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Littlewood—Paley Characterizations of
Second-Order Sobolev Spaces via Averages
on Balls

Ziyi He, Dachun Yang, and Wen Yuan

Abstract. In this paper, the authors characterize second-order Sobolev spaces W22 (R"), with p €
[2,00)andn € Norp € (1,2) and n € {1,2, 3}, via the Lusin area function and the Littlewood-Paley
g; -function in terms of ball means.

1 Introduction

Due to the lack of the differential structure in metric measure spaces, how to introduce
suitable derivatives on metric measure spaces is a challenging topic that has attracted
a lot of attention in the past two decades (see, for example, [1, 3,7-9]). Recall that
Hajlasz [7] introduced the notion of what are now called Hajlasz gradients, which have
proved a suitable substitute, in some aspects, for the usual derivatives used to develop
Sobolev spaces of order 1 on metric measure spaces. Later on, Shanmugalingam [9]
developed another type of first order Sobolev spaces on metric measure spaces by
means of the notion of upper and weak upper gradients, which have the advantage of
locality, comparing with Hajlasz gradients.

From then on, a theory of first order Sobolev spaces on metric measure spaces has
been thoroughly investigated and achieved great progress (see, for example, the recent
monograph [8]).

Recently, Alabern et al. [1] obtained a new characterization of second-order So-
bolev spaces W*?(R") with p € (1, 00), which provides a possible way to intro-
duce second-order Sobolev spaces on metric measure spaces. More precisely, for any
x € R" and t € (0, 00), let B(x, t) denote the ball with center at x € R” and radius
t € (0,00), and let f; g(y) dy denote the integral average of g € L} (R") on a ball
B := B(x,t) c R", namely,

1
(11) ]g ) g(y)dy:= B D] Jscen g(y)dy = B:g(x).

Received by the editors April 13, 2015.

Published electronically August 17, 2015.

Dachun Yang, the corresponding author, is supported by the National Natural Science Foundation
of China (Grant Nos. 11171027 and 11361020). Wen Yuan is supported by the National Natural Science
Foundation of China (Grant No. 11471042). This project is also partially supported by the Specialized
Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120003110003)
and the Fundamental Research Funds for Central Universities of China (Grant Nos. 2013YB60 and
2014KJJCA10).

AMS subject classification: 46E35, 42B25, 42B20, 42B35.

Keywords: Sobolev space, ball means, Lusin-area function, g;—function.

104

https://doi.org/10.4153/CMB-2015-038-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-038-9

Littlewood-Paley Characterizations of Second-Order Sobolev Spaces 105
Alabern et al. in [1, Theorem 2] proved the following conclusion.

Theorem A Let p € (1, 00). Then the following are equivalent:

(i) feW>P(R").

(i) f € LP(R") and there exists a function g € LP(R") such that S,(f, g) € LP(R"),
where the square function S,(f, g) is defined by

$20F0)(x) {/ \Ji(m £0) =/ - BigCly =, fdt}, xR,

If f € W»P(R"), then one can take g = Af[(2n), and if (ii) holds true, then neces-
sarily g = Af[(2n) almost everywhere. In any of the above cases, |Sz(f, g)| e (rny is
equivalent to | Af]| 1o (rny.

Recall that A := Z?zl(a%i)z, and, for p € (1, 00), the second-order Sobolev space
W2P(R") is defined to be the set of all f € L?(IR™) such that their weak derivatives
0% f with order |a| < 2 belong to L? (R"). Here and hereafter, for a := (ay,...,a,) €
{0,1,...}))", |a| == ay +-- -+, and 0% := (aixl)"‘l ). Forany f € W»P(R"),
let

(ax

”f” W2e(Rm) = Z HaafHLP(]R")-

|a|<2

Notice that S,(f, ) as above can be reformulated as follows:

