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Abstract

In this paper, an inexact Newton's method for nonlinear systems of equations is proposed.
The method applies nonmonotone techniques and Newton's as well as inexact Newton's
methods can be viewed as special cases of this new method. The method converges globally
and quadratically. Some numerical experiments are reported for both standard test problems
and an application in the computation of Hopf bifurcation points.

1. Introduction

For the numerical computation of Hopf bifurcation points (HBP) of a dynamical
system defined using ordinary or partial differential equations, a popular approach
categorized as the "direct method" solves an augmented system of time independent
equations [21]. Different augmented systems have been proposed, for example,
in [5, 9,17, 20, 21]. It has been shown in [5] that Newton's method (with or without
damping) can be applied because the corresponding Jacobian matrices are nonsingular
at the HBP. However, it was noticed that the solution processes are sensitive to the
starting values when Newton's or the damped Newton's method are applied [20,21,9].
We also found that even a few percent of perturbation in the starting values can affect
adversely or even jeopardize the convergence of the (damped) Newton's iteration (see
Section 4 for illustrative numerical examples). It is our aim to design an alternative
algorithm which is insensitive to starting values.

In general, we consider a nonlinear system of equations

AT(x) = O, x€il\ (1)

where K : W —> TZ" is a nonlinear mapping with sufficient smoothness. For the
solution of the nonlinear equation, it is well known that Newton's method (in its
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original form) converges quadratically but locally. With a slight modification, the
damped Newton's method converges globally by requiring a monotonic decrease in
|| K (x*) || for the iterates \k. However, a monotone decrease in the value of the objective
function (in minimization) can considerably slow the practical rate of convergence. It
is especially true for problems with severe nonlinearity [7, 8, 10 - 13, 19, 24]. The
damped Newton's method has the same disadvantage, with the iteration sometimes
coming to a standstill when the starting values are not close enough to the solution.
For instance, consider the extended Rosenbrock function (see [16] and Section 4
for details) with n = 50 - Newton's method converges to the solution in only two
iterations and three function evaluations, while a damped Newton's method (described
in Section 2) took ten iterations and thirty three function evaluations to achieve the
compatible precision.

We are proposing, in Section 2, a nonmonotone inexact Newton algorithm (NINA)
of which both Newton's and the damped Newton's methods are special cases. We
discuss the convergence of NINA in Section 3 and some numerical experiments are
reported in Section 4.

In this paper, the Euclidean-norm is used throughout and ( ) r denotes the transpose.
We only consider real numbers and the number c is a real number different from c,
rather than its complex conjugate.

2. Algorithm NINA

We first describe the basic ideas behind the Algorithm NINA.
For problem (1), we consider the change of || ̂ T(x)|[ during an iterative solution

process such as the damped Newton's method. Instead of insisting that || AT (x) ||
decrease monotonically, we allow it to increase in a controlled fashion. More spe-
cifically, the nonmonotone line search technique, proposed by Grippo, Lampariello
and Lucidi [10], is applied to minimize

f(x)=1-\\K(x)f.

Instead of requiring the value of / to decrease monotonically during the iterative
solution process, an approximate solution x* is accepted if / (x t ) is smaller than
max,<m(lt){/(xt_;)} (that is, the maximum value of the objective function / for the
previous m (k) iterations). The parameter mm is the upper bound of the values of m (k)
(see Step 2 of Algorithm 1). This nonmonotone strategy is implemented in Step 5 in
Algorithm 1 below.

Also, it is well-known that Newton's method performs well in solving general
nonlinear systems. A strategy is devised so that Newton's method can be included as
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a special case for NINA. Note that Newton's method is a special case of neither the
damped Newton's method nor other nonmonotone methods in [10,13]. In Algorithm 1,
pure Newton's iterations are performed in the first IN iterations. These Newton's
iterations are controlled by setting IN and other parameter values at different stages
in the algorithm (see Step 2 in Algorithm 1 for details).

A modification for Step 5, for the computation of HBP, will be described later. Fi-
nally, the Generalized Minimal Residual (GMRES) Algorithm by Saad and Schultz [22]
for nonsymmetric linear systems will be used in Step 3 of Algorithm 1, for the calcu-
lation of the direction vector d*. The GMRES steps will be described in Algorithm 2.

Now we describe Algorithm NINA in detail.

ALGORITHM 1 (NINA)
Data:

integers mm, N, IN > 0;
real number y e (0, | ) , a € (0, 1), rn > 1.

Step 1.
SeU = 0,mOfc) = 0;
Compute /0 = i||/i:(xo)||2.

Step 2.
If it < IN,

Select

m(k) € [0, mia[m{k - 1) + 1, mm}] (when k ^ 0), (2)

W = max {rn • /*_,} ; (3)
0<j<m(k)

Else If k < IN + N,
Set m{k) = 0,
Compute W = maxo<y<mW{/*_y};
Else Compute m(k) = mm{m{k — 1) + 1, mm],

W =maXo<;<m(*){/;fc-,}.
End If

End If
Step 3.

Compute gk = v/(x*);
I f g t = O.Stop;

Else Compute direction vector d*.
End If

Step 4.
Set a > 0.
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Step 5.
Compute /„ = f(xk + adk);
If

/„ < W + yadT
kgk, (4)

Set
fk+\ = fa, <** = a, xk+1 = xk + a*d*, k = k + 1;

Goto Step 2.
End If

Step 6.
Set a = era;
Goto Step 5.

END OF ALGORITHM 1

REMARK 2.1. As distinct from the nonmonotone line search technique proposed
in [10], the new parameters IN and rn were introduced in Algorithm 1 above to
include Newton's method as a special case. In Step 5 of Algorithm 1, the new iterate
\k+i = x*+akdk is always accepted when rn is large enough. If the iteration direction
dk, which is calculated in Step 3, satisfies the Newton equation

K(xk) + Jkdk = 0

and a = 1 in Step 4, Algorithm 1 is equivalent to Newton's method in the first IN
iterations.

