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Abstract

Glufosinate is an effective postemergence herbicide, and overreliance on this herbicide for
weed control is likely to increase and select for glufosinate-resistant weeds. Common assays
to confirm herbicide resistance are dose–response and molecular sequencing techniques; both
can require significant time, labor, unique technical equipment, and a specialized skillset to
perform. As an alternative, we propose an image-based approach that uses a relatively
inexpensive multispectral sensor designed for unmanned aerial vehicles to measure and
quantify surface reflectance from glufosinate-treated leaf disks. Leaf disks were excised from
a glufosinate-resistant and glufosinate-susceptible corn (Zea mays L.), cotton (Gossypium
hirsutum L.), and soybean [Glycine max (L.) Merr.] varieties and placed into a 24-well plate
containing eight different concentrations (0 to 10 mM) of glufosinate for 48 h. Multispectral
images were collected after the 48-h incubation period across five discrete wave bands: blue
(475 to 507 nm), green (560 to 587 nm), red (668to 682 nm), red edge (717 to 729 nm),
and near infrared (842 to 899 nm). The green leaf index (GLI; a metric to measure chlorophyll
content) was utilized to determine relationships between measured reflectance from the tested
wave bands from the treated leaf disks and the glufosinate concentration. Clear differences of
spectral reflectance were observed between the corn, cotton, and soybean leaf disks of the
glufosinate-resistant and glufosinate-susceptible varieties at the 10 mM concentration for select
wave bands and GLI. Leaf disks from two additional glufosinate-resistant and glufosinate-
susceptible varieties of each crop were subjected to a similar assay with two concentrations:
0 and 10 mM. No differences of spectral reflectance were observed from the corn and soybean
varieties in all wave bands and the GLI. The leaf disks of the glufosinate-resistant and
glufosinate-susceptible cotton varieties were spectrally distinct in the green, blue, and red-edge
wave bands. The results provide a basis for rapidly detecting glufosinate-resistant plants via
spectral reflectance. Future research will need to determine the glufosinate concentrations,
useful wave bands, and susceptible/resistant thresholds for weeds that evolve resistance.

Introduction

Currently, there are 514 unique herbicide-resistant weed biotypes globally (Heap 2022). As the
number of herbicide-resistant weeds increases, the number of effective herbicides decreases
(Gaines et al. 2021). For herbicides to remain effective, herbicide-resistant weeds must be iden-
tified andmanaged before the resistance trait(s) become fixed within a weed population (Squires
et al. 2021). Dose–response assays are a proven technique used to confirm herbicide-resistant
weed species (Burgos 2015). Despite being a proven and accepted technique, dose–response
assays require weeks to months to complete and lack the expedience needed by farmers to know
if a weed is herbicide-resistant (Burgos 2015; Burgos et al. 2013). Dose–response assays also
require significant labor, materials, and space to conduct. Additional assays have been devel-
oped/tested to reduce costs and increase time efficiency compared with dose–response assays.
However, some of these assays/techniques have limitations as well.

Herbicide-impregnated agar-based seedling assays have been created to confirm herbicide
resistance (Boutsalis 2001; Shaner et al. 2005). Putative herbicide-resistant plants must be grown
to produce seed; ultimately, the time to procure results is similar to whole-plant dose–response
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assays.Molecular sequencing assays have proved to be successful in
confirming the evolution of herbicide-resistant weeds (Bettini et al.
1987; Patzoldt and Tranel 2002). The molecular assays can provide
results concerning whether the weed is herbicide resistant or not
on the magnitude of hours to days (Burgos et al. 2013; Jones
et al. 2022a; Squires et al. 2021). One downfall of molecular assays
for confirming herbicide resistance is monogenic traits are easier to
detect than polygenic traits (Burgos et al. 2013; Giacomini et al.
2018). The ability to detect a monogenic (i.e., target-site) mutation
is more rapid if the mutation has been well characterized (Burgos
et al. 2013; Squires et al. 2021). Measuring chlorophyll fluorescence
can be useful in rapidly discriminating between herbicide-resistant
and herbicide-susceptible weeds (Kaiser et al. 2013;Wu et al. 2021).
The previously conducted research utilizing this methodology was
conducted across many weed species and herbicides, elucidating
the utility of the technique.While these experiments are a successful
substitute for whole-plant herbicide-resistance assays, their utility
can be lost due to the cost of the equipment/technical knowledge
in conducting the trials, the herbicide-resistance mechanism(s),
and the herbicide site of action (Burgos et al. 2013; Dayan and
Zaccaro 2012; Giacomini et al. 2018; Squires et al. 2021).