2 5= [TPLETO e L emr,

with a different g (multiplied a positive constant), which can be seen as the Littlewood-
Paley g-function of B'{[f — B;g. Therefore, it is a natural question to ask whether
or not the corresponding Lusin area function and the corresponding Littlewood-
Paley g;-function can characterize W*?(R"). Here, the Lusin area function and
the Littlewood-Paley gj-function are defined, respectively, by setting, for any f,

g€ L, (R")and x e R",
(3 (/8 f [B(x £) M Big(y )| t““}%
and

14) Gi(f,)(x) =
f f M Big(y)| (w)lndytffl}z,

where A € (1, 00). For A € (1, 00) and f € W>P(R"), we simply write
51 =5(F L), s =8(£.520). ama G =8i(f L),

The main purpose of this article is to answer the above question, and we have the
following conclusions.
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Theorem 1.1 Letn e N:={1,2,...}, pe(1,00), and f € LP(R"). Then the following

statements are equivalent:

(i) feW>P(R");

(i) there exists g € LP(R") such that 8(f, g) € LP(R");

(iii) there exists g € LP(R™) such that G5 (f, g) € LP(R"), provided that p € [2, ),
neNandle(l,00) orpe(1,2), ne{l,2,3},and A € (2/p, ).

Moreover, if f € W»P(R"), then g in (ii) and (iii) can be taken as g = Af/(2n + 4);

while if either of (ii) and (iii) holds true, then g = Af[(2n + 4) almost everywhere. In

any case, |S(f, g)|re(rry and |Gy (f, &) | Le(rny are equivalent to |Af | s (rn), respec-
tively.

The proof of Theorem 1.1 is presented in Section 2. Observe that in Theorem 1.1,
when p € (1,2), we require n € {1,2,3}. It is still unclear whether one can remove
this restriction; see Remark 2.7 below for more details.

To show Theorem 1.1, following the proof of [1, Theorem 2], we rewrite B; f(y) —

f(y) - t*B,g(y) with g = 23{4 as a convolution operator K; * (-Af), and prove
that the kernel K; satisfies the vector-valued Héormander condition. Different from
the proof of [1, Theorem 2] for §(f, g), since, comparing with G( f, g), there exists an
additional integral on y in 8(f, g) and G} (f, £), to show K satisfy the vector-valued
Hoérmander condition, we strongly depend on the local integrability of the kernel K,
which leads to the restriction n € {1,2,3} when p € (1,2). On the other hand, in the
proof of [1, Theorem 2], the norm estimate |Af{ .»(gny S [|G(f)] s (rn) Was obtained
via the polarization and a duality argument, which is not feasible for us to obtain the
norm estimates that

IAflerey S I8(F)lerny and  [Af] oy S 193 () ]Lerm

in the case when p € [2,00) and #n > 4. To overcome this difficulty, we make use of
the fact W>?(R") = F; ,(R") and prove that

”fHF;)Z(IR") S8 e (mny

by means of the usual Lusin area function characterization of the Triebel-Lizorkin
space F;,z (R™) (see, for example, [12]) and the Fefferman-Stein vector-valued in-
equality from [5].

It will be very interesting to clarify whether (ii) of Theorem A is equivalent to (ii)
and (iii) of Theorem 1.1 on metric measure spaces. Also, notice that, very recently,
Dai et al. [3] established various pointwise characterizations of W*?(IR") via ball
means closer to Hajlasz gradients in spirit. It is also unclear, on metric measure spaces,
whether those pointwise characterizations and these Littlewood-Paley characteriza-
tions are equivalent.

Throughout the article, for any function ¢, t € (0,00) and x € R”, let ¢,(x) :=
t7"¢(x/t). We use C to denote a positive constant that is independent of the main
parameters involved but whose value may differ from line to line. If f < Cg, we then
write f S gand, if f $ ¢ S f, we then write f ~ g.

https://doi.org/10.4153/CMB-2015-038-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-038-9

Littlewood-Paley Characterizations of Second-Order Sobolev Spaces 107

2 Proof of Theorem 1.1

Before we give the proof of Theorem 1.1, we consider the relationship among the Little-
wood-Paley g-function in (1.2), the Lusin area function in (1.3), and the Littlewood-
Paley g7 -function in (1.4). To this end, let F:R" x (0,00) — R be a non-negative
measurable function and, for x € R”, define

G(F)(x) ::{f0w|p(x,t)|2?}%,
s ={ [T Rorar )
G ={ [ LI 0f() )

where A € (1, 00). Obviously, taking f, g € L} _(R") and setting

loc

1) F(x,1) = M

t

- Big(x)|, (x,t) e R" x(0,00),

we then see that

G(F)=5(f.8), S(F)=8(f.g), and Gi(F)=5(f.g)

for A € (1, 00). Concerning the relations among the functions G(F), S(F) and G} (F),
we have the following conclusions.

