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This paper is a sequel to an earlier one1 containing a tensor
formulation and generalisation of well-known solutions of Laplace's
equation and of the classical wave-equation. The partial differential
equation considered was

where F*. is the Christoffel symbol of the second kind, and the work
was restricted to the case in which the associated line-element

iJs2 = g(j dxi dx:i

was that of an w-dimensional flat space. It is shown below that
similar solutions exist for any w-dimensional space of constant
positive or negative curvature K.

Tensor methods are employed except occasionally when the
results are applied to particular spaces. The geometrical nature of
the solutions is discussed in § 6, where it is shown that they are closely
connected with well-known solutions of the ordinary cylindrical-polar
form of Laplace's equation V2 V = 0.

Although the paper is intended principally as a contribution to
the theory of partial differential equations, it is offered as much for
its incidental results as for its main theorems. These results include
an invariant definition of Beltrami's coordinates for a two-dimensional
space of constant curvature (§ 3), a definition of spatial distance in a
de Sitter space-time (§4), and relations between certain fundamental
scalars belonging to the analytical theory of spaces of constant
curvature (§ 6).

A more precise statement of the main problem solved is given at
the beginning of § 2.

1 Proc. Edinburgh Math. Soc. (2), 2 (1930-31), 181.
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LAPLACE'S EQUATION IN n-DiMENSioNAL SPACE 25

§1. Preliminaries.

Let then
ds2=gijdxidxi (1.1)

define the metric of an w-dimensional space of constant curvature K.
Covariant derivatives with respect to the xi will be denoted by the
simple addition of suffixes, so that the partial differential equation to
be solved may be written

• A,V=V} = 0, (1.2)
where

In (1.1) the coordinates xi and the coefficients g^ need not be real, the
theory being valid for any space in which the curvature tensor is
given by

Rm = K (gik gj; — ga gjk).

Let (xl) and (xl) be any two points of the space and let s be the
function of the x's and x's representing the length of the arc of the
geodesic joining them. When K = 0, s is completely determinate;
so, for example, when n = 3 and the coordinates are rectangular
cartesian,

ds2 = dxz + dy2 + dz2 (1.3)

and s--={(x — xf + (y — y)2 + (z - z)}K

When K =j= 0, s is determinate but for additive multiples of 2n/K*;
thus if n = 2 and K = I/a2, the metric may be taken in the form

ds2 = a2 (d6-2 +sin2 6 d<f>2), (1.4)
and s is given by

cos (s/a) = cos 6 cos 6 ~ sin 6 sin 6 cos (</> — <£). (1.5)

We suppose that any one particular value of s has been chosen, and
write

Q = isz, (1.6)

so that, when the metric has the special form (1.3),

Q = £{(* - xf + (y~ y)2 + (Z - z)*}. (1.7)
Although it has hitherto gained relatively little attention, the

function Q undoubtedly occupies a fundamental place in Riemannian
geometry and tensor analysis. It is, so to speak, an integrated form
of the scalar differential Jc/s2 which defines the metric. In terms of Q
it is possible to obtain for any Riemannian space a simple expression
for the Riemann normal coordinates of origin (x1) and also a tensor
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26 H. S. RUSE

form of Taylor's theorem1. It also arises in the solution of tensor
partial differential equations2, it can be used in the development of
Riemannian trigonometry3, and in General Relativity it appears in
the formulae for the 4-potential of a charged particle4 and for spatial
distance as determined by measurements of stellar magnitudes and
luminosities5.

Covariant derivatives of £1 with respect to the x's, the x's being
kept constant, will be denoted by the addition of simple Latin sub-
scripts. Bracketed Latin subscripts will similarly denote its covariant
derivatives with respect to the x's, the x's being kept constant.
Suffixes will be raised and lowered by means of the fundamental
tensor, which will be evaluated at (a;1') for ordinary suffixes and at
(0) for bracketed suffixes. All functions evaluated at the latter point
will be denoted by a superposed dash (" bar "). Thus

SQ _di1

Q . =
M-'d

and so on. The same notation will be used for any function which,
like D., depends upon the x's as well as upon the x's.

