 18.23], for each M_i , there exists a primitive idempotent e_i and a submodule F of e_iR such that $M_i \cong e_i R/F$. Since, by [4, Theorem 2.6], the length of $e_i R$ is at most 2, M_i is projective or simple. Hence M is a direct sum of a projective module and a semisimple module.
- (c) \Rightarrow (d). Assume (c). By a well-known theorem of Kaplansky, every projective module is a direct sum of countably generated modules. Hence (c) says that every right R-module is a direct sum of countably generated modules. Hence by [5, Theorem 20.23], R is right artinian. Since R is right CPS, by Lemma 2, J_R is semisimple and hence $J^2 = 0$. Also, by Lemma 2, $R_R = e_1 R \oplus \ldots \oplus e_n R$, where $\{e_i\}_{i=1}^n$ is a set of orthogonal idempotents of R and each $e_i R$ is uniform. Suppose that, for a fixed i, the length of $e_i R$ is greater than 1 and let M be the minimal submodule of $e_i R$. By (c), $e_i R/M$ is semisimple, i.e. M is an intersection of maximal submodules of $e_i R$. But since R is right artinian, $e_i R$ has a unique maximal submodule. It follows that M is a maximal submodule of $e_i R$. This shows that the length of $e_i R$ is 2. Further, denote by $E(e_i R)$ the injective hull of $e_i R$. By (c), $E(e_i R)$ has to be projective because $e_i R$ is uniform and not simple. By [5, Theorem 20.15], $E(e_i R)$ is isomorphic to some $e_j R$ with $1 \le j \le n$. Hence $E(e_i R)$ has length 2. It follows that $E(e_i R) = e_i R$, i.e. $e_i R$ is injective. Now (d) follows from [4, Theorem 2.6].

The proof of Theorem 3 is complete.

We note that the statements of Theorem 3 are left-right symmetric. For short we call a ring in Theorem 3 a CIS ring. One can prove that a ring R with nilpotent Jacobson radical J is generalized uniserial if and only if R/J^2 is a CIS ring.

Since a right PCI domain is not CIS, Theorem 3 is not true if the condition (c) is only required for cyclic right R-modules.

ACKNOWLEDGEMENT. The authors wish to express their gratitude to Patrick F. Smith for his many helpful comments and suggestions. The first author gratefully acknowledges the support of the Alexander von Humboldt-Stiftung for his research.

REFERENCES

- 1. A. W. Chatters, A characterisation of right Noetherian rings, Quart. J. Math. Oxford Ser. (2) 33 (1982), 65-69.
 - 2. J. H. Cozzens and C. Faith, Simple Noetherian rings (Cambridge University Press, 1975).
- 3. R. F. Damiano, A right PCI ring is right Noetherian, *Proc. Amer. Math. Soc.* 77 (1979), 11-14.

- 4. Dinh van Huynh, Nguyen V. Dung and Patrick F. Smith, On rings characterized by their right ideals or cyclic modules, *Proc. Edinburgh Math. Soc.*, to appear.
 - 5. C. Faith, Algebra II: Ring theory (Springer, 1976).
- 6. S. C. Goel, S. K. Jain and S. Singh, Rings whose cyclic modules are injective or projective, *Proc. Amer. Math. Soc.* 53 (1975), 16–18.
- 7. G. O. Michler and O. E. Villiamayor, On rings whose simple modules are injective, J. Algebra 25 (1973), 185-201.
- 8. P. F. Smith, Rings characterized by their cyclic modules, Canad. J. Math. 31 (1979), 93-111.

INSTITUTE OF MATHEMATICS P.O. Box 631 Bo hô HANOI, VIETNAM