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Hydraulic properties of subglacial sediment determined
from the mechanical response of water-filled boreholes

BRIAN S. WADDINGTON AND GARRY K. C. CLARKE
Department of Geophysics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 134, Canada

ABSTRACT. Freezing of water-filled boreholes drives water into the subglacial
bed and the associated pressure effects yield information about subglacial hydraulic
properties. A numerical model describing the mechanical response of an unconnected
borehole and the bed beneath it to this freezing forcing was developed, using a non-
linear transient visco-elastic ice-flow law and an approximate model of top-down
freezing. The resulting system of equations was solved using the method of lines.
Results agreed well with analytic solutions, when parameters were correctly chosen.
Forward modelling of pressure records from three 1992 boreholes and three from other
years indicated that the till underlying Trapridge Glacier has a hydraulic conductivity
of 1.35-7.0x 10 “ms . The model was also used to investigate the response of a
borehole to sudden pressure changes. The response is very fast compared to pressure-
sensor sampling rates; thus, the true basal signal is essentially unaffected by the
presence of the borehole, except during the initial freeze-in.

INTRODUCTION
: ' . —{ 100

Holes drilled to the glacier bed can be roughly classified
as connected or unconnected (Fig. 1). Connected holes <
establish hydraulic communication with the subglacial ds0 =
drainage system and, under favourable circumstances, act %I
as manometers. Unconnected holes fail to establish such -i é
communication and these holes remain water-filled. 3200 2
Although connected holes are less prevalent, they have m
received greater scientific attention (e.g. Hodge, 1979; 2
Iken and Bindschadler, 1986; Kamb and Engelhardt, o
1987; Stone and Clarke, 1993) because they are simple to 3
study and their pressure signals often correlate with water 1100 ES
input to the subglacial system. Nonetheless, unconnected ]' é i
holes merit investigation because they represent the (e}
situation obtaining over large areas of the subglacial = 3003
bed and because they are likely to represent subglacial 0
conditions during winter when glacier surges are com- 200 <
monly triggered (Kamb and others, 1985; Echelmeyer
and others, 1987; Raymond, 1987; Echelmeyer and 4100
Harrison, 1989). I -:

As part of a long-term study of the cause and TIME (d)
mechanics of glacier surging, we have, since 1989,
recorded pressure fluctuations in both connected and Fig. 1. Types of Trapridge Glacier boreholes and freeze-
unconnected holes at Trapridge Glacier, Yukon Terr- in pressure records. Boreholes are classified as: (a)
itory, Canada. Previous investigations of this glacier have connected if the water level drops when the drill reaches
been reported by Collins (1972), Jarvis and Clarke the bed, indicating that the hole intersects a highly
(1975), Clarke and others (1984), Clarke and Blake transmissive basal drainage system, (b) unconnected
(1991), Blake and others (1992) and Stone and Clarke if the hole reaches the bed but the water level does not
(1993). The interpretation of natural and induced immediately drop, indicating that the hole bottoms in less
pressure fluctuations in connected boreholes was the permeable material, and (¢) blind if the hole does not
focus of a recent thesis by Stone (1993) and the present reach the bed. The cavity in the bed at the bottom of the
work is concerned with interpretation of pressure borehole is thought to be formed by the hot-water drill.
fluctuations in unconnected holes. Whereas measure- Note the differing time and pressure scales.
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ments in connected holes reveal information on the
connectivity and transmissivity of the subglacial hydraul-
ic system, measurements in unconnected holes yield
information on the piezometric pressure and hydraulic
properties of the glacier substrate.

The challenge of studying pressure fluctuations in
unconnected holes is that they do not behave as
manometers. Because water influx or outflux is neglig-
ible. changes in water level occur imperceptibly slowly.
Such holes must be sealed at the top, either naturally by
freezing or artificially by means of an inflatable packer, so
that pressure signals can be faithfully recorded. An added
complication is that sealed water-filled holes are subject to
pressure influences by ice creep and freezing forcing of the
holes (Fig. 2). These influences are best described by a
transient ice-flow law rather than hy the conventional
Glen law.

Fig. 2. Response to freezing forang. These cartoons
lustrate the two ways that excess water displaced by
Jreezing can be accommodated: (a) by ice deformation,
and (b) by water flow into the bed. In blind holes only ice
deformation operates. In connected holes water flow into the
bed dominates. It is not immediately clear which
mechanism dominates in unconnected holes.
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Fig. 3. Unconnected hole-pressure record ( sensor 90P07 ).
Note the numerous sudden pressure changes and subsequent
decays at various time-scales. The pressure fluctuations
shown tn this figure were recorded more than 20 d after the
hole was drilled and after 1990 drilling activity had ended.
Hence, the sudden pressure changes could not be the divect
result of borehole freezing or a response to nearby drilling.
Thus, they are caused either by glacier-ice movement or
naturally occurring fluctuations in subglacial water
pressure.
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We have developed a computational model to
describe the response of unconnected boreholes subjected
to freezing forcing, and use this model to interpret signals
recorded in unconnected holes in Trapridge Glacier
(Waddington, 1993). The model describes ground-water
flow in the bed, deformation of the ice surrounding the
hole and an approximate freezing forcing.

By using the model to analyze the pressure response of
“blind™ holes (i.e. those that are intentionally terminated
atsome distance above the bed, as illustrated in Figure lc).
we isolate the effects of ice deformation and evaluate
relevant flow-law parameters. Next, we use these param-
eters to model the response of an unconnected hole to
freezing forcing and obtain estimates of the hydraulic
properties of the glacier substrate. Lastly, we use the model
to interpret natural unforced fluctuations of water pressure
in unconnected boreholes, as illustrated in Figure 3.