Lemma 2.1 Letpe (1,00), 1€ (1,00), and a € (0, 00). Then there exists a positive

constant C such that for all measurable functions F on R" x (0, 00),

(i) forallx eR", S(F)(x) < CG;(F)(x), where C is independent of F and x;

(i) [Sa(F)lemny < Ca"/ min{p:2} | §(F) | Lo (mny> where C is independent of a and F,
and S, (F) is defined by

SuB)) = { [ [ JFo ol dy

(iii) for p €[2,00), |Gy (F)|ro(mry < C|G(F)| 1o (wn), where C is independent of F.

dt
n+l

1
}2, ae(0,00), xeR"

The proof of Lemma 2.1(i) is obvious, and the remainder can be found in [11, The-
orems 4.3 and 4.4, pp. 315-317] and [10, Theorem 2(b), pp. 91-92]; see also [2, Propo-
sition 4].

From Lemma 2.1, we deduce the following conclusion, which might be well known.
For the convenience of the reader, we give some details.

Lemma 2.2 Let p € (1,00) and A € (max{2/p,1},00). Then, for all measurable
functions F on R" x (0, 00), S(F) € LP(R") ifand only if G} (F) € L (R"). Moreover,
the LP(R")-norm of G (F) is equivalent to that of S(F) with the equivalent positive
constants independent of F.
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Proof By Lemma 2.1(i), we immediately have |S(F)| 1o (gny S |G} (F)| e (rny. Con-
versely, for all A € (1, 00), we observe that, for all x € R”,

(22) [GI(F)(x)]* Z 27 S5 (F) ()]
When p € (1,2], by (2.2) and the triangle inequality, we find that, for all x € R”,

[Gi(F)(x)]P 5 22_7 [Sax (F)(x)]7,

k=0

which, together with the Minkowski inequality, Lemma 2.1(ii), and A > 2/p, implies
that

oo

_pkn
1GE(E) Ly 5 2027 5 1826 ()
k=0

< 22 EDISE) 2, ) S ISEE, .
k=0

8

When p € [2, 00), again by (2.2), the Minkowski inequality, Lemma 2.1(ii), and A > 1,
we have

oo

”G/\ (F) ”LP(]R”) - ” GA (F) ” LP/2(Rn) Z kn/\H [82" (F)]ZH LP/2(Rn)

oo

~ ZZ_k"AIISzk (F) o (n S Z 27O S(F) |2 ey

S HS(F) IZe en)-
This finishes the proof of Lemma 2.2. ]

Asan immediate consequence of Lemma 2.2 with F as in (2.1), we obtain the equiv-
alence between (ii) and (iii) of Theorem 1.1.

Lemma 2.3 Letp € (1,00), A € (max{2/p,1},00), and f, g € LP(R"). Then
8(f,g) € LPF(R") if and only if 35 (f,g) € LP(R"). Moreover, the L (R")-norm of
8(f, g) is equivalent to that of G (f, g), with the equivalent positive constants indepen-
dent of f and g.

As another application of Lemma 2.1, we have the following observation.

Lemma 2.4 Letp € [2,00) and A € (1,00). Then there exist positive constants
Ci and C; such that, for all f € W>P(R"), |8(f)|re@ny < CillG3(f)|reny <

Co|Af |l Lo rny- In particular, for all f € W22(R™), [S(f)|12rey and G5 ()]l 2(rm
are both equivalent to |Af | 12(rny, with the equivalent positive constants independent

of f.