In any Riemannian space Q. satisfies the identities

QiQ
i = 2Q, Q(i) Q«> = 2 Q, (1.8)

which follow immediately from the well-known6 relation ais
i=l

satisfied by the function s, while in a flat space the identities

^ij = 9at ^w)=9i, (1-9)

1 Ruse, Proc. London Math. Sue, 32 (1931), 90.
2 See the paper quoted above and also Ruse, Quarterly J. of Math. (Oxford), 3

(1932), 15.
3 Synge, Proc. London Math. Soc, 32 (1931), 241.
1 Ruse, Quarterly J. of Math. (Oxford), 1 (1930), 146.
3 Btherington, Phil. Mag., 15 (1933), 761.
6 Darboux, Lecons sur la theorie gene'rale des surfaces, Vol. II, Book V, Ch. V

(p. 450, § 536 in 2nd edition, Paris 1915).
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LAPLACE'S EQUATION IN n-DIMENSIONAL SPACE 27

also hold. These may be verified immediately by choosing a system
of rectangular cartesian coordinates.

Now suppose that the point (xl) lies upon a given curve C of
equations

xi=xi(r), (1.10)

T being a scalar parameter. That the x\ as here, occasionally repre-
sent current coordinates as well as those of a particular point should
cause no confusion. Then if we substitute from (1.10) in D, it becomes
a function of the x's and of T. Symbolically

a = n(x,x)=Q(xl;r). (1.11)

Let QT, OTT) . . . . denote the scalars obtained by successive partial
differentiation of Q. with respect to r, the x's being kept constant;
that is, let

QT= h Q /OT, QTT = c2 Q/8r2,

Then in accordance with the notation described above, we write

(1.13)

= on =
dr 8xl

P3 O ?|2 Q
O = —F*

CT OX1 OX3 OT OX

a n d s o o n , r being treated as a constant w h e n t h e s c a l a r s QT, QTT, . . . .

are differentiated covariantly with respect to the x1.
Next suppose that we define T as a function of the x's by solving

the equation
Q(Z>;T) = 0 (1.14)

for T and taking any one root. This amounts to choosing upon C,
which will be called the base-curve, one of the points X1{T) at which
the curve is cut by the null-cone of vertex (xl), the equation of which,
with the a;'s as current coordinates, is D (x, x) = 0. Thus (x1) is now
one of the points upon C at zero distance from (x').

If we substitute for r as a function of the x{ in OT, this scalar
becomes a function of the a;'s only which is in general non-zero even
though Q, itself vanishes identically for that value of T.

Now it was shown in the first of the papers quoted above that,
for an n-dimensional flat space, solutions of the partial differential
equation A2 V = 0 are given by

(1.15)

Q«"-2), (1.16)
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28 H. S. RUSE

where / and <f> are arbitrary functions of their arguments, provided
that the functions xl (r) satisfy the differential equations

^ = *LH + f' C~ - * = 0 (117)
br* - dr* + jk dr dr ' ( ' '

that is, provided that the base-curve G is a null geodesic. If T is
chosen so that it is zero at some fixed point (a*) of C, then it is
determined by (1.14) as a function of the x's except for an arbitrary
multiplicative constant which arises because of the homogeneity of
(1.17) and (1.18) in dr. It was found also that the second solution
(1.16) holds in the cases n = 2 and n = 4 whatever the functions x' (T),
i.e. whether C be a null geodesic or no.

The question arises whether these theorems are extensible to
more general Riemannian spaces, and it is shown below that similar
results are in fact obtainable for a space of constant curvature K.
In such a space it is convenient to work with the function defined by

Q = co& [K^ s) = cos ^/{2Kil) (1.19)

instead of with Q itself. Here K may be positive or negative but
not zero, though we note that approximately

Q = l-KLl (1.20)

when K is small. Suffixes attached to Q will have a meaning similar
to those defined above for Q.

By (1.8), Q satisfies the identities

QiQt =K(l-Qz), (1.21)

QU) Q«> = K (1 - Q*), (1.22)

in which the superscript 2 denotes the square. Also1

Qtj = - Kgu Q, Qm = - Kgy Q. (1.23)

By (1.20) these reduce to (1.9) when we make K -*• 0.

1 Iluse, Quarterly J. of Math. (Oxford), 1 (1930), 148; cf. Duschek-Mayer, Lehrbuch
der Differentialgeometrie, Vol. II (Leipzig, 1930), p. 143.
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LAPLACE'S EQUATION IN W-DIMENSIONAL SPACE 29

§ 2. Statement and analysis of the problem.

We suppose once again that

ds2 =gijdxidxi (2.1)

defines the metric of an re-dimensional space of constant curvature K,
and that in it we have chosen two points (a;*), (xl) at which the
coefficients g{J are analytic. Suppose further that we have selected a
base-curve C of equations

xi = xi(r) (2.2)

upon which the latter point lies. For the moment we make no
assumption about the nature of this curve except to require that it
shall not pass through (a;*). Let (a1') be the fixed point upon C at
which T is zero, so that a' = x' (0). The scalar Q defined by (1.19) is
then a function of the re's and of T, and we seek solutions of the
partial differential equation

A2 V = V\ = 0 (2.3)
of the form

F = F ( M , T ) , where u = QT, (2.4)

T being a function of the x's, say

r = r(xi), (2.5)

determined, except perhaps for an arbitrary constant factor, by the
equation

Q = l. (2.6)

The last equation is equivalent to (1.14) and expresses the fact that
upon C we have chosen one of the points (xl) at which the null cone
of vertex (a;*) cuts C.