NOTATION

ag.- .. Qs Coeflicients of L(t) expression (m)

A Kinematic hardening parameter

by...bs Exponents of L(t) expression (s ')

B Scalar drag stress associated with isotropic
hardening

By Initial scalar drag stress

E Young’s modulus (Pa)

q Gravitational acceleration, g =9.806 ms *

h Hydraulic head (m)

Temperature-independent isotropic

hardening parameter

K Hydraulic conductivity (ms ')

L Length of borehole (m)

my Initial mass of water in horehole (kg)

my Mass of water expelled from borehole into
bed (kg)

my Mass of water frozen to top of borehole (kg)

T Mass of water in borehole (kg)

n Porosity of basal sediment

N Flow-law exponent

Po Initial hydrostatic pressure (Pa)

P Borehole water pressure (Pa)

Di Forcing pressure (Pa)

i Specific discharge (ms ')

(@) Creep activation energy of ice (J mol )

Qn Creep activation energy of ice, for
T > —10°C (Jmol ')

Q) Creep activation energy of ice, for
T < —10°C (Jmol ™)

r Radial spatial coordinate (m)

N Borehole radius (m)

Tho Initial radius of borehole (m)

e Radius of basal cavity (m)

R Transformed radial coordinate

i one Gas constant, Rg,s =8.314 ] mol K

Ry Elastic back stress tensor (Pa)

8ij Deviatoric stress tensor (Pa)

s;lj- Deviatoric stress difference tensor (Pa)

t Time (s)

ty Ramp-up time for pressure forcing (s)

7k Temperature (K)

Thes Constant temperature, Togs =263.12 K
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w; Displacement vector (m)

V Viscous stress factor (Pa)

Vo Temperature-invariant viscous stress
factor (Pa)

Vou Temperature-invariant viscous stress

factor applicable for temperatures

T > —10°C (Pa)

bir, Spatial coordinates (m)

z Vertical spatial coordinate, z = z3 (m)

o Compressibility of basal sediment matrix
(Pa ')

6} Compressibility of water (Pa ')

Eij Total strain tensor (s ')

Efj Elastic strain tensor (s ')

€3 Steady-state viscous strain tensor (s b

E:-J- Transient viscous strain tensor (s ')

2 Tatal viscous strain tensor (s ')

i Cylindrical angle coordinate and spherical
angle coordinate (rad)

A Lame’s constant (Pa ')

b Steady-state viscous softness parameter
(Pa™!)

At Transient viscous softness parameter (Pa ')

I Shear modulus (Pa ')

p Density (kgm )

o Density of water (kgm 3)

o Density of water at pressure py (kgm 3)

2 Density of newly frozen ice (kg m )

Tjj Stress tensor (Pa)

{J‘;If Stress-difference tensor, reduced stress
tensor (Pa)

Diee; Equivalent uniaxial stress (Pa)

Odeq Equivalent stress ditterence (Pa)

(de/dt),  Reference strain rate (s 4

d/dt Material time derivative

a/0t Partial time derivative

MODEL DEVELOPMENT

To predict the pressure response of an unconnected
borehole as it freezes shut after hot-water drilling, the
mechanical response of the ice-hed—borehole system must
be modelled together with the freezing forcing itself. The
model must describe the deformation of ice in response to
clevated pressure, as well as the flow of water from the
bottom of the borehole into the bed.

Ice model

The problem is clearly transient, so an appropriate
transient ice-flow law must be used. This flow law
must describe the response to time-varying pressure at
the borehole wall, including pressure which first rises
then falls. Therefore, the strain-recovery behaviour of
ice (Duval, 1978) must be properly described. A
number of formulations seek to model transient
response, including strain recovery, but no existing
rheologies can model the full range of primary,
sccondary and tertiary creep. We adopt the physically
based phenomenological model of Sunder and Wu
(1989a, b, 1990).

The freezing-borehole problem is in general three-
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dimensional but we must simplify it to make it
tractable. We assume the background ice stress to be
purely hydrostatic and consider the borehole to be a
long cylindrical hole, so that end effects can be
ignored and ice deformation can be assumed radial.
Variations in ice properties (e.g. those caused by
temperature change) and stress state with depth are
ignored, so that the deformation can be considered
constant with depth. This allows the ice-deformation
problem to be reduced to a single layer of radially
symmetric flow, a one-dimensional problem. The
governing equations fall into three basic categories:
rheological equations, strain definitions and momen-
tum balance.

Flow law

Deformation behaviour of ice can be described by a
transient, non-linear, wvisco-elastic flow law with
internal state variables (Sunder and Wu, 1989b).
This description was developed with the following
assumptions: orthotropic polyerystalline ice, small
strains and rotations, and only primary and second-
ary creep are described (damage mechanics, no
recrystallization). Hence, we may use the definition
of infinitesimal strain

gij = 3 (Ou;/Ox; + Bu;/Ox;). (1)

The exclusion of recrystallization effects, and hence
the inability to describe creep at strains greater than
the minimum (steady-state) creep, make this flow law
unsuitable for modelling large-strain deformations.
Because we are primarily interested in small strains,
this limitation is acceptable.

Sunder and Wu (1989b) presented their flow law,
in rate form, for a viscously incompressible ortho-
tropic visco-elastic ice. It will be assumed that the ice
surrounding the borehole is initially composed of
randomly oriented crystals and hence is macroscopi-
cally isotropic. The Sunder and Wu flow law for
isotropic ice is summarized by the following equa-
tions:

strain decomposition

Eij = &;; T € (2)
£ = &‘ij + &5 (3)
equations of state
I A

by il — 0 4
&ij 2;1,0-‘"’ 2#(3A+21£)JM ij ( )
U;-L:Uij—&j (5)
R/EJ = %AEEEJ-; (6)

coolution equations
dE?J/dt = A,,-.b‘jj(dé‘/dt)n (7)
de};/dt = sy(de/dt), (8)
dB/dt = HE(1/BV) g6 " (9)

and definitions
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Jﬁleq = %bfjb 5 (10)
X =§(1/V)V ol (11)
M =3(1/BV)Vall L. (12)

Note that Equation (7) with definition (11) corresponds
to the commonly used Glen flow law for steady-state
viscous deformation of ice.