Glufosinate (herbicide Group 10) is among the few effective
postemergence herbicides remaining. Glufosinate is a nonselective,
fast-acting contact herbicide that inhibits glutamine synthetase
(EC 6.3.1.2), which ceases the production of glutamate and dis-
rupts chlorophyll production, allowing for reactive oxygen species
to induce lipid peroxidation of the cell membranes, resulting in cell
death (Takano et al. 2019). However, six weed species [Palmer
amaranth (Amaranthus palmeri S. Watson), goosegrass [Eleusine
indica (L.) Gaertn.], annual ryegrass (Lolium perenne L.), Italian
ryegrass [Lolium perenne L. ssp.multiflorum (Lam.) Husnot], rigid
ryegrass (Lolium rigidum Gaudin), and annual bluegrass (Poa
annua L.)] have evolved resistance to this herbicide (Heap
2022). The glufosinate-resistant populations of these weeds are
not widespread; therefore, putative glufosinate-resistant weeds
must be identified rapidly and managed accordingly to extend
the effectiveness of this herbicide. Themechanism(s) of glufosinate
resistance can differ across and within species from target-site
mutation, target-site amplification, and metabolism (i.e.,

polygenic) (Avila-Garcia et al. 2012; Brunharo et al. 2019;
Carvalho-Moore et al. 2022; Jalaludin et al. 2017). The assays
described above may not be suitable for rapidly confirming glufo-
sinate resistance as reported.

Injury is incurred rapidly (approximately 48 h after application)
on glufosinate-treated plants but can vary based on species and rate
(Hoss et al. 2003; Steckel et al. 1997) (Figure 1). Because the chloro-
phyll production is being disrupted and total chlorophyll content is
decreased, the plant does not uniformly reflect green spectrum
light (Carter 1993). Glufosinate inhibits chlorophyll production
and function very rapidly; consequently, chlorophyll florescence
may not be sufficient to detect glufosinate resistance (Dayan
and Zaccaro 2012; Takano et al. 2019; Wu et al. 2021).
However, chlorophyll content and spectral reflectance are corre-
lated (Gitelson et al. 2003a). Because abiotic- and biotic-stressed
plants reflect other colors aside from green, the ability to detect
differences of pigment degradation associated with glufosinate
activity may increase by utilizing different wavelengths (Carter
and Knapp 2001; Mee et al. 2017).

Therefore, glufosinate-treated plants could be imaged to collect
and detect differences in spectral reflectance. Previous research has
demonstrated that image-based spectral reflectance can discrimi-
nate between herbicide-treated plants and ranges in weed species
susceptibility to herbicides (Everman et al. 2008; Reddy et al. 2014;
Zhao et al. 2014). Corn (Zea mays L.), cotton (Gossypium hirsutum
L.), and soybean [Glycine max (L.) Merr.] could be model species,
as there are genetically modified and conventional varieties that
are resistant and susceptible to glufosinate, respectively (Duke
2005; Johnson et al. 2012). Glufosinate resistance in crops is
facilitated by the insertion of the Phosphinothricin N-acetyltrans-
ferase (pat) gene and bialaphos resistance (bar) gene isolated from
Streptomyces viridochromogenes Waksman and Henrici and
Streptomyces hygroscopicus Waksman and Henrici, respectively,
and both encode for phosphinothricin acetyl transferase
(EC 2.3.1.183) (Dayan and Duke 2014; Domínguez-Mendez
et al. 2018; Krenchinski et al. 2018). Phosphinothricin acetyl
transferase converts glufosinate into N-acetyl-L-glufosinate, a
nonphytotoxic compound that does not inhibit glutamate syn-
thetase (Droge-Laser et al. 1994; Hérouet et al. 2005).

Figure 1. Differential phenotypic response of glufosinate-resistant (left) and glufosinate-susceptible (right) cotton leaves at 48 h after glufosinate (650 g ai ha−1) treatment.
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The specific objectives of the present research were to deter-
mine (1) whether there was a discriminating glufosinate concen-
tration to separate spectra between glufosinate-resistant and
glufosinate-susceptible crop varieties, (2) whether the discrimina-
tion glufosinate concentration could reliably cause differential
spectral reflectance from glufosinate-resistant and glufosinate-sus-
ceptible crop varieties, and 3) the wavelengths and vegetative indi-
ces best able to differentiate glufosinate resistance using image-
based sensor designed for unmanned aerial vehicle use.