To find whether solutions of the required type exist, we begin by
substituting from (2.4) in (2.3). In doing so we must remember that
u is a function of the x* both in its own right, so to speak, and because
it depends upon r which is itself a function of the x's. Its partial
derivative is therefore not simply ut, where the subscript as usual
denotes a covariant derivative with r constant, but ut + uT rit that is,
Qri + QTTTJ. A similar remark applies to any function of the x's and
of T. We thus have

Vt =
 8/ p ; + dJ | 1 = Vu (QTi + Qn r() + VT r,
du dx%

 C 8X%
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30 H. S. RUSE

where the suffixes u, r denote (as also below) ordinary partial
derivatives. Hence

V\= Vuu{Qri+Qrr

+ Vu (Qti + WTH T< + Qrrr T< T* + Qrr T\)

+ VTT\. (2.7)

We have to show that the coefficients in this expression can in certain
circumstances be expressed as functions of u and T only.

Since (2.6) is an identity when we substitute for T from (2.5), we
have on differentiating partially with respect to x\

whence rt = — Qi/Qr. (2.8)

This relation is an identity in the x's when T is expressed as a function
of those variables, but we restrict the use of the identity sign to
relations like (1.21), (1.22) and (1.23) which are identities in T as well
as in the x's. Only the latter kind may be differentiated partially
with respect to T.

From (2.8),

by (1.21), whence
1 - ^ = 0 (2.9)

because Q = 1. It is to be noticed that the latter relation is used
only after all the differentiations required by (2.7) have been
performed.

Again, differentiating (1.21) with respect to T, we get

(2.10)
whence, bv (2.8),

Qi K (2.11)

by (2.6). If now (2.10) be differentiated with respect to T, we obtain

QH Qi + Qm Ql=~ KQ2
T — KQQTT,

a n d this, with (2.6), gives

^ I (2.12)
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Substituting from (2.9), (2.11) and (2.12) in (2.7), we get

V< = Vuu ( - QTTi Q< - KQ2
T + KQTT) + 2K Vln

+ Vu (QU + 2QTTir* + QrTT\) + VTT|. (2.13)
Now by (1.23),

Q\ =-nKQ, (2.14)

whence Ql
Ti = - nKQT. (2.15)

Also by (2.8),

r \ = - {Qr (Ql + QH rl) - Qi (Ql + Qrr T ' ' )}/# ,

= (n-2)K/QT (2.16)

by (2.14), (2.6), (2.11), (2.10), (2.8) and (2.9). Substituting from
(2.15) and (2.16) in (2.13), replacing QT by it, we obtain
V\ = Vuu {—Q^Qi - Ku2 + KQ7T) + 2KVUT

+ VU{- nKu + 2QTrir
i + (» - 2)KQJu} + (n - 2) KVrju. (2.17)

But
0 =8Q dx*
W T ~ d& dr '

whence
=8Q dj& 8Q dx dx

dxl dr2 dxl 8xi dr dr

c£ fd?& f . dx>£ f f _ _
0 ( dr2 jk dr dr j \ 8& d& ij cxk j dr dr

52 xl
 n dxl dxi

<»-W+Q™'dT dr~'

(2.18)

by (1.23).
The functions xl (r) have hitherto been left arbitrary. We now

choose them so that

^ = 0 (2.19)

and a,-,- — -— = e (constant). (2.20)
dr dr

When e=j=O, the base-curve C is an ordinary geodesic and r is pro-
portional to its arc-length measured from the point (a1) to the point
(x*). It is actually equal to that arc-length when e = ± 1. But if
e = 0, C is a null geodesic with r as a privileged parameter, i.e. a
parameter such that the differential equations of the null geodesies
have the canonical form (2.19), (2.20). In that case r is inde-
terminate as a function of the x's to the extent of a constant factor.
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32 H. S. RUSE

Substituting from (2.19) and (2.20) in (2.18), we obtain

QTT=-KeQ, (2.21)

whence QTTi = — KeQt,

so that QrriQ
i = 0 (2.22)

by (1.21) and (2.6). Also

Qmri = 0 (2.23)

by (2.22) and (2.8). Using these results in (2.17), we get

A2 V=V\=-K [(u2 + Ke) V,,u - 2VUT + {nu + (n - 2) Ke/u} Vu

- (n - 2) VT/u]. • (2.24)