A second role for IN is based on the following consideration. If the starting value
Xo for the iteration is poor (and IN = 0), the iteration sequence {x*} may stay in
the neighbourhood of the starting point after the application of the standard Armijo's
rule [10]. It may then be time consuming for the algorithm to make any significant
improvement towards the solution. In such a situation, setting IN > 0 enables {xk}
to leave the neighbourhood quickly.

An alternative form of W,
W = fo + rn, (5)

can be used in (3) in Step 2 of NINA, and the discussion above concerning IN and
rn still holds.

The parameters such as mm, IN, N and rn can be adjusted at any stage of the
algorithm if desired. Similarly, we can also perform N applications of Armijo's
rule [10] before Newton's iterations are applied.

Computation of Hopf Bifurcation Points For the calculation of HBP, it is known
in advance that some components of the solution (x(i), / 6 I ) are positive. If such
components become negative at the kth iteration, it is most likely that the iterates x*
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have gone too far in wrong direction. Thus we modify Step 5 of Algorithm 1 to the
following Step 5A:

Before performing Step 1, select the additional data consisting of the real numbers
o\ and r and integers na and nn such that

tfi e (0, 1), r > 0, na > 0, nn = 0.

Step 5A. na is a positive integer
Set xk+i = xk + ad*;
If x t + i(0 < — r (i e I) and nn < na,

Set
a = o\ct, nn = nn + 1;

Goto Step 5A;
Else Compute fa = f(xk + ad*);

lffa<W + yadT
kgk,

Set /t+i = /„, ak = a;, x*+i = x* + a*dt, £ = £ + 1;
Goto Step 2;

End If
End If

For convenience, the algorithm obtained by replacing Step 5 in Algorithm 1 by
Step 5A above will be called Algorithm 1A.

REMARK 2.2. The difference between Algorithms 1 and lAisthat<r1'"
1d;t is used instead

of d* as the direction vector in Step 5A. As the vectors are in the same direction, we
expect Algorithms 1 and 1A to share the same convergence properties (which will be
proved in Section 3).

For the calculation of HBP, Algorithm 1A performs better. This will be illustrated
in our numerical experiments in Section 4.

For the convergence properties of nonmonotone line search methods, a theorem
similar to the following one has been proved in [10]: (The theorem in [10] is a special
case of Theorem 2.1 with px = 2 and p2 = 1, but both theorems can be proved
similarly.)

THEOREM 2.1. For a given XQ 6 TV, assume that the level set

£20 = {xeft'1|/(x)

is compact, and that xk is a sequence defined by

xk+i=xk + akdk, d t ^ 0 .

Let a > 0; a, y e (0, 1) and let mm be a nonnegative integer.
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Assume that there exist positive numbers C\, C2, px and p2 such that

(6)

(7)

Assume also that ak = ahka, where hk is the smallest nonnegative integer hfor which

had) < max { / ( x ) } + yahagT
f(xk + ahadk) < max {/(x^,)} + yahagT

kdk,
0<j<m(k)

wherem(0) = 0and0 < m{k) < min{m(k - 1) + \,mm)fork > 1.
Then

(a) the sequence \k C fio. and every limit point x satisfies g(x) = 0;
(b) no limit point of\k is a local maximum o/ /(x);
(c) if the number of the stationary points of f in S20 is finite, the sequence \k

converges.

As stated in Theorem 2.1, the direction vector dk in our algorithms should satisfy
both (6) and (7). We now consider how such a dk is computed.

One possibility is to solve the Newton equation

K(xk) + Jky = 0 (8)

to determine dk (here Jk = ^K(xk)).
The following issues have to be considered in the solution of (8), which forms the

heart of Step 3 in Algorithms 1 and 1 A. First, we are not seeking exact solutions to (8)
and approximate solutions are adequate for NINA as the principle of inexact Newton's
methods [6] applies. Secondly, as we are trying to solve (1) rather than minimizing
some objective function, it is natural to seek from (8) approximate directions which
decrease the residual of (8) during its solution. Following from the above considera-
tion, it seems that GMRES in [22] is suitable for the solution of (8). However, it has
been noticed from [4] that a direction dk produced from GMRES may not be a descent
direction if Jk is singular, and the conditions in (6) and (7) may then be violated. In
order to satisfy these conditions, we modify GMRES so that the solution to (8) is
adjusted according to (6) and (7), as in Algorithm 2 below:

ALGORITHM 2 (Modified GMRES)
Data:

K(xk) € n\ Jk € W™, gk = Jk
TK(xk) ^ 0;

C e (0, | ) ; tol, cg, cx > 0; a > 2.
Step 1.

Sety = 1,
Compute
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r<°> = -K(xk), 0 = ||r«»||, v, = r<°7/J.
Step 2.

Compute Pj = minz,eTC, \\K(xk) + JkVjZj\\, where Vj = [v,t • • •, v,] G ft"*'.
Step 3.

If
2 , (9)

Then Compute z; e TV such that p,- = \\K(xk) + JkVjZj\\;
S e t rrij = j , z = Vmjzmj;
Else Compute vJ+1 eTZ", orthogonal to {v,, • • -.Vy), using the Arnoldi process:

hij = {JkVj, v,) = \JJkVj, i = 1, • • •, j

\J+i = Jk\j - J2hijVi, hJ+lj = ||v/+,||;

ij > tol,
Set y,-+i = %+i/hj+ij and j = j + 1;
Goto Step 2;
Else Set /n, = y

Compute Z; 6 TZ' which minimizes || K(xk) + /tV/ZyH;
Set 7 — V 7 •
Goto Step 4;

End If
End If

Step 4.
If

2 (10)

and

-iTgk >cg\\gk\\
a, (11)

Then Set dk = z,
Else Set dk = -gk;

End If
END OF ALGORITHM 2

If for some j € [1, n], (9) does not hold and hj+ij < tol, then we cannot cal-
culate the vector v;+1 which is orthogonal to {vi, • • •, v,} and GMRES breaks down.
However, we can still compute z = Vm.zm., rrij = j , as shown in Step 3. Therefore,
the direction vector dk is selected to be z or — gk as in Step 4 and our algorithm is
well-defined.
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Note that when the Jacobi matrix Jk is nonsingular and hJ+ij = 0, (8) will be
satisfied by y = z. In [22], this is referred to as the "happy break", which implies that
Pj = 0.

