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Abstract

We determine which permutative varieties are saturated and classify all nontrivial permutation
identities for the class of all globally idempotent semigroups.
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1. Introduction and summary

We determine which of the permutative varieties (those admitting nontrivial
permutation identities) are saturated. These are precisely those permutative
varieties which admit an identity which is not a permutation identity and of
which at least one side has no repeated variable. This generalizes a joint result,
which determines all saturated commutative varities, of the author [7, Theorem
3.4] and P. M. Higgins [2, Theorem 4]. It has long been known that not all
permutative varieties are saturated (see [4, Exercise VII 2(i)]). We also prove a
result regarding the consequences of permutation identities, and as applications
of this result, we give new and short proofs of all the results of Putcha and Yaqub
[10]. Further, an application of our result enables us to classify all nontrivial
permutation identities for the class of all globally idempotent semigroups, gener-
alizing Yamada’s Theorem 6 of [11].
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2. Preliminaries

Let U be a subsemigroup of a semigroup S. We say that U dominates an
element d of S if for every semigroup T and for all homomorphisms 8, y: $ - T,
uf3 = uy for all uin U implies dB = dvy. The set of all elements dominated by U is
called the dominion of U in S and we denote it by Dom (U ). It can be easily seen
that Dom (U ) is a subsemigroup of S.

A morphism a: A — B in the category C of semigroups is called an epimor-
phism (epi for short) if for all C € € and for all morphisms 8, y: B - C, af = ay
implies B = y. The following facts can be easily proved. A morphism a: S — T is
epi if and only if the inclusion mapping i: Sa — T is epi, and an inclusion
mapping i: U — S is epi if and only if Dom((U) = S.

Following Howie and Isbell [5], we call a semigroup U saturated if Dom (U) #
S for every properly containing semigroup S. A variety ‘V of semigroups will be
called saturated if every member of YV is saturated. A variety V is called
epimorphically closed or closed under epis if whenever Dom(U) =S for a
semigroup S, U € Vimplies S € V. Obviously saturated varieties are epimorphi-
cally closed, but the converse is not true in general (for example the variety of
commutative semigroups is epimorphically closed [6, Corollary 2.5], but not
saturated [4, Exercise VII 2(i)]). If Cis a class of semigroups, then every epi from
a member of € is onto if each member of € is saturated and C is closed under
taking homomorphic images.

Semigroup domains have been characterized by the following celebrated result.

REesULT 1 (Isbell’s Zigzag Theorem [6, Theorem 2.3] or [4, Theorem VII 2.13)).
Let U be any subsemigroup of any semigroup S, and let d be any element of S. Then
d € Domg(U) if and only if d € U or there are elements a,, a,,...,a,,, € U,
Yis Yasre«esYms X1> X350 03X, € S such that

d=ayx,, ag = N4y,
(1) Yi@a; = Vit 192i+ 15 Ay 1 X; = 3% 4y (i=12,....m—1),

Am—1%m = Qo> Ym@2m =d.

These equations are called a zigzag of length m over U with value d and spine

Ao, pye ey Gy
Let X = {x,, x,,...,x,} be a set; each element of X will be called a variable.
Let f(x,, x3,-..,x,) and f(x,, x,...,x,) be two words in the variables

X, X3,...,X, (not necessarily containing all the letters x;, x,,...,x,). Then the
pair of words (fi(x;, X5,...,X,), f,(Xys X3,...,%,)) is called an identity in the
variables x, x,,...,x,, and is usually written as

filxy, X350 5%,) = (X Xp5 00 X,)-
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By a permutation identity in the variables x,, x,,...,x, (n =2) we mean an

identity

(2) XXy "t Xy = Xy Xy ot Xy

where (i}, i,...,i,) is a permutation of the sequence (1, 2,...,n). The identities
(C) commutativity  x,x, = Xx,Xx,,

(LN) leftnormality  x;x,x; = X,X3X,,

(RN) right normality x,x,x; = x,x,x3,

(N)  normality X1X3X3X4 = X X3X,Xg,
are all permutation identities.