We thus have the following theorem:

If in an n-dimensional space of constant curvature K the functions
xl (T) of the parameter T are any that satisfy the differential equations

b2x> , . dxl dxj

OTZ UT dr

where e is any constant, and if Q = cos {K^s), s being the geodesic distance
between the point of coordinates x' (T) and the point {xl), then a solution
of the partial differential equation A2 V = 0 is

V = V (u, T),

where u = aQjcr, V (u, r) is any solution of the partial differential
equation

8 l I d ^ n u 2 + ( n V K e £ ? » ? ? I = o , (2 .25 )2+
8u2 Bucr u 8u u

and r is finally replaced by any function of the xl obtained by solving the
equation Q = 1 for T.

We now consider the nature of the solutions in the two cases
e = 0 and e =j= 0.

§3. The case e = 0.

When e = 0 the base-curve G is a null geodesic and (2.25)
reduces to

2c2 V o & 2 r , 8V n-2 8V .
u2—- — 2 \-nu— — — = 0. (3.n

cu* 8u 8T du u CT

From the identity (2.21) we also have

Qrr = 0,
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which shows that Q is a linear function of r and therefore of the
form

where / and g are functions of the x's only and a is the constant factor
of indeterminacy referred to above. Consequently in this case the
equation Q =-• 1 yields only one essentially distinct value of T, which
corresponds to the geometrical fact that the null cone of vertex (#*)
cuts a null geodesic C not lying in it in one point only.

In (3.1) put

T = y + x, M= 1/x, (3.2)

sothat * = l - ^ < y = T - \ S T ~ ^ ' ^

and the partial differential equation transforms into

& 2 y £ * V n - 2 S V

cyz x ox • )

When the number of dimensions n of the space is even, this
equation is solvable in finite terms. It is in fact the example given
by Forsyth1 of equations that have no intermediate integral but
whose primitive involves two arbitrary functions. Thus if n — 2 —2m,
where m is a positive integer or zero, its solution is

m

s ( - i v^ V
r=o • r\ /2m\ r

where <f>, ip are arbitrary functions of their arguments, or, by (3.3),

It can be shown by direct substitution of this value of V in the
partial differential equation A2 V = 0 that, when <\> — 0 and n = 2 or
n = 4, the solution holds whatever the nature oj the curve G, i.e. whether
or no the functions xl (T) satisfy the differential equations of the null
geodesies. In all other cases the restriction that C be a null geodesic
and T a privileged parameter is essential.

A treatise on differential equations (5th ed., 1921), p. 534, § 276.
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34 H. S. RUSE

The case n = 2 presents some special points of interest. Replacing
y by — iy in (3.2), (3.3) and (3.4), we find that for any two-dimensional
space

ds2 = gij dxi dxj (i,j = 1,2) (3.5)

of constant curvature K, the transformation from the general
coordinates (xl) to the special set [x, y) defined by

T = x — iy, Qr = 1/x, (3.6)

or x = \/QT, y = i(r—l/QT), (3.7)

where the base-curve C is a null geodesic and T, QT are the functions
of xl described above, reduces the partial differential equation
-A2F=0 to the form

82V o2 V

This suggests that ds2 will have some specially simple form when
expressed in terms of x and y. To find whether this is so, take (3.5)
in the form (1.4), viz.,

da2 = a2 {d92 + sin2 9 dj>2), (3.9)

for which K = I/a2 and

Q = cos 9 cos 6 + sin 9 sin 0 cos (</> — </>). (3.10)

The most general equations of a null geodesic are

cos 9= i{Ar + B),

tan (<£ — K) = AT + B,

where 9, $ are current coordinates, A, B. K are constants and T is a

privileged parameter. Substituting for 9, (f> in (3.10), we get

Q = AT {i cos 9 + sin 9 sin (</> — K)}

+ [sin 9 cos (<f> — K) + 5 {i cos 0 -j- sin 9 sin (̂> — K)}],

whence QT = A {i cos 0 + sin 9 sin (</> — K)}.
Also the equation Q = 1 gives

r = ± L . L - B i ^ c c ? i i i - " > ^1 , (3.ii)
yl ^ cos 9 -\- sin 0 sin (</> — «:) |

and the transformation (3.7) becomes in this case

x= 1
 r , (3.12)

^i {i cos 9 -f sin 0 sin (<p — K)}

if BinflooB(^-K)_ | _
J. [» cos 0 + sm 0 sin (</> — K) |
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It may be noted in (3.11) that the expression for T involves the
arbitrary constant factor I/A.