Materials and Methods

Dose Response: Determining a Discriminating Dose

Seeds of glufosinate-resistant and glufosinate-susceptible varieties
of corn, cotton, and soybean were sown into flats (21 cm by 28 cm)
containing a 4:1 mixture of potting soil (Sun Gro® Sunshine no. 2,
Sun Gro Horticulture, Agawam, MA, USA) to sand, including 5 g
of pellet fertilizer (14-14-14) (Table 1). The plants weremaintained
in a glasshouse with a 30/25 C diurnal temperature fluctuation and
a 14/10 h photoperiod. Sunlight was supplemented with 600 to
1,000 μmol m−2 s−1 PFFD of artificial light. Five plants were trans-
planted at a specific stage (cotton [1-leaf], corn [2-leaf], soybean
[1-trifoliate]) into 15-cm diameter pots containing a 4:1 soil mix-
ture including 5 g of pellet fertilizer (14-14-14). When the plants
reached a specific stage (cotton [2- to 3-leaf], corn [3- to 4- leaf],
soybean [2- to 3-trifoliate]), leaf disks were excised from youngest
completely unfolded leaves below the apical meristem using a 6-
mm single-hole punch. Technical-grade glufosinate (280 g ai L−1,
Liberty®, BASF, Research Triangle Park, NC, USA) was diluted to
various concentrations (mM) using de-ionized water. Eight glufosi-
nate concentrations ranged from 0.01 to 10 mM along a 3.16 log
scale including a nontreated control (0 mM). Treatments were
arranged as a randomized complete block design with three replica-
tions (leaf disks were excised from three different plants) and con-
ducted twice. Twenty-four-well plates (Spex Sample Prep,
Metuchen, NJ, USA) were cut in half to a depth of 1.25 cm and used
as the vessel to hold the leaf disk and aliquot. One milliliter aliquots
of each glufosinate concentration were added to the corresponding
well, and leaf disks were placed in the well with forceps. The leaf
disks were submerged into the aliquot and allowed to resurface with
the adaxial side facing up. The 24-well plates containing the glufo-
sinate concentration aliquots and leaf disks were placed into a pho-
tography box and subjected to continuous light from an overhead
LED light (12 lumens m−2) at 22 C with 50% relative humidity over
the 48-h testing period. No diurnal light or temperature fluctuation
was implemented to exacerbate glufosinate activity (Takano
et al. 2020).

Multispectral images were acquired using aMicaSense RedEdge
multispectral sensor (RedEdge, MicaSense, Seattle, WA, USA)
every 2 h for 48 h. Themultispectral sensor measures reflected energy
in five discrete regions: blue (475 to 507 nm), green (560 to 587 nm),

red (668 to 682 nm), red edge (717 to 729 nm), and near infrared (842
to 899 nm). Limited radiance output by the LED light source in the
near infrared resulted in underexposed images at this wavelength, and
data were not included in the analysis. The multispectral sensor has a
focal length of 5.5mm, a horizontal field of viewof 47.2°, and an image
resolution of 1,280 by 960 pixels. Ground spatial resolution for the
multispectral sensor is 0.7 mm per pixel at 1 m above ground level.
Themultispectral sensor was placed approximately 1m above the 24-
well plates containing the leaf disks. The resulting images were com-
bined into a single four-band, geometrically rectified image composite
using custom Python (Python Software Foundation 2022) code and
the SIFT (Scale Invariant Feature Transform) library available in
OpenCV. The image composites were then used to determine
reflected raw digital number (DN) values for each wave band using
the FIELDimageR package in RStudio v. 4.1.1 (Matias et al. 2020;
R Core Team 2022). Reflectance ratios were calculated as well for
the green leaf index (GLI) was also calculated in addition to the wave
bands captured by themultispectral sensor in FIELDimageR. GLI was
calculated as:

2 � red � green � blueð Þ
2 � red þ green þ blueð Þ [1]

where red, green, and blue represent the DNs measured at that
wavelength. TheGLI was selected, as it is commonly used as ametric
to measure chlorophyll content (Gitelson et al. 2003b; Louhaichi
et al. 2001).