It has been proved in [22] that for an n x n problem, GMRES terminates after
at most n steps. The same holds for Algorithm 2 since it differs from the algorithm
in [22] only in Steps 3 (Equation (9)) and 4, and these differences will not delay
termination of the algorithm.

Finally, the efficiency of Algorithm 2 can be improved by scaling and precondi-
tioning techniques (see [4] for details).

3. Convergence analysis

In this section, we shall discuss the convergence properties of Algorithms 1 and
1A (with Algorithm 2 calculating the direction vector d*).

We first discuss the global convergence properties, which is implied in part by the
following lemma:

LEMMA 3.1. Let {xk} be a sequence defined by

=xk+akdk,

where a* is computed as in NINA, and gjd* < 0. Then the sequence {xt} remains
inside the level set

Q0 = [xenn\f(x)<rn'Nf(x0)}.

PROOF. We shall prove the lemma in three stages.
(i) (k < IN): according to Steps 2 and 5 in NINA, we have

fk+l < W = max {rn * / *_ , } ,
0<j<m(k)

which implies, as rn > 1,

fk+i < W < rn'Nf0, for k < IN. (12)

(ii) (IN < k < IN + N): again from Step 2 of NINA, we have m(k) = 0 and
therefore we have

/*+, < W = max.{/*-;}.
0<;<m(jfc)

It then follows from (4) in Step 5 of NINA that
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that is, fk is strictly decreasing when IN < k < IN + N and fk+\ < fIN. Together
with (12), we then have

fk+i < W < rn'Nf0, for IN <k < IN + N.

(iii) (k > IN + N): we shall prove by induction that

fk+x < W < rnlNf0 fork >IN + N.

Assume that the above relationship holds for IN + N < k < i. It follows from (4)
in Step 5 of NINA that

fi+2 < W = max {fi+i-j}

and
fi+l < W = max.{/,_,}. (13)

0<y<m(/)

According to the definition of m(k) in NINA, we have m(i' + 1) < m(i) + 1, thus

fi+2 <o<max+i {fi+\-j}

< max{/-+1, max {fi-j}}

= max {fi-j}

< rn'Nf0. (14)

Combining (i), (ii) and (iii), we have proven that \k c fio for all k > 0.

REMARK 3.1. Instead of (3) in Step 2 in NINA, we may define W as

W = max {rn + / 0 } .
0<j<m(k)

Similar to Lemma 3.1, we can prove that

xk cS20 = {xenn\fk <rn + f0}. (15)

Now we can state our global convergence result as follows.

THEOREM 3.1. Assume for a given XQ € R" that the level set

J20 = {x G nn\f(x) < rn'Nf(xo)} (16)

is compact, and xk is a sequence defined by

= xt + atdt, (17)
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where ak is computed as in NINA. Assume also that there exist positive numbers
C\, C2, P\, Pi, such that

, (is)
< C2||g(x,)r. (19)

Then

(a) every limit point x of{\k] satisfies g(x) = 0;
(b) no limit point ofxk is a local maximum of / (x) ;
(c) // the number of the stationary points of f in £20 is finite, the sequence \k

converges.

Because of Lemma 3.1, Theorem 3.1 can be proven using the same techniques as
in Section 3 of [10]. We shall not reproduce the detailed proof here.

REMARK 3.2. Under the assumptions in Lemma 3.1 and Theorem 3.1 and if {ak} are
calculated using Algorithm 1A, the same conclusions as those in Lemma 3.1 and
Theorem 3.1 can still be drawn. As mentioned in Remark 2.2, the only difference
of Algorithm 1A from NINA lies in the use of a"nAk instead of dk as the direction
vector. Hence \k c £2o and the conclusion of Lemma 3.1 holds for algorithm 1A.
As 0 < nn < na, there exist positive numbers C\, C2, Pi, Pi, such that (18) and (19)
hold. Therefore, similar to Theorem 3.1 for NINA, Algorithm 1A converges globally.

From Step 4 of Algorithm 2, we know that the direction vector d* satisfies both (18)
and (19). Taking Remark 2.2 into account, Algorithms 1 and 1A (in conjunction
with Algorithm 2 for d*) converge globally, respectively for Problem (1) and HBP
calculation.

Next, we consider the rate of convergence. Our method is an inexact Newton's
method [6] and we shall assume the following for its convergence analysis:

(a) There exists an x* e W such that K (x*) = 0.
(b) K (x) is continuously differentiable in a neighbourhood of x*.
(c) J* = v^(x*) is nonsingular.

By Theorem 3.3 in [6], the above assumptions imply the convergence of our inexact
Newton's method quadratically if and only if

||r*||=O(||/s:(xt)||2) ( * - K X > ) , (20)

where rk = K(xk) + JkAk, Jk = \?K(xk) and dk is a solution to (8). Thus in order to
prove that our Algorithms 1 and 1A converge quadratically, we need to show that (20)
holds for the direction vectors computed using Algorithm 2. Thus from Step 4 of
Algorithm 2, we need only to prove that dk ^ — gk for large k, which also implies (9).
This is done in the following theorem.
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THEOREM 3.2. Let \k be a sequence produced by

xk+i = xk + akdk, (21)

where dk is determined by Algorithm 2 and ak is calculated by Algorithm 1. Assume
that lim^oo \k = x*, and that assumptions (a), (b) and (c) hold. Then there exists an
index k > 0, such that

d* # -g* (22)

for all k > k.