Without loss of generality (dz/dt), may be set equal to
unity (Sunder and Wu, 1989b). A flow-law exponent
value of N =3 is generally accepted (e.g. Sunder and
Wu, 1989b) and is used in this paper. The viscous stress
factor V' varies with temperature according to the
Arrhenius relation

V = Voexp(Q/NRg:sT), (13)

which is thought to be valid for temperatures below
—10°C (e.g. Sunder and Wu, 1989a). At higher temper-
ature, the V' changes more rapidly than Equation (13)
predicts, due to the presence of water at grain boundaries.
Hence, a different expression for V' must be used above
—10°C. We follow the approach of Paterson (1981) and
use the Arrhenius relation with a higher activation energy

@y Therelore, for T > —10°C,
V(T) = Vyn exp [Q;;/NR%T] (14)

where

Vo =W GXP[(QI - Qli)/NRgasTZGB} (15)
and Tgﬁg = 26312 K.

Application of limiting assumptions

With the exception of the elastic response to pressure
change, the ice deformation is independent of hydrostatic
pressure. For linear elasticity, hydrostatic pressure does
not aflect the solution, except to cause a small change in
ice density, which is second order and hence insignificant.
We can therefore neglect all vertical gradients. The flow is
slow and gravity is the only body force acting on the ice.
Thus, the momentum-balance equation reduces to

Neglecting vertical gradients, applying cylindrical sym-
metry and noting that gravity is the only body force acting
on the ice, the force-balance Equation (16) becomes

Ao [0 + (o — ogg) /7 = 0. (17)

Strain definition (1) can be reformulated in cylindrical
coordinates (e.g. Jaeger and Cook, 1969, p.52) and the

above assumptions applied to give

& = Our/Or, g =uy/r, (18)
Evs—Eppi= B = Es= s

Hence, there exists a state of plane strain in the -6 plane.

It is also apparent that 7, 6 and % are principal axes of

strain (those axes for which all off-diagonal terms of the

https://doi.org/10.3189/50022143000017810 Published online by Cambridge University Press

Waddington and Clarke: Hydraulic properties of subglacial sediment

strain tensor vanish). For isotropic ice, these are also the
principal axes of stress. Therefore, in this coordinate
wqrem the ofl= diaguudl terms of all tensor quantities (a5,
'Tu’ g 53,85 78 :J U- and ¢} ) vanish. Thus, the notation
for the diagonal terms Uftllc tensors can be simplified, so
that 0, becomes @, and so on. In the simplified notation,
the flow law becomes (with material time derivatives
replaced by spatial time derivatives because the infinit-
esimal strain assumption allows all adveetive terms to be
set (o zero):

& =€, + €7, £g= €y + €y, O=ei4e; (19

e /0t = BEL /Ot + Bet ot
Och /0t = Oely /Ot + O} /Ot
Oel /Ot = Oet /Ot + O3 /ot (20)
O A
= T E g Ot )
.1 A
e 2—“0'.9 2u(3X + 2p) (or+ 00+ 02)

1 A

e ——— g L 21
© 2;10‘ 2;1.(3/\—{—2,15)((:F st (1)

cr‘ri == R ag =gy — Ry, ol = g.— R.
(22)
OR, /0t =3 AEOEL [0t
ORy /0t = 3 AEDe /0t
dR. [0t =2 AEO:" |t (23)
Oe, /0t = Ags,(de/dt),
dEH/dt = Assg(de/dt) 0
02} [0t = Ass:(de/dt), (24)
9el [t = Asd(de/dt),
Oz /Ot = /\| sy (de /dt),
Oet /0t = A8 (de/dt), (25)
aB/ot = HE(1/BV) ol " (26)
where
=V ey (27)
Oeq = E(Sr'z + ""H2 Sk 5:2):[5 (28)
8y = 0. — 3(0, + 09 + 02
Sg = 0y — %((T,+(fr)+0')
Sz =z — l;(an + o+ U") (29)
A =3(1/BV)Vod M (30)
ori] = [% (s‘,l + .s;}z + 9"2)] (31)
57 =0f —1 (0 + 0§ + o)
.5.‘91 =J}}—%(0’f +n'f¢,]. +(I'_)
Sttl = cr(:] %(O’ii + 0'(91 == O'd) (32)
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One more constraint is required, that of compatibility of
strains. From the definition of tangential strain (Equat-
ions (18)), it follows that

Uy = TEG. (33)

Substituting this into the definition of radial strain
(Equations(18)), and differentiating, gives

e, = O(reg)/Or = gp + 1Oy [ Or (34)
or

gg + rdeg/Or — g, = 0. (35)

The previously developed equations together form the
field equations of an initial-value problem with algebraic
constraints. The differential equations are (20), (23) and
(26). The constraint equations are compatibility of strains
(Equation (35)) and plane strain (Equation (18)). All the
other equations are used to calculate the intermediate
variables needed for the differential and constraint
equations.

Initial and boundary conditions
Here we state the initial conditions and boundary
conditions which, together with the field equations just
developed, fully specify the initial-value problem in the
1ee.

The initial state of the ice is that of hydrostatic
equilibrium with no viscous strain. Hence

ax(r,0) = ap(r,0) = o.(r,0) = —py (36)

eX(r,0) = ej(r,0) =€5(r,0) =0 (37)
Ry(r;0) = Ro(r,0) = R,(r,0) =0 (38)
B(?", 0) = Bn (39)

where py is the background hydrostatic pressure and By is
the initial value of the scalar drag stress, which depends
on the grain-size of the ice (Sunder and Wu, 1989a).

At the borehole wall, the radial compressive stress
must be equal to the water pressure in the borehole and
the displacement at the borehole wall must equal the
change in borehole radius. Thus

ar(rb,t) = —po (40)

up(ry, t) = Ary,. (41)

A bhoundary condition in terms of strain is obtained from
this by substituting Equation (41) into the definition of
tangential strain (Equations (18)), yielding

gg(rp,t) = ATb/Tb. (42)

At the outside boundary there are numerous possib-
ilities. Although the outside boundary in the problem as
formulated thus far is at infinite radius, in the numerical
problem this boundary must be placed at some large but
finite radius.