Proof From Lemma 2.3, Lemma 2.1(iii), and Theorem A, we deduce that, for all
pef2,0),1e(l,00)and f e WHP(R"),

ISCO e ny S TGX U e ey S IS 2oy ~ [Af |zeeny.-
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In particular, when p = 2, for all f ¢ W2 (R"), by the Fubini theorem and [1, (11)],
we know that

(2.3) |S(f)|i2(Rn):["./Ow[B(x,t)|Btf(y)_f(y) Bgﬁ{)iy)‘ tm

t2

f fwf ‘Btf()’)—f()’) B(Af)()’)|
nJo JB(y.t) 12 2n+4 t““

Enl SO T2 ny = el Af 2 gny,
where ¢, and ¢ are positive constants depending only on 7. This finishes the proof of
Lemma 2.4. u

For the case when p € (1, 2), we have the following conclusion.

Lemma 2.5 Letp € (1,2) and n € {1,2,3}. Then there exists a positive constant C
such that, for all f € W»P(R™), [|8(f) 1o rn) < C|Af 1o (rn).

Proof Forall x e R" \ {0}, let

-11x), n=1,
L(x) =1 -5log|x|, n=2,
X", n>3,

where ¢, is a constant such that, for all f € W>?(R"), I, * (-Af) = f. Indeed, —I, is
the standard fundamental solution of the Laplacian; see, for example, [1, p. 603].
Let y(x) := \B(o o] XB(O, n(x)and x;(x) = t7" y(x/t) forall t € (0, 00) and x € R",
where xp(o,1) denotes the characteristic function of B(0,1). Take g := ~Af. Then
Bif -f BiAf) xerhrg-lL+g 1
2 2n+4d 2 2n+4

1
Xt*g::t—th*g,

where 5

. te(0,00).
2+ 4N (0,00)

Ki=xexL-IL+
Thus, for all f € W2?(R") and x € R",

S(f)(X) f fB( |Kt * g(y)| tn+5 } %
f fB(Ot)|Kt*g(x+y)| dy tn+5}%
s fB(oxo‘f»«Kf(’“+y-z)g(z>dz\2dytffs};

I Tg(x) 12y

where

= (R” x (0, 0o

) XB(: t>(y)d dt)

and
Tg(x)(y,t) = [Rn Ki(x+y-2)g(z)dz, xeR", (y,t) e R" x(0,00).
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By (2.3), we know that for all f € W22(R"),

LT8G agay i 1A F ey ~ 18 ey

which further implies that T: L*(R") — L*(R", L*(Z)) is a bounded linear operator.

Notice that, to prove Lemma 2.5, it suffices to show that T is bounded from L? (R")
to L?(R", L*(X)). To this end, by the vector-valued Calderén-Zygmund theory (see
[6, p. 492, Theorem 3.4]), we only need to prove that there exists a positive constant
C such that, for all z, w € R”,

/\:‘—Z|>ZIZ—W\ H Ki(x+ - -2z) - Ki(x+ - - W)H L2(5) dx < C.

We shall prove a strong estimate, say, there exists § € (0, oo) such that

|z - w]®

(2.4) || Ke(x+ - —2) = Ke(x + - —w)HLZ(Z) S g for all |x —z| > 2|z —w|.

If welet X := x — zand Z := w — z, then (2.4) becomes

8
(2.5) ”K4z+-)—K4z+-—a”U@)g|m

W for all |§| > 2‘%1

To prove (2.5), we divide K into two parts, ﬁ)(t and Hy := I, * y; — I, and we
estimate these two parts separately.

First we estimate %Xt- Notice that if |X] > 4¢, then, for all y € B(0, t), [x+ y| > 3¢
and [X + y — 2| > t, and hence y((X + y) = x+(X + y — Z) = 0; while when [X] < 4t, a
simple geometrical observation shows that, for all t € (0, 00) and x, y € R",

‘[B(x, £) N~ B(y, t)] U [B(y,t) N\ B(x, t)” Sty -«

which further implies that

oo 2 dt
t2 ~ _ ~ _ d
/|7|/4 ./B(O,t) |Xt(x+y) Xt(x+y EI)| ytn+5
“I1B(x ~ ~ = ~ dt
s [ J[BEDBE-Z0]u[BE-Z0 BE0)]| 55

< dt 2l

< ~ )
~ |E] |%]/4 f2n+2 |&"2n+1

Combining the above estimates, we find that when |X] > 2|Z],

A
) ~ ‘§|n+1/2 >

26) H (Er--2)|

X+-)-
v )7
which is desired.