PROOF. In order to prove that (22) holds, we only need to show that the conditions (10)
and (11) in Step 4 of Algorithm 2 hold for large k's.

As lim^ooXt = x*, /* is nonsingular, and K(x) is continuously differentiable
around x*, there must exist positive numbers ix\ and /x2 (where \ii>ni\ > 0), and an
integer k\ > 0, such that for any x e 1Z" and k > ku

|, (23)

with A = Jk or Jj.
Also for some j e [1, n], the condition in (9),

holds, since Jk is nonsingular and we can always obtain pj = 0 for some j (as in [22]).
Thus

where ms and z are denned as in Algorithm 2. Therefore

H/*z||<(C||/i:(xt)|| + l)||/i:(xt)|| (24)

from (23), for all k > k\, and we have

that is,
1llzll2

With the help of (23) again and if k > ki, we have

i |£M2 / ^ " M l f / , , -V II I 1 \ 2 | | E ^ / _ , \ l l \ " w "

— ,,2
(25)
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On the other hand, the assumption K(x*) = 0 and (25) imply that there exists an
integer k\ > kt such that

l|z||2 < c l l g j if * > * , . (26)

We have proved that (10) holds.

For (11), from Step 3 of Algorithm 2 and for k > ki, we have

(JkVm.f(K(xk) + JkVmjzmj) = 0. (27)

Thus
p2

m. = \\K(xk) + JkVmjzmjf = \\K(xk)f + g[z,
that is,

- g [ z= | | / i : ( x* ) | | 2 - p 2 . . (28)

However from (9), we have

Pi, < C2||/^(xJt)||
2, (29)

-g [z>( i - c 2 ) | | / s : (x i ) | | 2 >^ | | / i : (x , ) | | 2 if * > * „ (30)

since C e (0, \).
Following from (23) again and for k > kuwe obtain

where a > 2 (as denned in Algorithm 2).
Notice from the assumptions in (a), (b) and (c) that there exists an integer k > k\

such that
3 , >cg if k > k, (32)

2 s

where cg is defined in Algorithm 2.
Thus by (31) and (32), we have

-gT
ki>cg\\gk\\

a, (33)

for k > k. Therefore, we conclude from (26) and (33) that (10) and (11) hold for all
k >k.

From Theorem 3.2, we have

\\K(xk) + Jkdk\\/\\K(xk)\\ < C\\K(xk)\\

for k > k, provided that the assumptions of Theorem 2.1 are satisfied. Hence, the
quadratic convergence rate will be proven if d* from Algorithm 2 is acceptable when
k is large enough. This will be proved in the following theorem.
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THEOREM 3.3. Let the assumptions in Theorem 3.1 hold. In addition, assume that
K(x) = (/i(x), • • •, fn(x))T is twice continuously differentiate in a neighbourhood
ofx*, and that a -> 1 as k -» oo, where a is selected in Step 4 of Algorithm 1.
Then there exists an integer k > 0 such that, for all k > k,ak = a .

PROOF. According to Taylor's theorem, f(x) = ^\\K(xk + ad*)||2 can be expressed
as

\\\K(xk)+adk\\
2 = l\\K(xk)\\

2+agT
kdk+a2f (l-t)(dk,G(xk+tadk)dk)dt, (34)

where

G(-) = v*Q 7 " V *(•)

Let x* = xk + tadk, Jk = x/K(xk + tadk), Jk = yK(xk). Substitute them
into (34); we have

^̂dT
kJk

T[K(xk)+aJkdk]

f (1 - t)iadk)
T(jT

kJk - JT
kJk + Yjfi{xk) v2 Mxk))(adk)dt

Jo \ JT[ )

Jkdk]

f o(l - OdT
k(jk

TJk - Jk
TJk + T /,(**) V2 f(xk))(adk)dt.

Jo \ , = i /

Together with (27) and (30), we have

1
2

/o'(l - t)adT
k(Jk

TJk - Jk
TJk)dkdt

+

where k > kt. From (23) and (24), we have, for k > ku
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and

lld*n<— (c\\K(xk)\\ + i)\\K(xk)\\.

However, by the assumptions of this theorem,

a -*• 1 (k -> oo),

Jk
TJk - Jk

TJk -+0 (k-+ oo),

and therefore, there must exist an integer k > kt such that

I ^ < yagT
kdk,

2

where y is defined as in Algorithm 1. Thus (4) holds for all k > k.

We have proved that for Problem (1), Algorithm 1 incorporating Algorithm 2
converges at least quadratically. In addition, Theorem 3.2 suggested the way to select
a in Step 3 of Algorithm 1, which should ensure that a -*• 1 (k -> oo). Hence we can
either set a = 1 for simplicity, or apply other more elaborate strategies (as in [3, 2]).

For the calculation of HBP, Algorithm 1A incorporating Algorithm 2 can be applied.
It is obvious that the same quadratic convergence rate can be obtained. Judging from
the proof of Theorem 2.1, we know that dk ^ — gk for k which is large enough, no
matter whether ak in (21) is calculated by Algorithm 1 or Algorithm 1 A. Also, if we
assume that x* in Theorem 3.2 is a HBP, then it is clear that there exists an integer it,
such that nn = 0 in Step 5A of Algorithm 1A for all k > k. Therefore ak = a for
k>k.

4. Numerical experiments

In this section, the algorithms described in Section 2 are tested on some standard
problems and a HBP problem.

The iterations in Algorithms 1 and 1A were terminated if | |gj | < <5, or fk < 8,
where £, = S = 10"10.