Discrimination of Glufosinate Resistance across Varieties

Two varieties of each glufosinate-resistant and glufosinate-suscep-
tible crop species were utilized to determine whether the assay
could discriminate between glufosinate susceptibility across differ-
ent genotypes (Table 2). Plants were sown and curated as described
earlier. Non-transgenic lines were selected as the glufosinate-sus-
ceptible varieties for all crop species for a better representation of a
wild-type plant. Leaf disks were excised and placed into the 24-well
plate with the corresponding glufosinate concentration and then
placed in a photography box as described earlier. Glufosinate con-
centrations were 0 mM and the discrimination concentration from
the dose–response assay. Treatments were arranged as a random-
ized complete block design with six replications (one leaf disk was
taken from six different plants). The multispectral sensor collected
imagery at 0, 24, and 48 h after treatment. Images were mosaicked,
and DNs from wave bands and indices were extracted from the
mosaicked images as described as earlier.

Statistical Analysis

Discriminating Dose
Reflected DN data from all wave bands and indices were plotted
across glufosinate concentrations using a three-parameter log-

Table 1. Crop varieties used in the dose–response assay to determine whether
glufosinate-resistant and glufosinate-susceptible varieties could be
discriminated with spectral reflectance.

Varieties

Crop species Glufosinate resistant Glufosinate susceptible

Cotton DP1464 DP399
Corn P1870YHR B73
Soybean CZ6520 AG56X8

Table 2. Crop varieties used to determine whether glufosinate-resistant and
glufosinate-susceptible varieties could be discriminated with spectral
reflectance with 10 mM of glufosinate.

Varieties

Crop species Glufosinate resistant Glufosinate susceptible

Cotton DP1464; PHY350WF3 UA22; UA48
Corn REV28BHR18; P1870YHR B73; MO17
Soybean CZ6520; AG52XF0 ‘Dillon’; ‘Raleigh’

Weed Science 13
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Figure 2. Spectral reflectance of glufosinate-resistant (red) and glufosinate-susceptible (gray) corn variety leaf disks at 48 h after treatment with various concentrations of
glufosinate. (A) Red wave band; (B) green wave band; (C) blue wave band; (D) red-edge wave band; (E) green leaf index.
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logistic, quadratic, or three-parameter sigmoidal-logistic models in
SigmaPlot v. 14.0 (Systat Software, Palo Alto, CA).

The three-parameter log-logistic model is described as:

y ¼ a
1
þ x

x0

� �
b

[2]

where a is the upper asymptote, x is the glufosinate concentra-
tion, x0 equals an inflection point, and b is the slope at x0.

The quadratic model is described as:

y ¼ y0þ a�x þ b�x2ð Þ [3]

where a is the upper asymptote, x is the glufosinate concentra-
tion, x and y0 equal inflection points, and b is the slope at x.

The three-parameter sigmoidal-logistic model is described as:

y ¼ y0

1þ exp � xþx0ð Þ
b

h in o
0
@

1
A [4]

where a is the upper asymptote, x is the glufosinate concentra-
tion, x0 and y0 equal inflection points, and b is the slope at x0.

Discrimination of Glufosinate Resistance across Varieties
Spectral reflectance data from all wave bands and GLI were sub-
jected to ANOVA using PROC GLIMMIX in SAS v. 9.4
(Statistical Analysis Software, Cary, NC) (α≤ 0.05), where glufosi-
nate concentration, resistance trait, and variety (nested within
resistance trait) were considered fixed effects, while experimental
run and replication were considered random effects. Treatment
means were separated using Fisher’s LSD (α≤ 0.1).

Results and Discussion

Only the 48-h time point for both assays provided clear spectral
differences between the treated and nontreated leaf disks of glufo-
sinate-resistant and glufosinate-susceptible crop leaf disks; thus,
for clarity, only the 48-h time point will be discussed.

Dose Response: Determining a Discriminating Rate

Corn
Glufosinate-resistant and glufosinate-susceptible variety leaf disks
exhibited similar reflectance when treated with glufosinate concen-
trations ranging from 0 to 3.16 mM across all wave bands and GLI
values (Figure 2). The spectral reflectance between the glufosinate-
resistant and glufosinate-susceptible variety leaf disks became dis-
tinctive at the 10 mM glufosinate concentration for the red and
blue wave bands (Figure 2). The spectral reflectance of the glufo-
sinate-resistant and glufosinate-susceptible variety leaf disks was
best modeled with a three-parameter sigmoidal-logistic function
for all wave bands and indices (Table 3).