Some possibilities, all of which are true at infinite
radius, are as follows: zero strain, specified hydrostatic
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stress (all stress components specified) or specified radial
compressive stress only (equal to hydrostatic pressure).
The specified-radial-stress option was chosen because
analytic solutions are available for thick-walled cylinders
subject to internal and external pressure (Jaeger and
Cook, 1969; Kjartanson and others, 1988), allowing the
resulting model to be checked. Thus, the outside
boundary condition is

or(00,t) = —p. (43)

Bed equations, forcings and model synthesis

We approximate the bed as a homogeneous half-space,
with hydraulic properties equal to those of the low-
permeability till layer. This is a reasonable approxim-
ation as long as drainage channels are not too close to
the hole. We further assume that the flow is described by
the standard diffusion equation for transient ground-
water flow in a saturated porous medium (e.g. Freeze
and Cherry, 1979). The ice and bed are coupled by
conservation of mass of compressible water in the
borehole.

In the region investigated, Trapridge Glacier is
coldest near the surface (= -5°C at the surface if the
winter cold wave is neglected) and below freezing
throughout except at the bed where it is at the pressure-
melting point (Clarke and Blake, 1991). Since 1980, more
than 30 holes have been drilled to the bed in the warm-
bedded part of Trapridge Glacier and instrumented with
thermistor cables. There is no evidence of the presence of
a basal temperate layer as encountered in classical
polythermal glaciers (Clarke and others, 1984; Clarke
and Blake, 1991). Trapridge Glacier ice is therefore
assumed to be impermeable.

As a result of the Trapridge Glacier thermal regime,
we expect boreholes to freeze shut first at the highest point
with water in it, then downward from there as freezing
occurs on the borehole walls (e.g. Jarvis and Clarke, 1974;
Humphrey and Echelmeyer, 1990). For computational
simplicity, we assume that all freezing is confined to the
top of the borehole, so that the hole gets shorter but its
diameter remains constant. The borehole length as a
function of tme is described as a series ol decaying
exponentials, having coefficients that can be determined
from temperature measurements made as a borehole
freezes. We also allow for arbitrary sudden pressurization
of the borehole to permit the modelling of natural sudden
pressurization and decay events.

In this section, we develop the bed model, borehole
model and description of freezing and other forcings, then
synthesize these with the ice-deformation model to form
the complete coupled model, and formulate the problem
for numerical solution using the method of lines.

Basal ground-water flow

Consider a homogeneous, isotropic, permeable half-space
bounded ahove by impermeable ice and by water in a
hemispherical cavity at the bottom of a borehole. Let the
coordinate system be spherical, with the origin at the
centre of radius of the hemispherical cavity (Fig. 4). In
spherical coordinates, the equation for radial ground-
water flow in a compressible porous medium is
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Fig. 4. Bed geometry and coordinate system.
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The initial conditions and boundary conditions for the
basal ground-water flow problem follow directly from the
assumptions that the bed is initially in a no-flow (uniform
hydraulic head) state and that the background head in
the bed changes much more slowly than the head in the
borehole. The head at the cavity wall must also be equal
to the borehole head. Hence

h(r,0) = po/pug, Te S 7 <X (45)
h(oo,t) = po/pug: t>0 (46)
h('rlt) == Ph(t)/ngs t>0. (47)

Borehole equations

The borehole is filled with compressible water, which acts
to couple the ice and bed. The coupling is provided by the
water mass-balance equation for the borehole. The mass
of water in the borehole plus the mass of water lost by flow
into the bed and freezing must be equal to the initial mass
of water in the borehole. Thus

My —+ My, + My = my. (48)

The mass of water in the borehole at any instant is
derived as follows. The compressibility of water must be
taken into account; hence the density ol water may in
general vary in space as well as time. It can be shown that
the mass of water in the borehole (taking into account the
density change with depth caused by the change in water
pressure with depth) and in the basal cavity is

e = %;“exp[ﬁ(ph(t) — p)][1 — exp(~BrogL(®))]

+ 3nre’ po exp[B(py(t) — po)]
(49)
if water density is given by

pu(t) = poexplB(pu(t) — po)). (50)

Note that the height of the water-filled borehole L is time-
dependent. This introduces the approximate freezing
forcing. Borehole radius 74(t) can be found from the
tangential strain in the ice at the borehole wall. The ice-

https://doi.org/10.3189/50022143000017810 Published online by Cambridge University Press

Waddington and Clarke: Hydraulic properties of subglacial sediment

strain boundary condition at the borehole wall (Equation
(42)) leads to

r(t) = ruolea(rns, t) + 1. (51)

Now consider the flow of water from the borehole into the
bed. The radial specific discharge is g, = —Kdh/r, the
water-volume flux across a hemispherical surface. The
total volume-flow rate through such a surface is the flux
multiplied by the surface area of a hemisphere.
Substituting Equation (50) for p, gives the mass-flow
rate into the hed

Ay, /8t = —2mpg exp[B(py(t) — po)|re KOh/dr|, . (52)

Forcings

We model freezing forcing approximately by top-down
freezing, at an arbitrary rate, with no freezing to the
borehole walls. Under this simplifying assumption, freez-
ing forcing enters the model by specifying L(t), the height
of the water-filled borehole as a function of time. We let
L(t) be given by some arbitrary function having co-
efficients that can be assigned to approximate the desired
freezing rate. The mass of water m; which has frozen to ice
is then the volume of ice produced multiplied by the
density of ice. Because r}, changes much more slowly than
L, ry(t) may be replaced by 70, a constant; thus

me = TTTb.()z[L{O) — L(t)]pi. (53)

Sudden pressurization forcing was simulated by starting
with normal equilibrium initial conditions and imposing
a very rapid, but smooth, change in the borehole
pressure. We have chosen a shilted half cosine for the
ramp-up function, due to its smoothness,

u(t) = po +$pe{1 + cos[m(1 + t/t)]} (54)

where pr 1s the imposed pressure change (thus the pressure
during the ramp-up period is py + ps) and #; is ramp-up
time.

Method-of-lines solution
Equations (17)-(32), (35), (44), (48)—(50), (52) and
either (53) or (54) form a system of non-linear partial
differential equations and algebraic equations that was
solved using the method of lines (e.g. Schiesser, 1991),
with integration by the ddriv3 integrator of Kahaner and
Sutherland (public domain software, available from Los
Alamos National Laboratory). This integrator uses the
backward-differentiation formula method of Gear (1971).