An identity P = Q is said to be preserved under epis if for all semigroups U and
S such that U < S and Domg(U) = S, U satisfying P = Q implies that S satisfies

P=0.
RESULT 2 [8, Theorem 3.1]. All permutation identities are preserved under epis.
RESULT 3. Let U and S be any semigroups with U a subsemigroup of S. Take any
d € S\U such that d € Dom (U). Let (1) be a zigzag of shortest possible length m

over U with value d. Then x;, y; € S\U, forj = 1,2,...,m.

PRrROOF. Since d € S \U, obviously x, € S\U. So, let us suppose to the con-
trary that x, € U for some k € {2,...,m}. Then

d=ayx, ag = N4
Yi@3; = Vit 192i+15 Ay X; = A9 X4 (i=12,...,k—2),
Ao 3Xp_1 = g 2%, € U’yk-l(a2k—2xk) =d,

is a zigzag of length k — 1 <m, a contradiction, as required. Similarly y, € S\U
forj=1,2,...,m.

RESULT 4. Let U and S be any semigroups with U a subsemigroup of S and
Dom(U) = S. Then for any d € S\U and any positive integer k, there exist
a,, a,,...,a, € Uandd, € S\Usuchthatd = a,a, - - - a,d,. In particular d € S*
for each positive integer k.

PRrROOF. Since d € $~U and Dom((U) = S, by Result 1, there exist a, € U,
d, € S U such that d = a,d,. Applying again Result 1, but this time to d,, we
get d = a,a,d, for some a, € U and d, € S \U. Continuing this process gives us
the required result.

We use whenever possible, and often without comment, the notations and
conventions of Clifford and Preston [1] or Howie [4].
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3. Some consequences of permutation identities

An identity P, = Q, is said to be implied by an identity P, = Q, if every
semigroup satisfying P, = Q, also satisfies P, = Q,.

PROPOSITION 3.1. Let S be any semigroup satisfying (2) withn =3
(1) For each j € {2,3,...,n} such that x;_\x; is not a subword of x; x; -+ x,, S
also satisfies the permutation identity

xlxz .. .xj_lxyxj. . .xn = xlx2 .. .xj_lyxxj. . .xn'

(1) If x, # x, then S also satisfies the permutation identity

XPX(Xq* ot X, = YXX Xy X

ne

ProOOF. Consider S', and put x, = 1. Then S' satisfies the condition that
XoX(Xp * ot X, = Xox; %, --x;  for all x, x,,...,x, €S. Take any j €
{1,2,3,. ,n} such that x;_,x; is not a subword of the word xyx, x, ---x; (this
enables us to prove both statements of the proposition 51mu1taneously).

Let j=1i, Theni, ,#j— 1 Leti, | = k. For convenience let us assume
that k <j (the case when k >j can be dealt with entirely similarly to the case
when k <j). Define

U(Xgs X1y XgyenasXy) = XXy Xp o ** Xy,
and

0( Xy X1s Xgs0esX,) = XoX, X, 200 X,
Now take any x,, X,,...,X,, X, y € S. Then

XX Xg 0 X, XPX;t X, = u(xq, X, XysenesXj 1, yxj,...,x,,)

= v(xg, x,, XoseeesX;_1X, yxj,...,x,,)

= v(xo, XiyewosXgYsunosX; 4 X, xj,...,xn)

(since i,y =kandi, =j)
= u(xo,x,,...,xky,...,x'j_lx, xj,...,x,,)
= u(xo,x,,...,xky,...,xj_l,xxj,...,x,,)
= o(xo,x,,...,xky,...,xj_,,xxj,...,x,,)
= v(xo, XiseosXps e Xj s yxxj,...,x,,)

(since i, y=kandi, =j)
u(xo,x,,...,xj_l, yxxj,...,x,,)
= xoxlxz .. .xj_lyxxj. . .xn

as required, proving both statements of the proposition.
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REMARK 1. Proposition 3.1 strengthens Lemmas 19 and 20 of [9].

4. Epis and permutation identities

A semigroup S satisfying a nontrivial permutation identity will be called
permutative.

PROPOSITION 4.1. Let U be a permutative semigroup and S any semigroup
containing U properly such that Domg(U) = S. Then for any x, y € Sand s, t €
SN\,

sxyt = syxt.

PROOF. Since U is permutative, by Result 2, S is also permutative. Therefore,
by Proposition 3.1 there exist n and j € {1,2,...,n} such that § also satisfies the
following permutation identity

X)Xyt X XPXj X, T X Xp X YXX X,

(when j = 1, we assume that the word x,x, - - - x;_, is the empty word).
Since, by Result 4, for all 5, t € S\U we have s, t € S* for all positive integers
k, the result now follows.