Cotton
Similar spectra were reflected by the glufosinate-resistant and glu-
fosinate-susceptible variety leaf disks treated with glufosinate con-
centrations ranging from 0 to 3.16 mM across all wave bands and
GLI values (Figure 3). Separation of spectral reflectance between
the glufosinate-resistant and glufosinate-susceptible variety leaf
disks became apparent at the 10 mM glufosinate concentration
across all wave bands and GLI values (Figure 3). Additionally,

the differences in reflected spectra between the glufosinate-resist-
ant and glufosinate-susceptible variety leaf disks was elucidated by
the fitting of different models across wave bands (Figure 3;
Table 4). The spectral reflectance of the glufosinate-resistant vari-
ety leaf disks was best modeled using a three-parameter log-logistic
equation only for the GLI compared with the glufosinate-suscep-
tible variety leaf disks best modeled with a three-parameter log-
logistic equation for the green, blue, and red-edge wave band as well
as the GLI (Table 4). The quadratic function best modeled the red-
edge wave band reflectance for the glufosinate-resistant variety leaf
disks (Table 4). The spectral reflectance of the glufosinate-resistant
variety leaf disks were best modeled with a three-parameter sigmoi-
dal-logistic function for the red and blue wave bands compared with
the glufosinate-susceptible variety leaf, for which the red wave band
was best modeled with this function (Table 4).

Soybean
Glufosinate-resistant and glufosinate-susceptible variety leaf disks
treated with glufosinate concentrations ranging from 0 to 3.16 mM
reflected similar spectra for all wave bands and GLI (Figure 4). The
spectral separation between the glufosinate-resistant and glufosi-
nate-susceptible variety leaf disks became evident at the 10 mM
glufosinate concentration for all wave bands (Figure 4), while
the glufosinate-resistant and glufosinate-susceptible variety leaf
disks exhibited inseparable ratios when treated with glufosinate
concentrations ranging from 0 to 1 mM for the GLI (Figure 4).
The ratios between the glufosinate-resistant and glufosinate-sus-
ceptible variety leaf disks were separable at the 3.16mMglufosinate
concentration but were inseparable at the 10 mM glufosinate con-
centration for the GLI (Figure 4). Additionally, the differences in
spectral reflectance for the glufosinate-resistant and glufosinate-
susceptible variety leaf disks were elucidated by the fitting of differ-
ent models across wave bands (Figure 4; Table 5). The reflectance
ratio of the glufosinate-resistant variety leaf disks was best modeled
with a three-parameter log-logistic function only for the GLI

Table 3. Parameter estimates from the linear regression for the spectral
reflectance of glufosinate-resistant and glufosinate-susceptible corn leaf disks
treated with glufosinate.

Wave
band/
index Variety Modela r2

Red Resistant y= 42.62/{1 þ exp[−(xþ 2.38)/
0.88]}

0.50

Susceptible y= 42.31/{1 þ exp[−(xþ 0.22)/
0.08]}

0.48

Green Resistant y= 74.72/{1 þ exp[−(xþ 1.73)/
0.74]}

0.74

Susceptible y= 73.37/{1 þ exp[−(xþ 0.12)/
0.05]}

0.52

Blue Resistant y= 38.31/{1 þ exp[−(xþ 1.74)/
0.53]}

0.20

Susceptible y= 38.00/{1 þ exp[−(xþ 0.44)/
0.13]}

0.24

Red edge Resistant y= 117.91/{1 þ exp[−(xþ 2.87)/
1.17]}

0.87

Susceptible y= 115.18/{1 þ exp[−(xþ 0.73)/
0.18]}

0.19

Green leaf
index

Resistant y= 0.30/{1 þ exp[−(xþ 1.85)/0.70]} 0.51
Susceptible y= 0.29/{1 þ exp[−(xþ 0.08)/0.03]} 0.68

aA three-parameter sigmoidal-logistic y ¼ y0

1 þ exp � xþ x0ð Þ
b½ �f g

� �
model was fit to all reflectance

data for all wave bands and green leaf index.
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compared with the glufosinate-susceptible variety leaf disks, which
were best modeled with a three-parameter log-logistic equation for
all wave bands and GLI (Table 5). The spectral reflectance of the
glufosinate-resistant variety leaf disks was best modeled using a

quadratic function for the blue and red-edge wave bands (Table 5).
The three-parameter sigmoidal-logistic function best modeled the
reflectance in the green wave band of the glufosinate-resistant vari-
eties’ leaf disks (Table 5).