Next we estimate H;. First we observe that when |X] > 4¢, we have [X + y| > 3t
and [X + y - Z| > t whenever y € B(0,t). Thus, there exists €, € (0, 00) such that
0¢B(Xx+y,t+e,)and0¢ B(X+y—7Z,t+e,). Since I, is harmonic in R" \ {0}, by
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the mean property of harmonic functions, we see that
Lo+ = B()dh=L(F+y),
B(X+y,t)
Lxy(x+y-%)= L(h)dh=L(X+y-7%).
B(Fty-%.t)

These mean that for all < |X]/4,
~ ~ 2
f |H(F+y)-H(X+y-2)|"dy=0,
B(0,1)

and hence

f\z\/‘l/ ‘H(~ V- H(F ~)|2d dt 0
+y) - +y—- =0.
o T L xX+y tf(x+y—-z Y ins

On the other hand, when |x| < 4t, we see that

oo dt
H/(X+y)-H,(X+y-2))*d
[W | o [H )~y =2) dy

©° 2 dt
< L(x+y)-L(x+y- dy —
ﬁf\m /B(o,t)| 2(X+y) ~h(¥+y Z)| Y s
e dt
I X -1 X+y-2)°d = .
+fm/4f3(0’t)| 2 0 (X4 y) - Lox (T4 y =2 dy Ss =i+ )2
By the mean value theorem, we know that

|L*xe(F+y) - L+ x(X+y-2)| <[Z] sup | VL * po(X
0e[0,1]

which, together with the fact [2] < |X]/2 < 2t whenever |X] < 4t, further implies that,
forall y € B(0,¢) and 6 € [0,1],
1

Lt ye(F+y—0 sJ[ _ _ dh
|v 2 *Xt(x+)’ E,)| B(0,) |X+)/—92—h|n71

<L / LI
" JB(o,8t) |h|"! gl

since |[VI,(x)| < |x["" for all x € R” \ {0} Therefore,

2 1 2
en s [ f d - dtg o
|/4 B(0,t) t2n 2 tn+5 ~|/4 t2n+3 |x|2n+2

To estimate J;, we notice that when |y| > 2|X], we have |X + y — 6Z] > |x]/2 for all
0 € [0,1]. Hence, by the mean value theorem, we have

L(F+y) - LE+y-7)| s |'|7 ,

and hence

oo dt
L(% —L(x+y-2)*d S
[W fzmktmxw) 2(Fey =D dy s

[ / 2, dt f°° 1.
[7/4 JB(0,1) |x|2n 2 t"+5 |"’|2n 2 I71/4 5 |z|2n+2'
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When |y| < |X]/4, we have |X + y — 0Z] > |X|/4 for all 6 € [0,1]. Similar to the above
estimate, we have
2]

|Iz(z+ y) —12(7+y—2')| s |}’|n—1’

and hence

oo dt
~ _ ~ _ 2 <
jgﬂﬁkﬁwuxx+n LE+y =D dy s s

J A Y
51/a Jyi<mya [RP2 Y invs 772 Jigja 175 R2nz”

Therefore, to obtain the desired estimate of J;, we still need to estimate

o dt
= L(x+y)-L(Z+y-2)dy —,
. f\f\/4 f|&1/4s\y|sz\f\| 2(F) =BGy =Dl dy 5o

and this estimate depends on the dimension n. We consider the following three cases.
We first consider the case n = 1. In this case, I;(x) = 1|x| for all x € R”  {0}.
Observe that | (X + y) - L(X + y —2)| S [2] for all y € R”. Then

oo 2
(2.8) peke [ f ay 2t B
7l/4 S jaslyls2m 0 T [
which is a desired estimate.
We now consider the case n = 2. In this case, ,(x) = —5-loglx| for all
x € R" \ {0}. Again, since I, is a radial function, by the mean value theorem, we
find that