The actual truncation criterion adopted in Step 3 of Algorithm 2 was

Pj 5 7rnin{||^(xjt)||, ||A"(x*)||z},

with 9 = 10~5.

https://doi.org/10.1017/S0334270000007499 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007499


474 Yi Xiao and Eric King-wan Chu [15]

TABLE 4.1 A: Results for Problem 4.1 {n = 50)

Xo

(i)

(ii)

(iii)

mm
nj =

nf =
f <

f <

= IN
• 10

1 Q - 2 6

5
lO"21

= 0 mm

"f:
nf =

f<

f<

= 3, IN

?
5

1 Q -26

io-21

= 0 mm
nj =

nf =
f <

nf =
/<

nf =

= IN = 3
-.2

lO"2 7

lO"2 3

3
io-22

We always set a — 1 in Step 4 of Algorithm 1 or 1A. The other parameters were
chosen with the following values, except if specified otherwise:

y = 10~5, a = 0.5, a = 2.1, N = 0.

For each problem, different values of mm and IN have been used and we shall
report the numbers rif (the number of evaluations of the objective function / ) , tij (the
number of iterations or evaluations of the Jacobian matrix /(x*)), and the value of /
at the approximate solution. The calculation has been performed in double precision
on a IBM compatible with an 80486 processor. The algorithms have been coded in
MATLAB [14].

Problem 4.1 The Extended Rosenbrock Function (f 15, 161)
n = any positive multiple of 2
i = \,--,n/2

= 1 -x2i

zo = ( - 1 . 2 , 1 , - • - , - 1 . 2 , 1 )
(i) XQ = Zo, (ii) Xo = 10ZQ, and (iii) Xo = 100zo
x* = (l, 1 , - - , 1 , 1 )
This is a well known test problem. The results for n = 50 are reported in Table 1 A.
The results for n = 100 are reported in Table IB.
In Figures 4.1 and 4.2, the behaviour of fk = f(Xk) for n = 50 and with starting

point (i) is shown. They illustrate the efficiency of our nonmonotone algorithm for
Problem 4.1.
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TABLE 4. IB: Results for Problem 4.1 (n = 100)

Xo

(i)

(ii)

(iii)

mm = IN
nj = 10

«/ = 33
/«0
nj=3

nf = 5
f < 10"24

nj = 3

nf = 5
f < 10-2'

= 0 mm = 3, IN
rij = 10

/ly = 33

/*o
nj = 3

rif = 5

f < 10~24

nj = 3

«/ = 5
/ < lO-2'

= 0 mm = IN = 3
nj = 2

nf = 3

f < io-27

nj=2

nf = 3
f < 10-23

rij=2

nf = 3
f < lO-22

TABLE 4.2: Results for Problem 4.2

Xo

(0

(ii)

(iii)

mm = IN = 0
nj = 50, nf = 208
/ > io-7

rij = 4, /J/ = 5

/ < lO"13

rij = 12, «/ = 375
/ > io-9

mm

7<
nj =

f<

f>

= 3, IN
• l l , / t / =

io-12

: 4, /i/ =
io-'3

io-'

= 0
= 12

5

= 314

mm
nj =

/<

nj =

f<

f <

= IN = 3

ll,i/ =

io-'2

4, */ = 5
io-'3

15,/i /=
io-'7

12

36

Problem 4.2 The Powell Badly Scaled Function ([18])

f2(x) = e-x> +€-"*- 1.0001
zo = (0, 1)
(i) Xo = Zo, (ii) xo = 10zo, (iii) Xo = 100z0

x*« (1.098 x IO-5,9.106)
Our test results are reported in Table 4.2. Again, the nonmonotone iterations

(especially when coupled with initial Newton's iterations) were more efficient, for
the good starting value (i). For the poor starting value (iii), only the nonmonotone
iterations with initial Newton's iterations produce accurate approximate solutions
efficiently.

Problem 4.3 The Scaled Power-Valley Function
/ , ( x ) = c ( x 2 - xp

x), p > 2
/2(x) = 1 - JC,
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iteration

FIGURE 4.1: Problem 4.1 - JJ vs «y (n = 50, Starting Point (i»

X' = ( l , 1)

This function has a valley along the curve x2 = x\. The results for special cases:
(i) c = 10, p = 3; and (ii) c = 10, p = 4 are reported in Tables 4.3A and 4.3B
respectively. We also did the test for other cases, and the numerical results show that
Algorithm 1 is superior to monotone algorithms for this problem.

TABLE 4.3A: Results for Problem 4.3 (c = 10, p = 3)

r
1

10

100

mm
nj =

/ <

/ <

= IN = 0
4, nf = 10
io-1 5

3, nf = 6
io-2 4

3,«/ = 6
10-is

mm

f <
tij =

f <

f <

= 0,IN

io'-15

3, nf =
1Q-24

3, nf =
io-18

= 3
10

6

6

mm
nj =

/<

nj =

f <

f <

= IN = 3
2,nf = 3
io-1 5

2, nf = 3
1Q-24

2, itf = 3
io-17
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I
— mm=O,IN=O

15 20

function evaluation

25 30 35

FIGURE 4.2: Problem 4.1 - v T ys «/ (« = 50, Starting Point (i))

Problem 4.4 The Scaled Sine-Valley Function ([24])
n=2
/,(x) = c[x2 - si
/2(x) = 0.5 *,

This function has a valley along the curve x2 = si
The results are reported in Table 4.4, with similar superior performance for the

nonmonotone iterations as the previous examples.