Figure 3. Spectral reflectance of glufosinate-resistant (red) and glufosinate-susceptible (gray) cotton variety leaf disks at 48 h after treatment with various concentrations of
glufosinate. (A) Red wave band; (B) green wave band; (C) blue wave band; (D) red-edge wave band; (E) green leaf index.
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Discrimination Of Glufosinate Resistance across Varieties

Corn
Spectral reflectance was not different between the glufosinate-
resistant and glufosinate-susceptible leaf disks treated or non-
treated in the red, green, or blue wave bands for the concentrations
evaluated (Table 6). Reflectance was higher for the nontreated glu-
fosinate-resistant leaf disks compared with the treated leaf disks in
the red-edge wave band and GLI (Table 6). Despite these minute
differences, this assay was not informative for capturing distinct
spectral profiles of glufosinate-resistant or glufosinate-susceptible
corn. The distinct spectral profiles of the glufosinate-resistant and
glufosinate-susceptible leaf disks in the red and blue wave bands
from the dose–response assay were not concordant with the dis-
criminating rate assay (Figure 2; Table 6). Ultimately, this assay
was not informative for discriminating between glufosinate-resist-
ant and glufosinate-susceptible corn varieties.

Cotton
The reflectance between treated and nontreated glufosinate-resist-
ant and glufosinate-susceptible leaf disks in were no different in the
red wave band (Table 7). Reflectance was not different between the
nontreated glufosinate-resistant and glufosinate-susceptible leaf
disks in the green wave band, while the reflectance was lower
for the treated glufosinate-susceptible leaf disks compared with
the glufosinate-resistant leaf disks (Table 7). The spectral reflec-
tance did not differ for the treated glufosinate-resistant leaf disks
and nontreated leaf disks in the green wave band (Table 7). Similar
trends of spectral reflectance were observed in the blue wave band
(Table 7). Reflectance of the nontreated leaf disks was no different,
while the reflectance of treated glufosinate-resistant leaf disks was
higher than that of the glufosinate-susceptible leaf disks in the
red-edge wave band (Table 7). The reflectance of the treated leaf
disks was lower than that of the nontreated leaf disks in the red-edge
wave band (Table 7). Additionally, the reflectance ratio was different
between the treated and nontreated glufosinate-resistant and glufo-
sinate-susceptible leaf disks in the GLI (Table 7). However, the
reflectance ratio was no different between the glufosinate-resistant

and glufosinate-susceptible leaf disks within treatment (Table 7).
The distinct spectral profiles of the glufosinate-resistant and glufo-
sinate-susceptible leaf disks from the dose–response assay were con-
cordant with the rapid assay, except for the red wave band and GLI
(Figure 3; Table 7).

Soybean
Spectral reflectance of the treated and nontreated glufosinate-
resistant and glufosinate-susceptible leaf disks was different in
the red wave band, red-edge wave band, and GLI, respectively
(Table 8). Reflectance of the treated and nontreated glufosinate-
susceptible leaf disks was different, but this was not observed for
the glufosinate-resistant leaf disks in the green wave band
(Table 8). Reflectance of the treated and nontreated glufosinate-
resistant and glufosinate-susceptible leaf disks was no different
in the blue wave band (Table 8). Contrasts were conducted across
the soybean varieties, and similar trends were observed (data not
shown). The distinct spectral profiles of the glufosinate-resistant
and glufosinate-susceptible leaf disks from the dose–response
assay were not concordant with the discriminating rate assay
(Figure 4; Table 8).

Resistant or susceptible corn treated with glufosinate did not
exhibit a different spectral profile when compared with each other
or with nontreated corn. However, corn treated with auxin herbi-
cides and paraquat exhibited distinct spectral reflectance com-
pared with nontreated corn (Everman et al. 2008; Henry et al.
2004). Previous research has demonstrated that grass plants incur
injury when treated with glufosinate less rapidly than broadleaf
plants (Takano et al. 2019). Glufosinate is not the most efficacious
grass weed herbicide, which might explain why discrimination
between glufosinate-resistant and glufosinate-susceptible corn leaf
disks was not successful with either assay (Aulakh and Jhala 2015;
Burke et al. 2005; Chahal and Jhala 2015; Ellis et al. 2003). These
results may foreshadow the incompatibility of the presented assays
for detecting glufosinate-resistant grass weed species. The pre-
sented assays may have to be conducted for longer than 48 h for
successful discrimination between resistant and susceptible grass
weeds. The assay could be coupled with assays quantifying by-
products of glufosinate (e.g., reactive oxygen species) to determine
the length of time for conduction and the discriminating concen-
tration needed (Takano et al. 2019, 2020).