REMARK 2. Proposition 4.1 can also be proved by appealing to [10, Theorem 1]
and Result 2.

The proof of Proposition 4.1 could be easily modified to give the following
corollaries. In Corollaries 4.3 and 4.4 bracketed statements are dual to the other
statements. ‘

In results 4.2 to 4.7, U is any semigroup satisfying (2), and S is any semigroup
containing U properly and such that Dom (U) = S.

COROLLARY 4.2. If (2) is nontrivial, then sx\x, - - - x,t = sx;x; - - x .t for all

5, t € S\U, x, X5,...,%X, € S, and for any permutation j of the set {1,2,...,k}.

COROLLARY 4.3. If i; # 1 [i, ¥ n], then xyt = yxt [sxy = syx] for all x, y € S
andt € S\U [s € S\U].

COROLLARY 4.4. If i, # 1[i, # n), then

Xy Xg o Xpl = X%, 00 Xt [sxlxz T Xy TSX; X v xjk],
forallx,, x,,....,x, € S,t € S\U|[s € S\UY), and for any permutation j of the set
{(1,2,...,k}.
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PROPOSITION 4.5. If i\ # 1 and either i,_, ¥ n — 1 or i, # n, then xyz = yxz
forall x,z € Sandy € S\U.

PROOF. Since y € S\U, we may let (1) be a zigzag of shortest possible length m
over U with value y. Then
Xyz = Xayx,z
=ayxx,z (by Corollary 4.3, since i, * 1 and x, € S\U)
=@ xx, .z
=y, xa;x,z (by Corollary 4.4, since i, # 1 and x, € S\U)
=y Xa,x,z2

= y,a,xx,z (by Corollary 4.4, since i; # 1 and x, € S\U)

= y2a3xx22 == ym02m—1xxmz
=y, Xy, X,z (by Corollary 4.4, sincei, # 1 and x,, € S\U)
= YmXQymZ

by Proposition 3.1ifi,_, # n — 1 and i, = n since
=y a,,X
Y 2m*2 Y € 8", otherwise by Corollary 4.4 since y,, € S\U
= yxz,

as required.
We give a corollary to Proposition 4.5 and its dual.

COROLLARY 4.6. If i) # 1 and i, # n, then 5,5,5; = 5,5, 5; forany s\, s;, 53 € S
with one or more being in S\U, and for any permutation j of the set {1,2,3}.

COROLLARY 4.7. If i, #* 1 and eitheri,_, *n — 1 ori, 5 n, then

5\8§y 8, =85, ‘S

12 fk—lsk

for any s, 5,,...,5, € S such that s, € S\U for some q € {1,2,...,k — 1} and
for any permutation j of the set {1,2,...,k — 1}.

PrOOF. We have

1827 S, S = 88y S, Sey - 818,85, (by Proposition 4.5)
=85S S S Sje-5aSk

(where s ¢ = 8, by Corollary 4.4)

= 5580 S5 S T i Sk (by Proposition 45)
=8, "**S; S asrequired.
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5. Saturated permutative varieties

A variety “V admitting a nontrivial permutation identity is called permutative.

THEOREM 5.1. Let U be a permutative semigroup. Then U is saturated if U
satisfies an identity I such that (i) I is not a permutation identity, and (ii) at least one
side of I has no repeated variable.

PRrROOF. To prove the theorem, we can assume without loss of generality, which
we prove below, that I has the form

(3) XXy X, =w(x), Xg,...,%,,)

where | x,|, =1 fori=1,2,...,m, and | x;|, = 2 for some j € {1,2,...,m} (| x|,
for any variable x is the number of occurrences of the variable x in the word w).

For if I is homotypical, as I is nonpermutative, I has to be of the form (3). So
let us assume next that 7 is not homotypical. Then I has one of the following three
forms:

@) Xxy %, = f(x, Xgsee s X s Xppi1s-- - s X ma ) Where f is some word in the
variables x,,...,x, ., such that k > 0, and |x, ;= 1Li=12....,m+k;

@) xx,---x, = f(x,, X5,...,x,,) where f is some word in the variables

Xy, --5X,, such that for some i, j € {1,2,...,m},|x;|,=0and|x;|, = 1;

(ii1) X, x5« X, = f(Xpse e s X s Xput 15+ -+ s X ), & =0, where f is some word
in Xy, X5,...,X,,4, such that for some i € {1,2,...,m}, |x;[;= 0, and |x,,, ;|= 1
forj=1,...,k.