TABLE 4.3B: Results for Problem 4.3 (c = 10, p = 4)

r
1

10

100

mm
nj =

f<

f<

= IN = 0
= 13,71/= 59
io-15

: 4, nf = 10
io-1 5

: 9, nf = 15
1Q-20

mm

/ <
rtj =

/<

tij =

f<

= O,IN
•• 1 0 , nf =

io-1 5

: 3, nf =
io-1 5

7,71/ =
1Q-20

= 3
= 44

6

8

mm
itj =

f<

f<

f<

= IN = 3
2,nf = 3
10-28

2, nf = 3
io-21

3, nf = 4
1Q-16
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TABLE 4.4: Results for Problem 4.4 (c = 10)

r
1

10

mm

7<
rij =

= 3, IN
= 11,/!/ =
io-'=

= 4, nf =
io-'=

= 0
= 37

9

mm
nj =

f <

f <

= IN
15, n

io-'=

io'-29

= 0
/ = 57

= 19

mm

/ <

/ <

= /iV = 3
2,«/ = 3
io-'=
2,«/ = 3
io-27

[19]

TABLE 4.5: Results for Problem 4.5

r
1

10

m/w =
nj =4 ,

/ < 10
«y = 5,
/ < 10

IN = 0
«/ = 5

- 2 4

«/ = 7
-16

mm

f <

f<

= O,IN = 3
4,«/ = 5
10-24

5, nf = 1
1Q-16

mm

f<

/ <

= /N = 3
4,«/ = 5
io-2 4

8, nf = 9
io-24

Problem 4.5 The Helical Valley Function ([16, 18])

/3(x) =
where

xo = (-1,0,0)
x* = (1,0,0)

_ J ^ atctan(x2/xi) if *i > 0
if x, < 0

For this problem, the objective function / = | Y11=\ f?OQ *s a discontinuous
function of x violating our assumptions (which are sufficient but not necessary).
However, acceptable results were still produced, especially for the nonmonotone
iterations. The numerical results are reported in Table 4.5.

Problem 4.6 The Extended Powell Function [15, 16]
n = any positive multiple of 4

/4,_3(X) = Xt,-3 + 10.
/4,-2<X) = V5(.*4/-l -
/ 4 i - l ( x ) = (-"f4i-2 — X4j)

= ( 3 , - 1 , 0 , 1 , • • • , 3 , -1 ,0 ,1 )
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TABLE 4.6: Results for Problem 4.6

xo

(i)
(ii)
(iii)

n =
mm
nj =

nj -

nj =

20 or n = 40
= IN = 0 or mm = IN = 3
= 11,/?/ = 12
= 14, nf = 15
= 18,/i/ = 19

TABLE 4.7: Results for Problem 4.7

« = 30

n = 50

mm

f
nj

f

=
<

<

= IN =0
: 7, /?/ = 21
lO"19

: 7, /?/ = 23
1 Q -18

mm

f

f

<

<

= 3, IN = 0
7,«/ = 21
lO"19

: 7, /?/ = 23
10-18

mm
Tij =

tlj =

/<

= IN =
•9,nf =

io-u

= 12, nf

10-"

3
10

= 19

(i) Xo = Zo, (ii) Xo = 10 Zo, (iii) Xo = 100 Zo
x* = 0r

For this problem, the Jacobian matrix /* = v / O O is singular (thus violating
our assumptions, which are sufficient but not necessary). The direction vector d*
satisfies the standard Armijo's condition, so {/*} decreases monotonically. The results
summarized in Table 4.6 are thus independent of the parameters mm and IN.

The results above in Table 4.6 are obtained for Si = 10~45, where S = 10~10 as
stated before. The values of / before the termination of the iterations are approxim-
ately 10~". Different «5 and Si are required as /* is singular and the norm of gradient
vector gk satisfies ||g* \\ < 8 before / < S can be satisfied. Hence in order to make the
values of the objective function / small enough, we have to use a smaller Sj.

Problem 4.7 Trigonometric Function ([16])
n = any positive integer
/ = 1, • • • , n

fi(x) = n- J2"j=\(cosxj + ' d - cos*,) - sin*,)

/ = 0 at xj = ±2kjn 0 ' = 1. • • •, »)•

For this example, the level sets are unbounded, contrary to our assumptions for our
convergence results. The numerical results for this function are reported in Table 4.7.
Again, nonmonotone iterations were superior.
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Problem 4.8 Box's Function ([18])

fi(x) - exp(-tiXi) - exp(-/,x2) - x3(exp(-f,) - exp(-10f,)),

i = 1 , ••• , n

U = 0.1/
xo = (0, 10, 20)
/}(x*) = 0 at (1, 10, 1), (1, 10, -1) and

wherever x\ = x2 and x3 = 0.
Box's function has an infinite set of minimizers for / = £f=1 /)2(x), and the

level sets are unbounded. Similar to the extended Powell function, the numerical
results are independent of the parameters mm and IN. For both mm = IN = 0 and
mm = IN = 3, we achieved / < 10~17 in four iterations («/ = 5). Every direction
vector dk satisfied the standard Armijo's condition for the parameter settings we have
tested, thus producing very similar convergence behaviours.

Problem 4.9 (HBP) For the calculation of HBP, we use the following model of a
non-adiabatic tubular reactor from [20] as a test problem.

dy 1 d2y dy / y

dy dT
,=0: ^ = W 0

dx dx
For this example, Algorithms 1 and 1A were applied to the nonlinear system of

equations deduced from the above differential equations, as proposed in [5]. The
differential equations were discretized using central differences on a equally spaced
grid of M + 1 nodes. The parameters were assigned to be

Pe = 5, B=0.5, y = 25, 0 = 3.5.

We are seeking the HBP for the system defined by the above differential equations,
that is, there is a purely complex pair of eigenvalues ±Vki, k « 2.4068682, for the
Jacobian matrix of the system at D « 0.260140451.