Both assays successfully discriminated between glufosinate-
resistant and glufosinate-susceptible cotton. This result is signifi-
cant, as it is evidence that these assays could be manipulated into
a rapid assay to confirm glufosinate resistance in weeds. The wide-
spread evolution of glufosinate-resistant A. palmeri is a great con-
cern in North Carolina (Jones et al. 2022b); glufosinate-susceptible
cotton and A. palmeri have a similar physiological response to glu-
fosinate treatment, suggesting that the assays may be successful
(Everman et al. 2009). While glufosinate is an efficacious broadleaf
weed herbicide, the discriminating dose assay was not as inform-
ative compared with the dose–response assay for soybean. One rea-
son why the discriminating dose assay was not successful could be
the differential trichome characteristics exhibited by each soybean
variety (Brewer and Smith 1994; Buick et al. 1993). A trichome
could act a physical barrier between the leaf surface and the glu-
fosinate concentration despite initial submersion of the leaf disks
(Hess and Falk 1990). While the discriminating dose assay did not
capture distinct spectral profiles of glufosinate-resistant and glufo-
sinate-susceptible soybean leaf disks, there may be merit in doing a
dose–response assay for detecting putative glufosinate-resistant

Table 4. Parameter estimates from the regression models for the spectral
reflectance of glufosinate-resistant and glufosinate-susceptible cotton leaf
disks treated with glufosinate.

Wave
band/
index Variety Modela r2

Red Resistant y= 49.63/{1 þ exp[−(xþ 29.09)/
11.69]}

0.52

Susceptible y= 77.37/{1 þ exp[−(x − 14.98)/
2.94]}

0.93

Green Resistant y= 77.58/1 þ (x/177.83)1.13 0.52
Susceptible y= 77.37/1 þ (x/2.94)14.98 0.93

Blue Resistant y= 36.97/{1 þ exp[−(xþ 0.21)/
0.06]}

0.34

Susceptible y= 35.80/1 þ (x/11.16)14.95 0.83
Red edge Resistant y= 135.78 − 1.18 * xþ 0.06 * x2 0.76

Susceptible y= 140.04/1 þ (x/18.95)2.04 0.95
Green leaf
index

Resistant y= 0.31/1 þ (x/91.42)0.96 0.87
Susceptible y= 0.31/1 þ (x/23.38)1.42 0.98

aA three-parameter log-logistic (y ¼ a
1 þ x

x0

� �
b), quadratic y ¼ y0þ a � x þ b � x2ð Þ, or three-

parameter sigmoidal-logistic y ¼ y0

1 þ exp � x þ x0ð Þ
b½ �f g

� �
model was selected based on goodness

of fit to the reflectance data for all wave bands and green leaf index.
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Figure 4. Spectral reflectance of glufosinate-resistant (red) and glufosinate-susceptible (gray) soybean variety leaf disks at 48 h after treatment with various concentrations of
glufosinate. (A) Red wave band; (B) green wave band; (C) blue wave band; (D) red-edge wave band; (E) green leaf index.
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weed species that exhibit dense pubescence, as discrimination was
successful within 48 h for select wave bands (Figure 3).

The results of the experiment provide a basis of confirming glu-
fosinate resistance in plants via spectral reflectance. Both assays
could discriminate between glufosinate-resistant and glufosi-
nate-susceptible broadleaf plants within 48 h, and conducting
the assays had minimal barriers of entry. Rapidly providing a
farmer with information concerning whether a weed is herbicide

resistant or not will allow for timely implementation of effective
control tactics and possible eradication of the biotype Another
important aspect of the successful transfer of this assay from glu-
fosinate-resistant crops to glufosinate-resistant weeds is the mech-
anism(s) of resistance will differ and may not be homogenously
distributed throughout the weed population (Noguera et al.
2022; Zhang et al. 2022). Currently, the assays require a
glufosinate-susceptible sample to determine whether a plant is

Table 5. Parameter estimates from the regression models for the spectral reflectance of glufosinate-resistant and glufosinate-susceptible soybean leaf disks treated
with glufosinate.