The method of lines requires that the ice and bed
regions be discretized, so that finite-difference spatial
derivatives can be taken. A spatial coordinate transfor-
mation (with nodes evenly spaced in the transformed
variable) was therefore applied to concentrate nodes at
small radius, where changes in the field variables are
expected to be most rapid.

The choice of transformation was guided by available
analytic solutions:

l. For steady-state radial ground-water flow in a

whole space or half space, h is proportional to 1/r (see

LY
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e.g. Carslaw and Jaeger, 1959, p. 247) for the solution
to the equivalent heat-conduction problem).

2. For steady-state or transient flow of linear (elastic,
viscous or visco-elastic) ice surrounding a cylindrical
hole, stress and strain are proportional to 1/r* (Nye,
1953).

3. For steady-state viscous flow of Glen law ice

surrounding a cylindrical hole, stress is proportional
2 . . . X

to 1/7% and strain is proportional to 1/7? (Nye, 1953).

Hence the transformation R = 1/7 was used in the bed. The
best choice for the ice is less obvious. Therefore, a range of
transformations was allowed: R = r* where  is a finite non-
zero real number, and R = Inr. The logarithmic transfor-
mation was included because the steady-state solution to the
diffusion equation with cylindrical symmetry is logarithmic
(e.g. Carslaw and Jaeger, 1959, p. 189) and one might have
expected some diffusive behaviour in this problem. Visual
comparison of model results to the analytic solutions
revealed that R =1/r"" yielded the most accurate results
(Waddington, 1993); hence this transformation was adopted
for the balance of the work.

Second-order (three-point) finite-difference operators
were used for both first and second derivatives (centred
difference for interior nodes, forward difference for inside
boundary nodes and backward difference for outside
boundary nodes). Although accuracy could be improved

by taking higher-order approximations, the stability of

the resulting method-of-lines solution would be reduced
(Schiesser, 1991).

The model was tested to check its accuracy by
comparing model results to the analytical solutions.
Steady-state Glen law and linear elastic borehole wall-
strain solutions were matched to within 1%, with
appropriate choice of control parameters (Waddington,
1993). Basal head response to a step change in borehole
pressure was matched to within 5%.

MODEL RESULTS

The model was used to infer Trapridge Glacier ice and
bed properties. The freezing forcing L(t) was obtained
from thermistor records. Ice properties (within prior
constraints) were found by forward modelling of blind-
hole pressure records, then bed properties were found by
forward modelling of unconnected hole-pressure records.
The question of the extent to which the pressure records
from unconnected holes reflect true basal conditions, and
the extent to which they are altered by the response of the
borehole itself, was also addressed. This was done by
examining the response of the model to sudden pres-
surization.

Estimation of freezing forcing

Boreholes through Trapridge Glacier were drilled using a
hot-water drill. In all years except 1992, the holes were
drilled to their final diameter in one pass with the drill in
roughly Th of drilling. In 1992, however, the thermal
efficiency of the drill was impaired, so that the hole after
one pass was too small and a second pass was required. The
first pass took about 1h, and the second about 10 min.
The time the borehole first freezes over can be found
from the borehole water-pressure record. (It is the time
when the pressure begins to rise, usually about 12 h after
drilling.) Hole length then decreases with time, asymptot-
ically approaching zero, as the freezing time at the bed
where ice is at its melting point is essentially infinite
(neglecting melting due to geothermal or frictional heating).
In 1992, two thermistor strings were assembled and
installed: 92TO01 in unconnected hole 92H24 and 92T02
in blind hole 92H26. The thermistor resistances were read
during the freeze-in period (=9d), calibrations applied
and temperatures calculated (Waddington, 1993). The
temperature versus time after cessation of drilling was
plotted for the thermistors of the two strings (e.g. Fig. 5).

1

Sl

-4}

TEMPERATURE (°C)

HOLE
e FREEZES SHUT

1 | T e e el

THERMISTOR
DEPTH (m)

48.1

8.1

! ! I e i O Lr

0.5 1

TIME AFTER DRILLING (d)

Fig. 5. Hole 92H24 freeze-in temperature record (92701 ). Dashed lines are smooth extrapolations used to find time of
Sreeze-in. Thermistors at 58.1 and 68.1 m displayed no temperature drop within the first 9d and hence are omitted to
improve clarity. The hole first froze shut approximately 0.56 d after cessation of drilling. The cause of the anomalous points

at 2d and 7d is not understood.
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For each thermistor, a smooth curve was extrapolated
back until it intersected the initial temperature (measured
soon after installation when all thermistors were in
water); this was taken to be the time when the thermistor
froze in. Thermistor position versus freeze-in time gives
the model freezing forcing L(t).

Records from the two holes were stacked together to
reduce noise. We assumed that, because the holes were
nearby, ice surrounding both holes had the same
temperature stratification and furthermore that, because
the drilling method was approximately the same, the two
boreholes froze at the same rate. A point was added at
time zero, corresponding to the initial water level in
92H24. This was done under the assumption that (reezing
would happen first at the water surface. Also, a point was
added at long time (L =05m at t =2year). Pressure
sensors located 0.5 m above the bed appear to remain in
water after 1year but become isolated by freezing after
2 years.

These 5points: were fitted with the exponential series
L(t) =37 a;exp(b;t) by minimizing the least-squares
misfit using the downhill simplex method (e.g. Press and
others, 1987). The b;s were constrained to be negative, to
prevent the length from increasing with time. The result
gave L(t) of the bottoming hole 92H24, and the inverted
function t(L) yielded the freezing time as a function of
height above the bed in that borehole (Fig. 6). For nearby
boreholes, the length as a functon of time can be
obtained from the L(t) for 92H24. To adapt the estimate
to the blind hole 92H26, two changes were made: L was
made smaller by the distance between the bottom of the
hole and the bed (by adding a negative ay), and L was
reduced so that L;—y was consistent with the initial water
level in the borehole. Because freezing time versus depth
was assumed to be the same as [or the bottoming hole, the
zero time had to be shifted. This procedure was repeated
for each hole that was modelled.