For m = 3 and n = 2m + 4 = 10, we started from

xo = (0.8, 1.0,0.5, 1.1, 0.3, 1.1,0.2, 1.0, 0.24, 1.96). (35)
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TABLE 4.9A: Algorithm 1 Applied to Problem 4.9

m
3

6

12

24

48

mm
Tlj =

tlf =

/<

" / :

/ <

nf =

/<

"/ =

/<

= /N

io-14

io-'3

10""

io-"

= 0 mm = 3, /A'

« / = 7
/ < io-'6

My = 2 1

nf =49
/ < io-16

nj=4

nf = 5
f < io-'3

nj=4

nf=5
f < io-"
nj=4

nf = 5
f < io~u

= 0 mm = /TV = 3
(Converge
to A
Negative it)
(Converge
to A
Negative it)

/ < io-13

nf = S
f < 10""
nJ=4
nf = 5
f < 10""

HBP
D>
k*

D'>
i t *

D-
i t «

D-
k*

D-
i t «

« 0.2474796
t 0.9759891

« 0.2590427
'2.1203432

« 0.2608558
* 2.3395430

« 0.2612955
i 2.393379

=» 0.2614045
i 2.406868

The first eight components form the discrete approximations to v and T, and the last
two components approximate respectively the bifurcation parameter D and k.

For m > 3, starting values were obtained by linear interpolation using information
in the solution for m/2 (similar to [20]).

We choose S = 10"10 and <$i = 8 for the first test, and the corresponding results are
reported in Table 4.9A.

For m = 3, we applied Algorithm 1 with mm = 3 and IN = 3, and it converged
with nj = 10, rif = 13, and / < 3.1 x 10"12. However, the algorithm terminated
prematurely at D % 0.1108539 and k « -1.1204412, which is not a HBP (as k is
negative). This premature termination also occurred for m = 6. In addition, we
carried out the numerical calculation for different values of a and y and we obtained
similar results as in Table 4.9A.

Starting from different Xo by perturbing the original Xo in (35), Algorithm 1 was
applied to problem 4.9 again, with S = 10~10 and 8\ = 8. The numerical results for
m = 3 are reported in the following tables and figures.

Note that for the starting point O.97xo, a different Hopf bifurcation was reached by
the nonmonotone iteration. A slightly different parameter setting of mm = 2,IN = 0
and a — 0.6 produced convergence to the correct HBP, with

nj = 16, nf = 33, / < 2.2 x 10'
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TABLE 4.9B: Algorithm 1 applied to Problem 4.9

Starting Point
0.99
/o %

/o *
0.97
/o ^
0.95

104.5
0.1 randin)
2648

Xo

22148

114147

mm

£>%

£ > «

Z) %

rty =

= 3 , 7 ^ = 0

0.2474796, it
= 10, «/ = 14,
0.2474796, *

= 10, rif = 15,
3.054380, k *

-- 19, nf = 29,
0.234175, kf

« 0.9759891

/ < io-'°
«s 0.9759889
/ < io-13

» 20.046223
/ < io-14

« -15.77323

mm = IN = 0
nj = 19, «/ = 267
/ > 10"'
nj = n,nf = 157
/ > 10.35
nj = 17, nf = 209
/ > 2 . 7
nj = 12,^ = 171
/ > 32

D ^ 0.24747958, jfc % 0.9759891.

Changing mm so that mm = 0 to select the monotone strategy, the iteration then
diverged, with / > 27 after fourteen iterations («/ = 215).

The objective function is obviously extremely nonlinear. Comparing the starting
points Xo and O.99xo for m = 3, a one percent perturbation produced very different
values of/o (8.246 x 103 and 104.5 respectively).

Starting from O.95xo, a negative k was again reached by the nonmonotone iteration.
Table 4.9B shows how important nonmonotonicity is for our algorithm.
The behaviour of {/(x*)} (for the starting point Xo — 0.1 x rand(rc)); as in rows 4

and 5 of Table 4.9B) is described in Figures 4.3 and 4.4.
From Figures 4.3 and 4.4, it is easy to see that Algorithm 1 (with mm = 3) did not

force / to decrease monotonically, while the damped Newton's method (mm = 0) did.
The values of / are the same for both parameter settings for the first three function
evaluations in Figure 4.4. The improvement in convergence for the nonmonotone
iteration over the monotone one is self-evident.

Figure 4.3A illustrates that the nonmonotone algorithm (with a nonzero mm = 3)
performs better by allowing the iterates xk to have more flexibility. As a result, the
iterates depart from x7, increase the value of / temporarily, and converge to the HBP
quickly after the ninth iteration. In contrast, Figure 4.4A shows that the monotone
algorithm (with mm = 0) bounds the iterates [xk] around x9 and do not allow them to
escape from the neighbourhood towards the HBP.

Starting from a point Xo — 0.3*rand(«), where f0 ^ 369, the norm of the cor-
responding Newton direction is approximately 400 and ||gol| «* 360. The numerical
experiment results are summarized in Table 4.9C.

The comparison of the two different parameter settings in Table 4.9C is illustrated
in Figures 4.5 and 4.5A, showing the effectiveness of selecting nonzero mm and IN.
Figure 4.6 illustrates that a monotone strategy constrains the iterates around Xi and no
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iteration
FIGURE 4.3: Problem 4.9 - log(/) vs ttj (Xo = Xo - 0.1*rand(«))

TABLE 4.9C: Problem 4.9 with Xo = Xo - 0.3*rand(n)

Initial
/o « 369

mm = 3, IN = 1
nj = 2\,nf=A\,f < 1(T16

D % 0.2474796, k ^ 0.9759891

mm = IN = 0
nj = 10, nf = 179
/ >330

convergence towards the HBP can be achieved.
Figures 4.5A and 4.6A illustrate the effect of choosing a nonzero IN,by considering

the parameter settings (i) mm = IN = 0, and (ii) mm = 3, IN = 1. The same Xo
as in Table 4.9C was used. For (ii), the value of / after one Newton's iteration was
about 1.45 x 1012, which was not acceptable for our parameter setting IN = 1 and
rn = 106. Therefore one "back-step" (in Step 6 of Algorithm 1) was performed and
the value of / was decreased to an acceptable value of approximately 1.84 x 108 (see
Figure 4.6A for details). In the damped Newton's iteration in Figure 4.5A, [xk] were
attracted around Xj, making very slow progress towards the HBP (see Table 4.5A).
For (i), the progress was negligible.