It may now be shown by direct calculation that under the
transformation (3.12), (3.13) the line-element (3.9) assumes Beltrami's
form1

d 2 (d2 + d2) ( 3 U )

It is easy to see that (3.8) is in fact the form taken by the equation
A2 V = 0 when the metric is given by (3.14).

We thus have the result that for any two-dimensional space of
constant curvature K referred to a general coordinate-system x', equations
(3.7) give a transformation which reduces ds2 to the canonical form (3.14).
In particular, if ds2 is initially in the form (3.14), say

ds2 = - J-2 (dx\ + dx\),

equations (3.7), calculated with an arbitrary null geodesic as base-
curve, give a transformation of the type2

z = AxJ{x\+(x2-p)*},

y-y=±A{x2- j8)/{ar? + (x2 - £)2},

(A, /3, y const.), which preserves the form of ds2.

We have been considering the case when e = 0 and n is even, and
in particular when n = 2. To find the nature of the solution for any
positive integral value of n, return to the original partial differential
equation (3.1) and make the transformation of independent variables
denned by

| = T, t) = T-2/u = T-2/QT. (3.15)

The equation becomes

This is a particular case of the Euler-Poisson partial differential equa-
tion3, the properties of which are too well known to need repeating

1 Darboux, up. cit., Vol. I l l , Book VII, Ch. XI (p. 394, § 782 in 1st edition, 1894).
2 Gf. Darboux, op. cit., Vol. I l l , p. 396, §783, formula (6).
3 Euler, Opera omnia, 1st series, Vol. 13 (Leipzig 1913), p. 212 et seq. ; also

Oeuvres de Laplace, Vol. IX (Paris 1893), p. 41, § IX ; and Darboux, op. cit., Vol. II,
Book IV, Ch. I l l (p. 54 in 2nd ed.).
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here. Any solution of (3.16;, where g, -q are given by (3.15), is a
solution of the original partial differential equation A2 V = 0. It
may however be noted that if we put

V = (g — 7i)M-1 U,

then U satisfies the Euler-Poisson equation

c2U n /8U 8V

and that, if n is even, say n = 2m + 2, the general solution of
(3.16) is1

— Y\

where X is a function of g only and Y of rj only. This is equivalent
to the solution given above for the case when n is even.

§4. The case e=(=0.

When e =[= 0 the base-curve C is an ordinary geodesic and r is
proportional to its arc-length measured from the fixed point (a1) upon
it. If we put

Ke=k2, (4.1)

so that k is real or imaginary according as Ke is positive or negative,
the equation (2.25) to be solved becomes

<M2 + k-) %rT - 2 SlL + nu~ + (w ~ 2) k" dL - -I^2 d-I = 0. (4.2)

If we make the transformation of independent variables defined by2

2 u 2 O
g = T, f] = T + — arc t a n - - = r + --- arc tan •— , (4.3)

we get
c2V (n — 2)k

8^07? 2 s in k (g - 77) \ ^ £7;

Equations (4.3) and (4.4) reduce respectively to (3.15) and (3.16)
when, having replaced rj by 77 + 7T/A, we make e, and hence k, tend
to zero. Equation (4.4) may therefore be regarded as a natural

1 Darboux, op. cit., Vol. II, p. 65, equation (26).

- The £, rj of (4.3) are of course different from the £, i] of (3.15).
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generalisation of the Euler-Poisson equation (3.16). It is beyond
the scope of the present paper to study it in detail, but it may be
remarked that it possesses solutions of the type

V = e(£-r,).X{£ + v), (4.5)

where d, % are respectively functions of f — -q and £ + 7) only. One
such solution, for example, is given by

X = A cos {p (£ + y) + e},

where F is the hypergeometric function and A, p, e are arbitrary
constants.

It was remarked at the beginning of § 3 that, when the base-
curve C is a null geodesic, the equation Q = 1 gives only one value of
T as a function of the a;'s [cf. (3.11)]. When C is an ordinary geodesic
there are two essentially distinct values of T. For by (2.21) and
(4-1),

i|=-ft2e, (4.6)
whence

Q = A (x') cos kr + B {xl) sin kr, (4.7)

(A and B being functions of the xi only), so that Q = 1 gives a
quadratic equation in tan \kr.