Estimation of ice properties
Prior constraints

Before the observed pressure records were fitted by
adjusting input parameters, reasonable limits were

E

60_
L "
=
o L
i
—1 40
(88]
S | -
o
5 34
o 20"
2

0 2 4 o] 8 10
TIME (d)

Fig. 6. Hole 92H24 length versus time: observed (solid
cireles are inferred from thermistor results, solid square is
wnitial water level) and fitled (line). Solid triangles are
inferred from thermistor vesults in nearby hole 92H26.
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placed on these parameters so that, for example, an ice
temperature of +5°C could not be used to obtain a good
fit. Some parameter ranges were obtained from the
literature (e.g. ice and bed properties), whereas others
were obtained from Trapridge Glacier conditions (e.g.
temperature and geometry). Parameter ranges and their
sources are summarized in Table 1.

Table 1. Summary of input parameter ranges

Parameter Minimum Maximum Units Source

Th 0.014 0.03 m 1

I 3.3005x 10 4.1x10” Pa ' 2

o 6.3608 x 10 8.0x 10° Pa ' 2
o) 67000 67000  Jmol ' 3
Qu 126 000 126000  Jmol ' 3
Vo 5400 9700 Pasi 4
A 0.01 10 — 5
H 0.01 50 5
By 0.05 1 = 5
i -5 0 i1 15 6

T 0.025 0.20 m 1
K 1.0x10"  1.0x10° ms' 7
a+nf 1.0x10" 1.0x10° Pa ! 7

I. Estimates of Trapridge Glacier borehole dimensions
(Waddington, 1993).

2. Waddington (1993). Computed [rom seismic velocities of
Paterson (1981) and Young’s modulus of Gold (1977).

3. Paterson (1981).

4. Waddington (1993). Minimum value obtained from
Sunder and Wu (1990), maximum from Morgan (1991).

5. Waddington (1993). Computed from experimental
results of Sinha (1978) and Jacka (1984), quoted in
Sunder and Wu (1990), corrected for grain-size using
the relation of Sinha (1979).

6. Minimum and maximum reasonable average Trap-
ridge Glacier ice temperatures (Fig. 5). The minimum
possible average is taken to he warmer than the
minimum observed value of -6.5°C' to reflect the
greater influence of the warmer, softer, deeper ice.

7. Waddington (1993). Minima from Freeze and Cherry
(1979). Maxima from consolidation tests on Trapridge
Glacier proglacial sediments (unpublished data of T.
Murray, 1992).

Fitting procedure
Because blind holes do not reach the bed, the pressure
signal observed in them must be solely a function of ice
properties, geometry and freezing rate. Hence, it should
be possible to discover the ice properties by forward
modelling and fitting the observed pressure signals,
assuming that the geometry and freezing forcings are
correctly chosen.

The first record modelled was that of hole 92H26
which contained the thermistor string 92T02. To deter-
mine ice properties, only the initial part of the record —
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from first pressure rise to first fracture (arrow B in
Figure 7) — were modelled.
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Fig. 7. Best fit to 92H26 freeze-in pressure record. Solid
line is observed pressure record; dashed line is model
simulation. The slower pressure rise before the inflection
point (arrow a) is thought to be due to water leakage into
instrument cables. The sudden pressure drop (arrow b) 1s
likely caused by fracturing of the ice. Only the curve
between (a) and (b) was modelled.

Closer examination of the early part of the 92H26
record reveals that the initial pressurization is not a single
smooth curve but displays a slope discontinuity (arrow A
in Figure 7) roughly 0.7 h after freezing commences. With
the sole exception of 89H50, all freeze-in pressure records
that we examined displayed this feature. We are unsure
what causes this inflection in the curve. One possible
explanation involves water entry into instrument cables.
Pressurized water has been observed to flow upward
through cables (between the outer jacket and the
insulated conductors) and into data-logger enclosure
boxes. Thus, initially, while water within the cable
jacket remained unfrozen, water could flow into the
cable and relieve pressure in a freezing borehole.
Eventually, the water in the cable above the freezing
front would freeze, preventing further water entry.
(Modelling suggests that the volume of water displaced
by the assumed freezing prior to the inflection point is
0.12 m®, somewhat less than the ~0.4 m> volume of air in
the two cables in the hole.) This could cause the inflection
point on the pressure records. After this leakage process
ceased, the system would behave as a water-filled
borehole, as modelled. (It is not possible that the
compressibility of cable materials, PVC and copper,
plays a part since these materials are less compressible
than water (e.g. Krevelen and Hoflyzer, 1972).)

Hence, we modelled only that part of the [reeze-in
pressure record that lies to the right of the inflection
point. To do so, we ignored the inflection and extrap-
olated the curve back until it matched the initial pressure
(Fig. 7), then time-shifted the borehole L(t) so that the
simulation began at that point. The computer model
could not be started at the end of the drilling, as would be
ideal, since it cannot simulate a constant pressure
followed by freezing-induced compression.

The model ice parameters were varied until the best
visual fit with the pressure record was obtained. It was
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found that the pressure rise was scaled up by decreasing T'
or increasing Vi, g or A. The rate of pressure rise was
increased by increasing the transient parameters A, H
and By. Changing r, had no significant effect. The best fit
(Fig. 7) was obtained with T'=-2°C (coldest allowable);
Vi =9700 Past, p=4.1x10°Pa ' and A=8.0x 10"Pa '
(highest allowable); and A =0.02, H=0.02 and
By =0.05 (rather close to the lowest allowable). The
modelling of a second blind hole (92H45) gave similar
results (Waddington, 1993).

Estimation of bed properties

Bed properties were estimated using a method similar to
that used to determine ice properties; prior constraints are
summarized in Table 1.

Fitting procedure

The present investigation concentrated primarily on hole
92H24, one of the two 1992 boreholes from which the
length function L(t) was derived. It was also the only
unconnected hole in 1992 for which a pressure record of
the freeze-in was obtained. This hole was unconnected at
the time of drilling, as indicated by high and constant
pressure in the hole between drilling and the freezing-
induced pressure rise.