(2.9) |Iz(3?+y)—12(354-)/—2)|S|)7+|il_%1 for all [X+y-Z]<|X+yl

From this, we deduce that

) dt
~ _ ,
ﬁf\/‘l f [Fl/4<lyl<23] |L(X+y)-L(&x+y-2)"dy 7

FI<[F+y-ZI<[F+y]

2 (™ 1 dt
Sm f|y|/4[|ﬂ/4s|y\szm mdyt—7

[F<[F+y—ZI<[F+y|

oo 1 dt |z
I1/4 JI7)/4slyl<2/7] |X] t7 " |x]

If|X+y-Z] < [x] < [x + y|, then |x + y —Z] > |X]/2 since |Z] < [¥]/2, and hence by (2.9),
we have

) dt
X 'l 2
fm/4 [ sy 2(XTY) —L(X+y-2)[ dy 7

[Fry-2I<[FI<[F+y]

oo 1 dt
se [ Fry 27
~ |E] I}*|/4 [%1/4<|y|<2[%] |3C{+ y _az y t7

[F+y-Z1<[FI<[F+yl

oo 2
see [ Lt B
®l/a JIRl/asyl2m X277 7 [X]°
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Finally, if |X + y| < |%], then

%]
X+y-2

- - X + X
1+ 5) = -2 flog 2 -1og 2 1o =L

Fix B € (0,1). Notice that F(x) := log(x)/|x|f is bounded on [1, c). Then by (2.9),
we find that

dt
Awfmmmam ]2(x+y) L(X+y- ~)| dy

[F+y—ZI<[F+y|<[7]

|x] 1 dt
<z f f — dy —
g 7/ \/4<\y|<z|x| % +y —21) Rry-27 7
|x|ﬁ dt
szj"~[ d
g [%/4 JIFl/4<lyl<2l®] [X + y — “]ﬁ+1 y

1
< "’ﬁf f dy—
~ |%1|X| ‘f‘/‘l B(O,%rﬂ) |y|ﬁ+1 yt7

o [ [ dt ERPEP[E
N|AZ’I|x|ﬁ_/“;‘C’V4]()‘ TﬁdT?N,vi"'T.

[x]° [x°

Combining the above estimates, we obtain

»/|;|/4 _/;:W/4<|J’|<2|7

[F+y—ZI<|F+y]

2(X+y) - L(X+y- ~)| dy ||;|L

By a similar argument, we know that the above estimate remains true if we replace
X+ y -2 <|x+y| by |X+y-7Z]>|xX + y|. Altogether, we obtain

(2.10) RS Lﬂ
|x[°

which is a desired estimate for J3.
Finally, we consider the case n = 3. In this case, I;(x) = c3|x| ! forall x e R" ~ {0}.
Since I, is a radial function, when |X + y - Z] < [X + y|, we know that

1

(2.11) |LGE+y)-L(E+y-2)| s By 3

and by the mean value theorem, we have

2]

(2.12) |L(Z+y) - L(F+y-7)| sm.
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Fix a € (0,1). By (2.11) and (2.12), we see that
(2.13)

[ﬂ/4s\y\sz|m |I?(3€+ )’) - IZ(§+ Y _AZI)|2 d)’

[F+y-ZI<[F+y

~ [ 12F ) = BE 4y =D L(F + ) - LF+y - dy
[F+y-Z|<F+y]
1 1
dy < [2]" dy

S z “ T~ <5 A T r
A [7l/4<lyl<2[7] |X + y —Z]>-o+2e B(0,2[x)) |y|**®

HEl @
o |aocf P dr ~ |EI
0

|E|o¢—1 :

The above estimate also holds true when |[X+ y —Z| > |X + y| due to a similar argument.
Hence,

(2.14) s < 21 /|°° dt  [2"

PR s 8 R
as desired.
Therefore, by (2.6), (2.7), and (2.8) for n = 1, (2.10) for n = 2, or (2.14) for n = 3, we
have (2.5). This finishes the proof of Lemma 2.5. [ |

Remark 2.6  Observe that there exists a restriction n € {1,2,3} in Lemma 2.5. This
restriction comes from its proof, which fails when 7 > 4. Indeed, if n > 4, the integral

1 2+a d
-/B(O)%Iﬂ) /W 4

appearing in the proof of Lemma 2.5 in the case when n = 3 (see (2.13)) should be

replaced by
1 2(n—2)+<xd ,
fB(o,Em) /W 4

which is infinity when n > 4and « € (0, 2), where ¢'is a positive constant independent
of x.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 The equivalence between (ii) and (iii) of Theorem 1.1 is from
Lemma 2.2. This equivalence holds true for all p € (1,00) and n € N.