We now show that, */ T is one root of the equation

Q{xi; r) = l, (4.8)

2 Q
then r-\ arc tan — is another; that is, the distinct roots are pre-

k k
cisely the variables £, rj introduced in (4.3). For if we write for
brevity

2 0
h= ----- arc tan ^ , (4.9)

k k •

we have by Taylor's theorem,

Q ( x i ; r + h) = Q + h Q T + ^ QTT +
 h ^ - Q m + . . . . , ( 4 . 1 0 )

w h e r e Q, QT, . . . . m e a n Q{x<; - ) , Q T ( ^ ; r ) , . . . . B y ( 4 . 6 ) ,

w h e n c e QTTT = — F QT,
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and so on. Substituting in (4.10), we get

Q (xl; r + h) = 0 -f AQT — Q OT + Q + QT — . . . .

"B v i i ; T i "KT 9 i ^ 3 ! 4 ! 5 !

= Q cos (kk) + §T fc^1 sin (kh).

Inserting the value (4.9) of h and using (4.8), we at once obtain

Q{xl; T +A) = 1,
which proves that T -f- h is also a root of (4.8). By (4.7), any other
root differs from either T or T + h by an integral multiple of 2-n/k.
The null cone of vertex (xl) cuts the base-geodesic C in two points
only, for the addition of a multiple of 2TT/& to r gives the same point
X'-{T) upon C. When e = ± 1, so that r is the actual arc-length of C
measured from the fixed point (a1), the difference h between the roots r
and T + h is equal to the intercept made upon C by the null cone of
vertex (x*). Since the inverse tangent in the expression (4.9) for h is
indeterminate to the extent of an additive multiple of IT, this inter-
cept is indeterminate to the extent of an additive multiple of Inik, a
fact that corresponds to the possibility of " travelling round the
universe."

It may be noted in passing that the last result may be inter-
preted physically. Suppose the geodesic C to be the world-line of
an observer 0 in a four-dimensional space-time of constant curvature,
and that the arc-length of C measures the proper-time of 0. Suppose
also that the xl are the world-coordinates of a star 8 at the instant
when it receives from the observer a light-pulse dispatched by him at
his proper-time T. If the light-pulse be immediately reflected back
it reaches1 the observer at his proper-time r + h. Thus h, the inter-
cept made by the null-cone of vertex S on the world-line C, measures
the interval of proper-time between the sending and reception of the
light-pulse by the observer. Now for an observer at rest at the
spatial origin of a galilean space-time

ds2 = dt2 - (dz2 + dy2 + dz^/c2,

the intercept made upon his world-line, the equations of which are

x = 0, y = 0, z = 0, t = T,

by the null cone of a star at (x, y, z, t), is h = 28/c, where h=-\/{x'ljry2 + z2)
is the spatial distance of the star from the observer. A not unnatural

1 We are assuming h > 0 for the sake of the argument. If h < 0, ~ + h is the time
of dispatch and T the time of reception.
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definition of spatial distance for the space-time of constant curvature
is therefore

8 = -j- i ch

or S = ± ^ ^ a r c t a n - ^ - (4.11)
V(Ke) V{Ke)

by (4.9) and (4.1), where the sign is chosen so as to make 8 positive.
Applying this to the de Sitter world

for which K = - c2/i?2, K* = ci/B and1

rr f - - - 1
+ — J cos 6 cos 9 + sin 6 sin 6 cos (./> — (f>) v ,

if { j
and taking the observer at the spatial origin, so that his world-line
(a geodesic) is specified by r = 0, t = T, (e = 1), we have

n (^ r 2 Y u C ( * - T )g = ^ l _ _ _ j oOBh—g-J,

whence, differentiating with respect to T and using the fact that
Q = 1, we quickly get

S = Ii arg tanh (rjR)

for the distance from the spatial origin of a star at the world-point
(r, e , 4>, t).

We now return, once again, to the discussion of the partial
differential equation A2 V = 0.

§ 5. Solutions for a flat space.
We have seen that for a space of constant curvature K the

partial differential equation reduces to

G1JL~ &U CT U CU U dr

1 Ruse, "On the definition of spatial distance in general relativity/' Proc. Roy.
Soc, Edinburgh, 52 (1931-2), 183-194, and in particular p. 193. For other work
on the definition of spatial distance see E. T. Whittaker, Proc. Roy. Soc. (A) 133 (1931),
93 ; Kermack, M'Crea and Whittaker, Proc Roy. Soc, Edinburgh, 53 (1932-3), 35 ;
Ruse, Proc. Roy. Soc, Edinburgh, 53 (1932-3), 79 ; Etherington, loc cit. supra ; Walker,
Quarterly J. of Math. (Oxford), 4 (1933), 71 ; Temple, Proc. Roy. Soc. (A) 168 (1938), 136.
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Now when K is small, we have by (1.20) the approximation

QT=-K iiT,
that is, approximately,

u = - Kv, (5.2)
where v = QT.