The method used to obtain bed-parameter estimates
was the same as that used to obtain ice-parameter
estimates from blind holes. The freezing forcing was
time-shifted to account for the different initial water levels
in the two holes. Ice parameters determined from blind-
hole modelling were used. Since the basal-cavity radius r.
is poorly known, fits were done by adjusting K and
a + nf for several values of r. spanning its range. It was
found that the height of the pressure peak was decreased
by increasing K, o +n/3 or r.. The shape of the pressure
peak was affected differently by changing the different
parameters. Increasing K caused a sharper peak with a
more rapid subsequent pressure decline, whereas increas-
ing a+nf3 or r. had the opposite effect of causing a
rounder peak with a slower decline. Hence, for a given r,
the records were fitted by trading off K and a +nj to
obtain the correct height and shape of curve.

First, the record from 92H24 was fitted using the ice
properties determined from the fit of 92H26. Fits were
obtained for 7, of 0.025, 0.10 and 0.13m (Fig. 8 and
Table 2). A good fit could not be obtained for r, >0.13m
without decreasing a + n3 below the minimum allowable
1.0x10*Pa”",

An important question is how much influence the ice
properties have on these results. To investigate this, the

Table 2. Best-fit bed parameters_from fit to 92H24 freeze-
in pressure record, using standard L(t)

Te K ar-+mnf
m ms ! Pa’!
0.025 7.0x10° 1.6x 107
0.10 1.7%x 107 3.0x10°
0.13 1.35x 107° 1.0 1078
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o
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= also examined: 89H50, 90H54 and 91H46. These holes
é did not connect when drilled. 90H24 and 91H46 both
have freeze-in pressure curves with characteristics similar
900 to those of the unconnected 92H24, while that of 89H350
looks suspiciously like a blind hole. Nevertheless, all three
were modelled as bottoming unconnected holes, with the
800 (suitably tme-shifted) freezing lorcing determined from
the 1992 thermistor observations and ice properties
determined from the fitting of 92H26. It is certain that
700 this freezing forcing is at least somewhat in error, owing to
the differing drill characteristics and method of these
/ . | ; i 1 ; years compared to 1992.
0 ) 4 6 The fits were not especially good. Hydraulic con-
TIME (h) ductivities determined from fits to 90H54 and 91H46

records agreed quite well with those determined from
92H24, while that from 89H50 was quite a bit lower

Fig. 8. Best fits to 92H24 freeze-in pressure record with Pt ;
; (Table 4). The compressibility estimates spanned the

various assumed values of ro: (a) 0.025m, (b) 0.10m

and (¢) 0.13m. - ] . .
Table 3. Best-fit bed parameters from fil to 92H24 freeze-

in pressure vecord, with various ice properties and assuming
unconnected-hole modelling was repeated using the standard L(t) with r. =0.025m
softest allowable ice, the stiffest allowable ice and rigid
ice. The softest ice is that with all ice properties minimum,

except temperature which was the maximum. The stiffest Ice properties K o+ nf3

ice is that with all ice properties maximum, except ms ' Pa’

temperature, which was -57C. Rigid ice was simulated by

using very large values of elastic and viscous parameters Softest 7.9%10° 1.0x10®

(Waddington, 1993). The best-fit bed properties for Best fit to 92H26 70x10°? 16x10°°

re =0.025m from Table 2 were used. Flow-law param- Rigid 6.5% 1072 40x 108

eters did indeed influence the simulation results (Fig. 9),

although not as strongly as K did. The pressure rise

changed by many orders of magnitude when K was

varied over its range. Table 4. Best-fit bed parameters from fits to various
The 92H24 freeze-in record was then fitted, taking borehole  freeze-in pressure records, assuming standard

r. =0.025 m, with softest ice and rigid ice (Table 3). The L(t), with r. =0.025m

best fit obtained with the softest ice was not very good. A

good fit could not be achieved without reducing a + n/3

below 1.0 x 10 # Pa ', its minimum reasonable value. A Borehole K o+ nfi

proper fit could be obtained with a slightly higher K and ms | Pa '

a slightly lower a 4+ nf. Despite these shortcomings, the

softest ice values in Table 3 are probably within 20% of 89H50 40x 10710 1.0x10°

the best-fit values. 90H 54 6.0%10? 20x 107
To check the results inferred from the freezing of the 91H46 7.0x 1078 1.0x 1078

single 1992 unconnected borehole, the freeze-in pressure 99H24 70%x10? 1.6%10°¢

records of three other boreholes from previous years were
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entire allowable range. These and other modelling results
have been presented in Waddington (1993).

Uncertainty due to approximate forcing

The effect of uncertainty arising from the use of an
approximate freezing forcing was investigated by repeat-
ing the preceding parameter estimations (ice and bed)
and applying a weaker freezing forcing. A borehole radius
of 0.025 m was used. When the freezing rate was halved,
the resulting ice properties were little changed but the
basal properties changed significantly. Hydraulic con-
ductivity increased from 7.0x 10 "ms ' to 4.5x 10 m
s ' and compressibility decreased from 1.6 x 10 ®Pa’ o
8.5% 107" Pa

Coupled-system relaxation response

Simulations were run using the ice properties found from
consideration of 92H24 freeze-in. To place an upper
bound on the length of the decay, the longest reasonable
borehole (92H24 after only 1d, L=45.3m) and the
smallest pressure forcing of interest (pr = 10* Pa or about
1 mH,0) were chosen. When bed properties found from
92H24 were used (7. =0.025m, K =7.0x10 ms ! and
a+nB=16x10"Pa'), the decay curve had approx-
imately the same shape as in Figure 3 but the decay was
far too rapid (Fig. 10). Pressure dropped to 1/e of its
initial value in just 56s.

WATER PRESSURE (kPa)

0 ) 120
TIME (s)

Fig. 10. Sudden pressurization at t =1d of hole
92H24 (simulation).