From Table 4.9B, we noticed that starting from 0.95 XQ failed in the calculation
of the HBP, since a negative k was obtained. Inspecting the iterates, we found that
k remained negative after a few iterations in Algorithm 1, for both zero and nonzero
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FIGURE 4.4: Problem 4.9 - log(/) vs nf (Xo = XQ - 0.1*rand(n))

TABLE 4.9D: Algorithm 1A Applied to Problem 4.9

Initial
0.95 Xo
/ o « 114147
0.93 xo
/o « 2603

mm

D ^

U ~

= 3, IN = 0
-- 15,/i /= 27,
0.30543797,

= 11,/!/ = 10,
0.24747958,

/

/

< 10"10

» 20.046223
< 10-"
» 0.97598908

mm

f>

f>

= IN --
•• 1 4 , / ! /

77
: 25, /I/
2.42

= 0
= 203

= 233

mm. Algorithm 1A was then applied to the same problem, with the parameter setting

CT, = a, na = 10, r = 10~2.

The numerical results are reported in Table 4.9D.
Note that for the starting point 0.95xo, the algorithm produced a HBP which is

different to the one we want. Using a different value a = 0.6, together with mm = 2
and IN — 0, we achieved convergence to the correct HBP after sixteen iterations
nf = 38 with / < 2.1 x 10~18. When mm is altered to zero to select the monotone
strategy, the algorithm diverged and / > 4.2 after sixteen iterations (nf = 360).

We did some numerical experiments using the starting value 0.94 Xo and 0.92 XQ
with the parameter settings

a e (0.3, 0.7), CT, = CT, y € (10~5, 10~3).
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FIGURE 4.3A: Problem 4.9 - log(/) vs nf (Xo = Xo - 0.1*rand(n), mm = 3, IN = 0)

Starting from (0.94 xo with IN = 0, mm = 3 or mm = 5, we achieved / <
9.2 x 1(T12 when n} < 10 and nf < 14.

Starting from 0.92 Xo with IN = 3, mm = 3 or mm = 5, we achieved / <
4.55 x 10~12 when « , < 12 and nf < 22.

However, with mm = IN = 0, we did not obtain the HBP within 100 function
evaluations from either starting point.

The parameter values we used in our numerical experiments may not be optimal
but our numerical experience suggested the following choices:

Y € [10"5, 10~3], a € [0.3, 0.7], mm e [0, 5], IN e [0, 3].

Figures 4.7A to 4.7D illustrate the nonlinearity of the functionals in Problem 4.9
(m = 3) and the difficulties related to the sensitivity of the convergence of Newton
type methods on starting values. For these figures, the functionals / were constructed
consistently for different values of D and k, to avoid spurious discontinuities. In real
applications, the functionals will be constructed using the techniques in [5,1], depend-
ent on the local condition of the corresponding matrix operator in the neighbourhood
of the starting values. Sudden jumps in the functionals may then occur because of
their different constructions.

Figure 4.7A plots log(/) against SD 6 [0, 10000], where D = 0.247 + 10"7SD e
[0.247,0.248]. x and k are chosen from the exact solution. The figure shows that
traditional Newton type methods with starting values of D on the left of D* have
very little chance of convergence. Figure 4.7B is a magnification of Figure 4.7A,
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FIGURE 4.4A: Problem 4.9 - log(/) vs nf (Xo = Xo - 0.1*rand(n), mm = IN = 0)

with SD € [0,400] and D = 0.2474449 + lO^SD e [0.2474449,0.2474849].
Figure 4.7C contains curves similar to that in Figure 4.7A with varying k e [1,1.1]
(for D € [0.23, 0.26] and x = x*). Figure 4.7D contains the surface generated by the
curves in Figure 4.7C.

Finally, we would like to remind prospective users of NINA that the parameters
can be adjusted during the iteration, according to the information obtained from the
iterates.

5. Conclusions

On the basis of some preliminary computational experiments, the use of nonmono-
tone inexact Newton technique appears to be valuable for both general nonlinear
systems of equations and HBP problems, especially those with poor starting points.
In addition, the nonmonotone inexact Newton algorithm (NINA) processes a global
convergence property combined with a quadratic rate of convergence, which includes
both Newton's and the inexact Newton's methods as special cases, and is superior to
them individually.
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FIGURE 4.5: Problem 4.9 - log(/) vs nf (Xo = Xo - 0.3*rand(n))
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FIGURE 4.5A: Problem 4.9 - log(/) vs nf (Xo = Xo - 0.3*rand(n), mm = IN = 0)
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FIGURE 4.6: Problem 4.9 - log(/) vs nj (Xo = Xo - 0.3*rand(n))
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FIGURE 4.6A: Problem 4.9 - log(/) vs nf (Xo = Xo - 0.3*rand(n), mm = 3, IN = 1)
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1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

delta D
FIGURE 4.7A: Problem 4.9 (m = 3) (x = x*, SD e [0, 100000], D = 0.247 + 10"75D)

c

50 100 150 200 250 300 350 400 450

delta D
FIGURE 4.7A: Problem 4.9 (m = 3) (x = x\ SD e [0,400], D = 0.2474449 + 10"7SD)
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FIGURE 4.7A: Problem 4.9 (m = 3) (x = x*, SD e [0, 300], D = 0.23 + 10"26D, k 6 [1, 1.1])

FIGURE 4.7A: Problem 4.9 (m = 3) (x = JC*. 5D e [0,300], O = 0.23 + 10-25D, k 6 [1,1.1])
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