To complete the proof, it suffices to prove the equivalence between (i) and (ii) of
Theorem 1.1. Clearly, (i) = (ii) follows, respectively, from Lemma 2.4 when p € [2, 00)
and 7 € N, and from Lemma 2.5 when p € (1,2) and n € {1, 2, 3}. Moreover, in either
case, we have

(2.15) IS ee ey S 1AflLe@ny,  f € WP(R™).

Now we show (ii) = (i). Suppose that n and p satisfy either p € [2,00) and n € N
orpe(l,2)and n € {1,2,3}, and f, g € LP(R") satisfy that 8(f, g) € LP(R"). We
shall prove that g coincides with A f modulus a positive constant almost everywhere.

Indeed, let ¢ be a non-negative radial C* function supported in B(0,1) and
l¢)lri(mny = 1and, for x € R” and € € (0, 00), let ¢.(x) := e "¢(x/e). Clearly, for
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€ (0,00), f. := f * ¢ and g, = g * ¢, are both in W>P(R"). Thus, by the above

proved conclusion (i) = (ii), we know that 8(f.) € L?(R"). By the Minkowski in-
equality, for all x € R", we have

S(for 86)()
AL S|P - pe] o )

U e LR st ey ay )

< L4 fg(m,t)‘ M ~Big(y)| dy t‘jfl}%gbe(z) dz

- [ 8.9 (x +2)4u(2)dz = S(£.9) * 9u(x).

Forall x e R" and € € (0, 00), define

peey={ [ [ [Beger) -5

- |B(0,1)|%{f0°°][B(x)t)|]£(y’t)[g€(z)—ﬁA]’e(z)] dz|2dy%}%.

Then, by the Minkowski inequality, we know that for x € R”,

De(x) <8(fe)(x) +8(fes ge) (x) < 8(fe) (x) +8(f, &) * de().

Thus, D, € L?(R") for € € (0, c0) and, in particular, for all € € (0, o), D¢(x) < oo
almost everywhere. By the Holder inequality, we find that

50 = w0E [T £ f o [a@ - 5t en@] dea) }
SRR ][B(xt)‘][B(yt)g() Afe(Z)]dZ\zdydt}

= D¢(x).

Ba )| dy L)

Thus, E.(x) < co almost everywhere. From the Taylor expansion, we deduce that for
€€ (0,00) and x € R",

tim £ 8@ = 5 M) dedy = g () - AR (0;

t—>0*
here and hereafter, t - 0% means that ¢ € (0, 00) and t — 0. Thus, for almost every
x eR”,

1
(2.16) ge(x) - mAfe(x) = 0.

By the continuity of g, and A f,, for any € € (0, 00), (2.16) holds true for every x € R".
Hence, 7'~ Af. - gin LP(R") ase — 0. Since fo - f in LP(R") ase — 0%, it
follows that Af, — Af as e — 07 in the sense of distribution. Therefore, 7L Af = ¢
almost everywhere, and hence f € W27 (R"). This proves (ii) = (i).
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Finally, we prove the inverse inequality of (2.15) by borrowing some ideas from [4].
Notice that

(217) [Aflze ey ~ 1ASf g0, @ny ~ HfHF;’Z(]R")

o 24ty 3
{1 ][B(')t) 60 FWldy] 5

where F) ,(R") and F; ,(R") denote Triebel-Lizorkin spaces, the second equality in
(2.17) is due to the well-known lifting property of Triebel-Lizorkin spaces, and the
third one follows from the Lusin area function characterization of Triebel-Lizorkin
spaces (see, for example, [12, Theorem 2.8] and its proof). Here we take ¢ ¢ S(R")
such that