DISCUSSION

Ice parameters determined from the modelling of blind
holes were at the extremes of their reasonable ranges.
Very large (stiff) elastic and steady-state viscous param-
eters were required, together with very small (soft)
transient hardening parameters. The imperfect fit
(Fig. 7) suggests that the model is too simple. One
possible cause was the use of a one-layer model to
simulate deformation in ice with depth-varying tempera-
ture and hence depth-varying rheological properties.
Another explanation is that, as a borehole freezes, new
unstrained ice is continuously added to the borehole wall,
When modelled without ice accretion to the wall, as in the
present work, unrealistically low values of transient
parameters would be indicated.
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Inferred basal hydraulic properties were found to be
strongly affected by the assumed freezing forcing and basal
cavity radiug (Table 2). The fact that a good fit could not be
obtained with a cavity radius r. >0.13 m suggests that the
cavity must be smaller than this. This is consistent with the
reasoning that sediment disturbed by drilling of an un-
connected hole settles back into place, as it has nowhere else
to go, The hydraulic-conductivity estimate was found to be
much less sensitive to the assumed ice properties than was the
compressibility estimate (Table 3). The fact that assumed ice
properties also had less effect on the hydraulic-conductivity
estimate than did the assumed basal-cavity radius can be
explained by the fact that, for bed properties in this range,
the volume of water expelled into the bed is much greater
than the increase in volume of the borehole due to ice
deformation. The modest influence of ice deformation
suggests that the simplified model we used is adequate.
Further improvements would require significant additional
complexity for a minimal improvement in accuracy.

The effect of approximating the bed as infinitely thick
bears some discussion. Dimensional analysis of Equation
(44) shows that a characteristic time for diffusion is
At = pygla +n3)f? /K where £ is an appropriate length
scale, for example the thickness of the subglacial sediment
layer. Taking ¢ =1m (thought to be a reasonable
estimate for Trapridge Glacier) and 1 x 10® < o+ nf3
<1 x 10°Pa! gives 1 < At<100d (approximately).
Thus, it is not clear whether the half-space assumption is
appropriate. Our justification for the half-space assump-
tion is that it greatly simplifies the numerical model and
that laboratory testing of Trapridge Glacier sediment
(unpublished data of T. Murray, 1992) indicates
a+nB=~1x10°Pa’ giving At = 100 d, which is long-
er than the freezing forcing time-scale of =10d. Thinner
or more diffusive sediment layers could be modelled by
assuming cylindrical symmetry and using a two-dimen-
sional finite-difference grid in the bed.

Forward modelling has produced reasonably consis-
tent estimates of hydraulic conductivity and wildly
varying estimates of bed compressibility. The hydraulic
conductivity falls in the range 1.35 x 10 “ms ! (for r. =
0.13m) to 7.0x 10 ms! (for 7. = 0.025m), inferred
from the 1992 unconnected borehole 92H24. (Results
from the 1990 and 1991 boreholes are not included due to
the different drilling method of those years.) This range
can be compared to values obtained by other investig-
ators. Smart and Clarke (personal communication from
C. C. Smart and G. K. Clarke) obtained an upper bound
of 3.6x10 " ms ' from consideration of the minimum
perceptible drainage rate of unconnected holes. Clarke
(1987) estimated K =1.27x10%ms ' based on the
granulometry of Trapridge Glacier pro-glacial sediments
and an assumed porosity. T. Murray (unpublished data,
1992) obtained a value of 2.2 x 10®ms ' from con-
solidation tests on samples of Trapridge Glacier proglacial
sediment. Estimates obtained for bed compressibility are
so wildly varying that we attach no significance to them.

The response to sudden pressurization was found to be
so rapid that such an event would likely go unnoticed on
a pressure record sampled every 2min, as for summer
field-season data from Trapridge Glacier. It almost
certainly would be missed by the 20 min sampling that
we employ when, throughout the fall, winter and spring
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our sites are unattended. Hence, it appears that the
borehole response is essentially instantaneous and cannot
be responsible for decay events observed in Trapridge
Glacier pressure records. Thus, exponentially decaying
pressure fluctuations such as those presented in Figure 3
are faithful representations of subglacial water-pressure

signals rather than indicators of rheological relaxation of

horehole pressure,
CONCLUSIONS

Hydraulic conductivity was found to be in the range
1.35% 10 °< K <7.0x 10 ?ms'. Hydraulic conductiv-
ity was most strongly influenced by the assumed freezing

forcing and size of the cavity in the bed at the bottom of

the borehole but rather weakly dependent on the assumed
ice properties. Bed-compressibility a values varied so
much that no useful estimate of it was obtained.

The response of unconnected boreholes to sudden
pressurization was shown to be much more rapid than
any decay observed in Trapridge Glacier pressure
records. Indeed, the decay was so rapid as to be
unresolvable using sampling rates typical of Trapridge
Glacier pressure sensors. It can therefore be concluded
that the response of the borehole system is essentially
instantaneous compared to the signals being measured;
hence, the observed signals reflect true basal conditions
rather than the influence of the borehole (except during
the initial freeze-in period when the freezing forcing
dominates). It is possible that, if the hydraulic conduc-
tivity were sufficiently low, this would no longer be so.
Hence, the result may not hold for other glaciers.

Some recommendations for future work follow from
our study. The approach used to obtain estimates of the
hydraulic conductivity of the basal sediment is sound. A
simple one-layer ice model is adequate for shallow ice.
The added complexity of a multi-layer ice model is not
justified, since the ice deformation was found to be much
less important than water flow into the bed from
unconnected holes. The approximate top-down freezing
forcing is a weak point of the present model. This could be
replaced by a proper thermal freeze-in model, such as
that of Jarvis and Clarke (1974) or Humphrey and
Echelmever (1990), to model accurately the important
freezing forcing. If this complication were added, then
uselul estimates of ice properties as well as improved
estimates of hydraulic conductivity might result. The

hydraulic-conductivity estimate could also be improved if

the size of the basal cavity at the bottom of the borehole
could be constrained better, possibly by direct measure-
ment. The effect of finite substrate thickness and layering
could be accounted for by including a two-dimensional
ground-water flow model.

The ice-deformation part of the model could he used
for other purposes, such as interpreting pressuremeter
results, which have previously been interpreted only in
terms of the Andrade relation (Murat and others, 1986;
Kjartanson and others, 1988; Shields and others, 1989).
This would allow the Sunder and Wu rheological
parameters to be obtained from in-situ pressuremeter
tests. The ice model could also be used to predictthe
transient behaviour of Réthlisberger channels.

Our most important conclusion is that the pressure
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signals observed at Trapridge Glacier indeed reflect true
basal conditions and the inflluence of the borehole on the
signal need not be considered, except during the initial
freeze-in period.
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