Now in case (i), by replacing the variables x,, , |,...,X,,.,, if necessary, by x;
for somej € {1,2,...,m}, we immediately get an identity of the form (3).

In case (ii), letj € {1,2,...,m} be such that x; & C( f) (the content of f). Now
by replacing the variable x; by x jz we get that S satisfies the identity x,x, - - - x,,
= XXy xj_lszxj+l -+ x,, (since the R.H.S. of I is independent of the choice
of the variable x ) which is of the form (3) above.

Finally in the last case we can get an identity of the form (3) simply by
applying the techniques of the above two cases.

To prove the theorem let us now assume to the contrary that U is not saturated.
Therefore there exists a semigroup S containing U properly such that Dom (U)
=S.

LEMMA 5.2, Foralla € U, x, y € S \U, and for some q =2

xay = xay.

PrOOF. Since y € S\U, from Result 4, we have

y=aqa,: - * A Vm
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for somey, € S~\Uanda,, a,,...,a, € U Now
xay = xaa,a, - a,y,
= xa,a,--- (aa;)---a,y, (byCorollary4.2)
= xw(a,, az,...,aaj,...,am)ym
= xa"w(al, a2,...,aj,...,am)ym (by Corollary 4.2, where g =| x|, = 2)

= xa%a,a, ---a,y, = xaly, asrequired.

We give a corollary to the proof of Lemma 5.2.
COROLLARY 5.3. Foralla € U, s,t € S' and x, y € S\U, xsaty = xsaty for
some q = 2.

Now to complete the proof of Theorem 5.1, we take any d € S\U, and let (1)
be a zigzag for d of shortest possible length m over U. Then

d = y,a,x, = y,afx, (by Result 3 and Lemma 5.2)
=y,af”'a,x,
= y,a,a{"'x, (by Corollary 4.2)
= y,a;a{”'x,
=y,af{"'a;x, (by Corollary 4.2)
=y,af"'ajx, (by Corollary 5.3)

— —1,q—1 -1

- yma;l ag e agm—?lagm*lxm

— —1,g9~-1 -1

_ymafl ag te 'agm—102m—1xm

— -1, g— -2

= Yplym—af @i a8 185, (X,

— ’
= Vm—182m—20183 """ Ay 3W Ay 1 Xy

(by Corollary 4.2, where w’ = af %a§"%---a§,2,)

SNG4 Ay 2@ WAy Xy
=y,0/a,a, Ay, _Way, X, (byCorollary 4.2)
=ay,a,a, Ay _Wa,, €U,
a contradiction. This completes the proof of the theorem.
The next theorem characterizes all permutative varieties which are saturated,
and thus provides a generalization of Theorem 3.4 of [7] from commutative
varieties to permutative varieties.
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THEOREM 5.4. A permutative variety is saturated if and only if it admits an
identity I such that

(i) I is not a permutation identity, and

(i1) at least one side of I has no repeated variable.

Proor. The ‘if statement’ of the theorem follows from Theorem 5.1. So it
remains only to show that any saturated permutative variety ‘V has to admit an
identity I of the above form. Now take any saturated permutative variety V, and
suppose to the contrary that “V does not admit any identity I of the above form.
Therefore all the identities of Y are either permutation identities or of the type
whose both sides have repeated variables. Since the semigroup U of [2] is
commutative, it satisfies all identities of V" by [2, Lemma 3], whence U € V. As U
is not saturated, “V cannot be saturated, a contradiction. This completes the proof
of the theorem.

REMARK 3. P. M. Higgins has independently shown with a different technique
[3, Corollary to Theorem 19] that if a variety ‘¥ admits an identity of the form
given in the statement of the Theorem 5.4 and a permutation identity (2) such
htat i, # 1 and i, # n, then Vis saturated.