Lp(R")’

supp ¢ c {fe R": 2k~ < )¢ < 2""“}

and [$(&)| > constant > 0 when 22k < | < 22K for some ko € Z which will

be determined later. (It is well known that different k, gives equivalent quasi-norms

of |If]| iz, (rn)-) Here and hereafter, ¢ denotes the Fourier transform of a Schwartz
P>

distribution ¢, and ¢ its inverse Fourier transform. On the other hand, for all £ € R",

( ) (@)= [mepy-1- B

where

m(&) ::1—2y,,f01(1—u2) (sm |€|) du, &eR",

Vn ::I:/(;l(l—blz)nT_1 du] 1,
K(S)::Zyn(l— $ )Al(l—uz)%(sing)zdu—l, s€(0,00);

2n+4

see [4, Lemma 2.1]. Therefore,

(9| 7(&) = AUE)T(®),

= BETON = [ £ RADTO) = e Al DR

Here, n(&) = ¢((|E‘)) forall £ e R”. Forall t € (0, 00) and x € R", let

h(x) = Bof (x) = £(x) - 5

2

B,(Af)(x) = [A(t]-)f]Y(x).
Then

$ex f=n(t)]" *he =i+ g,
where 77,(x) := t7"#(x/t) for all t € (0, 00) and x € R". Since

(1 2ni4)./( 1-u?)'T (sin?)zdueo, s—>07,

it follows that, when s is small enough, then |A(s)| > 3 Thus, we can take ko small

enough such that 4 € C°(R"), and hence 7 is a Schwartz function. Then, for any
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N e Nand x e R",

71(x)| $ (1+]x])7N, and we see that for all t € (0, 00) and x € R”,

d :][ e+ he(y)ld sf 7 he(y)|dyd

]g(x,t) |¢t*f(y)| Yy B(x) N * t(y)l y - I’](u)| B(u_x,t)| t()’)| ydu
t—n

< e —

T Jre (L Ju+ x| [N

t*ﬂ
~ S h dyd
ﬂ+x|st (1+|u+x|/t)N ][B(u,t)‘ ()l dydu
t—fl

1+ lu+xl/H)N h dyd
+kz=;)fzk—lt<|u+x|£2kt (1+|u+x|/t)N ][B(u,t)| t()’)| yau
S][ ][ |he(y)|dydu
lu+x|<t JB(u,t)
e £ Oy
+kZ=;] ot B(u’t)| () dydu
SM h d - 1 S 2—(N—n)k
su( f, | IOldy) () ) ]
~M _ ,
(£, IHOldy)(=x)

where M denotes the Hardy-Littlewood maximal operator and we took N > #. Recall
that, for any g € L} _ (R") and x € R",

loc
Mg(x):= sup B,(|g)(x),

re(0,00)

h dyd
T IOy

where B,(|g|) is as in (1.1) with t and g replaced, respectively, by r and |g|. There-
fore, by (2.17), the Fefferman-Stein vector-valued inequality (see [5]), and the Holder
inequality, we have

oo 2dty s
I8f ey 5| () [M( S, IOl @) ] 55) .
> Lo (R
o 24ty 3
s {[0 []lB('»t)|ht(y)|dy] ?5} Lr(R")
oo 2 dt 3
S L IO dy s ey~ TED e
This finishes the proof of Theorem L.1. ]

Remark 2.7 By the last part of the proof of Theorem 1.1, we know that there exists
a positive constant C such that forall n € N, p € (1,00), f € L}, (R") and Af €
LP(R"),

(2.18) IAflLeny < CIS(F)llzemry-

The inverse inequality of (2.18) is only proved when p € [2,00) and n e N, or p € (1,2)
and n € {1, 2,3}, while the case when p € (1,2) and n € [4, c0) N N is unknown. We
also point out that (2.18) when p € (1,2) and n € N can also be obtained via (2.3), the
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polarization and a well known duality argument, together with (2.15) with p € (2, 00)
(see [6, p. 507, Remark 5.6]).
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