TT • . , SV 18V
Hence, approximately, — — — — — .

cu K cv
So for K small, (5.1) becomes
K2v2 +Ke c*V 2 e2F nK2 v2 + (n-2) Ke eF n-2 bV ___ Q

K2 cv"2 Kovor R'lv cv Kv 'CT

Multiply by K and make K-> 0. We get

e ^ + 2 ^ + ^ ^ ^ + ^
2 ^ = 0 . (5.3)

cw'z 8w dr v cv v dr
This is the partial differential equation for an w-dimensional flat
space corresponding to the equation (5.1) for a space of non-zero
curvature K. It may be obtained directly from the equation
A2F = 0 by using methods similar to those in §2, the identities (1.8)
and (1.9) replacing (1.21), (1.22) and (1.23).

When e = 0 the base-ciirve is a null geodesic and V satisfies
the equation

2- ?L + ^ 1Z=O, (5.4)
CV cr v cr

of which the general solution is

V = / ( » ) + ^ ( T ) / » 4 < » - 2 >

where/and <f> are arbitrary functions. This re-establishes the result
quoted in § 1 [equations (1.15) and (1.16)], though it does not put in
evidence the exceptional nature of the (^-solution when n = 2 or 4.

When e =j= 0 the base-curve is an ordinary geodesic (straight
line). Change the variables to £, -q defined by the equations

£ = r , 7) = T - 2v/e, (5.5)

which follow from (4.3) and (5.2) by making K~>0. Equation (5.3)
becomes

Bv ' 210V) ( f ~ %) = °' (5-6)
an Euler-Poisson equation. It is interesting to notice that this
differs from (3.16) by having a minus instead of a plus sign before
the first-order terms. Any solution of (5.6) is a solution of A2F == 0.
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It can be shown either by methods similar to those used in § 4,
or as in § 5 below, that, if T is one root of the equation

Q(JB*; T ) = 0 , (5.7)

which is quadratic in T, then T — 2 QT/e is the other. Thus the
variables £, -q of (5.5) are the roots of (5.7) regarded as an equation
for T.

§6. Geometrical discussion.

We now consider the geometrical significance of the functions

fir, Qr-
First take the case of a flat space referred to rectangular cartesian

coordinates. For present purposes it will be sufficient to take n = 3,
the final results being valid for any value of n. We suppose, there-
fore, that

ds2 = dx2 + dy2 + dz2,

and that the base-curve C is the straight line

x = a -\- IT, y — b -\- WIT, Z = c -f- TIT, (6.2)

where {a, b, c) is the point A at which T = 0 and I, m, n are constants
such that

l2 + ?n2 + n2 = e. (6.3)

Substituting from (6.2) in (6.1), we get

2Q. = r2 - 2 T XI (X- a) + e r 2 . (6.4)
Here

r2 = (x - a)2 + (y - b)2 + (z - c)2,

so that r is the distance of the point P, (x, y, z), from the fixed point
A, (a, b, c), upon G.

From (6.4),
QT = — XI (x — a) + er. (6.5)

M (l,m>.n)
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Take e = 1. Then C is an ordinary (non-null) straight line, (I, m, n)
are its direction cosines, and S I (x — a) is the length of the orthogonal
projection AM of AP upon C. Suppose that AM = a and ilf P = p.
Then by (6.4) and (6.5),

2Q = r 2 - 2c7T+ T2, (6.6)

Q T = - C 7 + T, (6.7)

and the equation Q = 0 therefore gives

that is T = a i ip. (6.8)
Hence by (6.7),

a = ± iP, (6.9)
and therefore

r - 2 O T = a=Ft>. (6.10)

Equations (6.8) and (6.10) provide a verification that, if T is one root
of the equation Q = 0, then T — 2 QT is the other. These roots are
the f, t] of (5.5), and we may therefore write

£ = a + ip, 7J=CT — ip. (6.11)

If we transform the coordinates (a;, ?/, 2) to any new set having
A as origin and the line C as z-axis, the variables p, a become the
ordinary non-angular cylindrical coordinates of P, p being the
cylindrical radius-vector. Thus the solutions of A2 V = 0 found
above for the case e=j=O are the tensor generalisation of solutions,
independent of the angular coordinate <f>, of the cylindrical form of
the ordinary Laplace's equation, i.e., of

c ( cV\ . 1 82V d2 V A

cp\ dp J p dcpA ccr

In an w-dimensional flat space p and a have of course the same
geometrical significance as in three dimensions: that is, p is the
perpendicular distance from the base-line C of the point P, (x'), and
a is the projection of AP upon C, A being the point (a1) upon C at
which T = 0.