6. On applications of Proposition 3.1.

A semigroup S is said to be medial if it satisfies the normality identity (N ).
Below we give direct and short proofs of all the results of Putcha and Yaqub [10]
and strengthen them by reducing the number of factors that are needed in each
case.

PROPOSITION 6.1. Let S be a semigroup. Take any integers m =0,p =0, n = 2.
If S satisfies the permutation identity

Xy Xp " Xy W1 YVp ttVpZ1Z 2y = X Xyt X Vi Yy, Vi 2122t 2y
where i, > 1 and i, # n, then for all k =2n, S also satisfies any permutation
identity of the form

xle . o xmy|y2 .. .ykzlzz .. -zp = x]x2 . .. xm.yj'.))Jz . . ._yjkzlzz LY zp
for any permutation j of the set {1,2,...,k}.

ProoF. Since iy # 1 and i, # n, x,,y},y,z,and y,_,y, forsome g € (2,3,...,n}
are not subwords of x;X, -+ X, ¥V V,2123 - - - Z,. The proof now follows

from repeated applications of Proposition 3.1 to the word x;x,---x,,y,y;
“* Y422y * - - 2,. This is so because we can commute any adjacent pair of y,’s, by
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Proposition 3.1, if we have the following:
(i) m elements to the left of the pair and (n + p) to the right, or
(ii) (m + n) elements to the left of the pair and p to the right, or
(ili) (m + g — 1) elements to the left and (n + p — ¢ + 1) to the right.
Since k = 2n, at least one of the cases (i), (ii) and (iii) will always occur.

REMARK 4. Proposition 6.1 implies Lemma 1 and Lemma 2 of [10], and gives a
much smaller value for k than that given in [10].

COROLLARY 6.2. Let S be any semigroup satisfying (2) with n = 3 and with i, #* 1
and i, # n. Then for all integers k = 2n, S satisfies every permutation identity in k
variables.

The following proposition is easily proved from Proposition 3.1.

PROPOSITION 6.3. Let S be any semigroup satisfying (2) with n = 3. Then for each
J € {2,3,...,n} such that x;_,x  is not a subword of x; x, -+ -x;, forallm =j — 1,
p=n—j+1 and for all u€ S™, v € S? we have ux,x,v = ux,xv for all
Xy, X, € S. In particular S* is medial for all k = max(j — 1,n — j + 1).

REMARK 5. As corollaries to Corollary 6.2 and Proposition 6.3, we get Theorem
2 and 1 of [10] respectively.

Let © be any class of semigroups. Let P, = P, and Q, = @, be permutation
identities. Then P, = P, and Q, = Q, are said to be equivalent with respect to § if
every semigroup of { satisfying P, = P, also satisfies O, = Q, and vice-versa.

A semigroup S is globally idempotent if for every a € S there exist x, y € S
such that a = xy, that is, if § = S2.

THEOREM 6.4. Let Q be the class of globally idempotent semigroups. Let

4 X Xg tr o Xy = Xy Xyttt Xy

be any nontrivial permutation identity. Then (8) is equivalent with respect to  to
(i) commutativity if i, # 1 and i, # n,
(ii) left normality if i, = 1 and i, # n,
(iti) right normality if i, # 1 and i, = n,
(iv) normality if i, = 1 and i, = n.

PRrROOF. Suppose that a globally idempotent semigroup S satisfies (4).
(i) Take any x,y € S. Since S is globally idempotent, for any m = 1 we have

y = ab for somea, b € S™.
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Now by Proposition 3.1, we have
xy = xab
= axb (sincei, # 1)
=abx (sincei, # n)
= yx.
Hence S satisfies commutativity.

(i) Take any x, y, z € S. Since x € §", and i, # n, by Proposition 3.1, we
have xyz = xzy.

(iii) This is the dual statement of statement (ii).

(iv) Take any x, y, z,w € S. Since S is globally idempotent x, y, z,w € §".
Now, since n = max(j — 1, n — j + 1) for any j such that x;_,x; is not a subword
of x; x, ---x,, from Proposition 6.2 we have that xyzw = xzyw.

The converse implications are obvious.

REMARK 6. As a corollary to Theorem 6.4, we have Theorem 6 of Yamada [11].
Since commutativity, left normality, right normality and normality are nonequiva-
lent to each other with respect to the class of bands, they are also nonequivalent
to each other with respect to the class of globally idempotent semigroups.
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