Wave band/index Variety Modela r2

Red Resistant y= 41.25þ 0.52 * xþ 0.10 * x2 0.90
Susceptible y= 44.20/1 þ (x/10.53)17.19 0.71

Green Resistant y= 75.16/{1 þ exp[−(xþ 1.71)/0.61]} 0.54
Susceptible y= 74.70/1 þ (x/12.37)2.49 0.94

Blue Resistant y= 35.98 − 0.47 * xþ 0.07 * x2 0.56
Susceptible y= 37.05/1 þ (x/10.52)11.57 0.95

Red edge Resistant y= 127.80 − 1.22 * xþ 0.08 * x2 0.49
Susceptible y= 132.82/1 þ (x/11.71)1.74 0.99

Green leaf index Resistant y= 0.30/1 þ (x/10.90)16.50 0.86
Susceptible y= 0.30/1 þ (x/10.68)1.42 0.97

aA three-parameter log-logistic (y ¼ a
1 þ x

x0

� �
b), quadratic y ¼ y0þ a � x þ b � x2ð Þ, or three-parameter sigmoidal-logistic y ¼ y0

1þexp � xþx0ð Þ
b½ �f g

� �
model was selected based on goodness of fit to

the reflectance data for all wave bands and green leaf index.

Table 6. Reflectance of glufosinate-resistant and glufosinate-susceptible corn leaf disks treated with 10 mM of glufosinate at 48 h after treatment.

Red Green Blue Red edge Green leaf index

Trait Concentration mM Digital number (SE)a

Glufosinate resistant 0 44.7 (0.9) a 72.4 (1.0) b 37.5 (0.5) a 128.6 (1.3) b 0.28 (0.004) b
10 45.4 (0.9) a 75.6 (1.5) ab 37.8 (1.0) a 133.2 (1.0) a 0.30 (0.004) a

Glufosinate susceptible 0 45.7 (1.0) a 77.2 (1.5) a 37.5 (0.6) a 133.7 (1.5) a 0.30 (0.003) a
10 46.9 (0.9) a 75.6 (1.5) a 38.2 (0.6) a 130.6 (3.4) a 0.29 (0.007) a

aValues within a column that share the same letters are not statistically different based on Fisher’s LSD (P< 0.1).

Table 7. Reflectance of glufosinate-resistant and glufosinate-susceptible cotton leaf disks treated with 10 mM of glufosinate at 48 h after treatment.

Red Green Blue Red edge Green leaf index

Trait Concentration mM Digital number (SE)a

Glufosinate resistant 0 39.4 (0.5) a 66.6 (1.1) a 35.1 (0.4) a 127 (1.1) a 0.3 (0.005) a
10 45.9 (5.2) a 64.3 (5.2) a 34.7 (2.6) a 111.4 (4.5) b 0.2 (0) a

Glufosinate susceptible 0 39.9 (0.4) a 69.4 (1.1) a 35.7 (0.4) a 128.5 (1.1) a 0.3 (0.006) a
10 38.8 (2.0) a 56.7 (1.2) b 30.7 (0.6) b 103.5 (2.4) c 0.2 (0.01) a

aValues within a column that share the same letters are not statistically different based on Fisher’s LSD (P< 0.1).

Table 8. Reflectance of glufosinate-resistant and glufosinate-susceptible soybean leaf disks treated with 10 mM of glufosinate at 48 h after treatment.a

Red Green Blue Red edge Green leaf index

Trait Concentration (mM) Digital number (SE)

Glufosinate resistant 0 40.5 (1.1) b 67.9 (1.2) ab 33.3 (0.6) a 124.4 (2.7) a 0.29 (0.008) a
10 44.6 (1.5) a 67.9 (1.7) ab 33.8 (0.8) a 120.9 (2.4) b 0.28 (0.01) b

Glufosinate susceptible 0 40.3 (0.8) b 70.2 (1.3) a 33.0 (0.5) a 128.0 (2.7) a 0.31 (0.008) a
10 44.3 (1.1) a 66.8 (1.5) b 33.2 (0.6) a 116.4 (2.2) b 0.24 (0.02) b

aValues within a column that share the same letters are not statistically different based on Fisher’s LSD (P< 0.1).
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resistant. More research is needed to determine “resistant” and
“susceptible” thresholds for each wave band and GLI, which can
be done by high-throughput screening of many glufosinate-resist-
ant and glufosinate-susceptible crop varieties and weed biotypes.
Establishing concrete “resistant” and “susceptible” thresholds
may alleviate the need for a glufosinate-susceptible sample for
assay success and differential mechanism(s) of resistance.
Additionally, glufosinate concentrations may need to be adjusted
when trying to discriminate between putative glufosinate-resistant
and glufosinate-susceptible weed species.
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