When e = 0 the line C is isotropic and /, m, n may no longer be
properly described as direction cosines. We may however conven-
tionally regard £ Z (x — a) as measuring the projection a of AP upon
C, and we have by (6.4) and (6.5),

2 Q = r2 - 2CTT,

QT= -<J . (6.12)
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The equation O = 0 gives

r = l r 2 / a . (6.13)

(6.12) and (6.13) give a geometrical meaning to the variables v, r
appearing in (5.4).

When the space is of non-zero curvature K no such simple
interpretations of T and OT (or QT) are immediately possible. If e=f=O
we can however obtain a geometrical description of these functions
in the manner outlined below.

Consider once again a flat space of n dimensions referred to any
coordinates (x1), and take e— 1. Then the variable p, which has by
(6.9) the value

p = q= iQT, (6.14)

measures the perpendicular distance and therefore the minimum
distance of P, (xl), from the base-line C. But the square of the
distance of P from any point xl (T) on C is 2L~l(xi; T), and this is a
minimum for variable T if OT = 0. Thus the latter relation, regarded
as an equation for T, gives the value of T at the foot of the perpen-
dicular M from P upon the line C. But since T is the arc-length of
C measured from the fixed point A, this value is a, and we thus have

P
2 = 2Q.(xi; a), (6.15)

where u is the function of the x's obtained by solving the equation

l f i ( r f ; a ) = 0. (6.16)

To avoid confusion of notation we continue to represent QT (xl; T)
by Q.T, T being the function of the z's obtained from the equation
0 = 0, and denote O (x*; a) by <w. Then by (6.15) we have

P2 = 2OJ, (6.17)
whence, by (6.14),

O2 = - 2OJ. (6.18)
Also by (6.7),

T - O T = C T . (6.19)

To sum up: Instead of using as the basis of our calculations the
functions

T and LlT, where 0 = 0, (6.20)

we could use the functions

T and O, where OT = 0, (6.21)

https://doi.org/10.1017/S001309150000852X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000852X


44 H. S. RUSE

the T, Q, QT of (6.21) being denoted respectively by a, a>, a>a to
distinguish them from the T, £1, QT of (6.20). The two sets of
functions are connected by the relations (6.18), (6.19). Geometric-
ally, 2a> is the square of the perpendicular distance of P, (x{), from C,
and a is the projection of AP upon C.

We now establish the corresponding results for a space of non-
zero curvature K. As before let r and QT be the functions of the x's
obtained by solving the equation

Q(a*;r) = l (6.22)
for T. Also let

q=Q &•,<!), (6.23)

where a = a (xl) is the function of the x's obtained by solving the
equation

qa=
 8— = 0 (6.24)

for a. Then we shall show that

T = a i — arc cos—, (6.25)
k q

QT = =p k V (q2 — 1), (6.26)

where, as usual, k = \/ {Ke). To prove (6.25) we merely have to show
t h a t (6.22) is satisfied by the two values of r given by (6.25). Now
we have by Taylor's theorem, remembering tha t Q{xi;a) = q,

Q ( x{; a ± — arc cos —
\ * q

= q±\- (a rc cos — )qv+ - ^ ( arc cos - - ) qm ± . . . . (6.27)

But
q^=-k2q, (6.28)

as follows by replacing T by a in (4.6). Hence

qaaa = - k2 qa, q^a = k*q,

and the right-hand side of (6.27) becomes

q cos ( arc cos — ) ± — sin ( arc cos —
V q) & \ q

which is equal to unity because of (6.24). That (6.25) gives the
roots of (6.22) is thus established.
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To prove (6.26) we use (6.25). We have

q~ #(*''; a)

= Q (xl; r ^f — arc cos — j .

Expanding the right-hand side by Taylor's theorem and remembering
that Q means Q (x1; T), we obtain

Using the relation (4.6), namely QTT = — Ic2Q, just as we used (6.28),
we get

a = Q cos ( arc cos — ] ~F ^ sin ( arc cos — ) ,
V qJ k V q)

and therefore, since Q = 1,

This at once gives (6.26).
Now by (6.23) and (1.19),

q = cos (K* s),

where s is the geodesic distance of the point P, (x'), from the point M
of coordinates x{ (a) upon the base-curve C. By (6.24) this distance
is a maximum or minimum, and is thus the perpendicular distance
of P from the curve C. Also when e = 1, a measures the arc-length
of C from A to M. We thus obtain from (6.25) and (6.26) expressions
for the functions T and Qr (which may be complex) in terms of
quantities a, q that have a geometrical meaning.
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