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Abstract

We determine which permutative varieties are saturated and classify all nontrivial permutation
identities for the class of all globally idempotent semigroups.
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1. Introduction and summary

We determine which of the permutative varieties (those admitting nontrivial
permutation identities) are saturated. These are precisely those permutative
varieties which admit an identity which is not a permutation identity and of
which at least one side has no repeated variable. This generalizes a joint result,
which determines all saturated commutative varities, of the author [7, Theorem
3.4] and P. M. Higgins [2, Theorem 4]. It has long been known that not all
permutative varieties are saturated (see [4, Exercise VII 2(i)]). We also prove a
result regarding the consequences of permutation identities, and as applications
of this result, we give new and short proofs of all the results of Putcha and Yaqub
[10]. Further, an application of our result enables us to classify all nontrivial
permutation identities for the class of all globally idempotent semigroups, gener-
alizing Yamada's Theorem 6 of [11].
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2. Preliminaries

Let U be a subsemigroup of a semigroup S. We say that U dominates an
element d of S if for every semigroup T and for all homomorphisms /?, y: 5 -» 71,
M/J = «y for all w in t/ implies d/? = dy. The set of all elements dominated by U is
called the dominion of U in S and we denote it by Dom s ( t / ) . It can be easily seen
that Doms(U) is a subsemigroup of 5.

A morphism a: A -»2? in the category C of semigroups is called an epimor-
phism (epi for short) if for all C G 6 and for all morphisms /?, y: B -> C, a/? = ay
implies /? = y. The following facts can be easily proved. A morphism a: S -» r is
epi if and only if the inclusion mapping i: Sa -* T is epi, and an inclusion
mapping i: U -> S is epi if and only if T)oms(U) = S.

Following Howie and Isbell [5], we call a semigroup U saturated if Doms(C/) ¥=
S for every properly containing semigroup S. A variety °\fof semigroups will be
called saturated if every member of *Y is saturated. A variety T is called
epimorphically closed or closed under epis if whenever Doms(U) = 5 for a
semigroup S,U G Timplies S G T. Obviously saturated varieties are epimorphi-
cally closed, but the converse is not true in general (for example the variety of
commutative semigroups is epimorphically closed [6, Corollary 2.5], but not
saturated [4, Exercise VII 2(i)]). If Q is a class of semigroups, then every epi from
a member of & is onto if each member of (2 is saturated and 6 is closed under
taking homomorphic images.

Semigroup domains have been characterized by the following celebrated result.

RESULT 1 (Isbell's Zigzag Theorem [6, Theorem 2.3] or [4, Theorem VII 2.13]).
Let U be any subsemigroup of any semigroup S, and let d be any element of S. Then
d G Doms(U) if and only if d G U or there are elements a0, a , , . . . ,a2m G U,
J i . )>2>--- <ym> xu X2>--- >xm G $ such that

d=aoxl, ao=y1a1,

0 ) y^2i-yi+ian+i' "2i-ixi = a2i*i+\ ( / = l , 2 , . . . , w - 1 ) ,

These equations are called a zigzag of length m over U with value d and spine
aQ,av...,a2m.

Let X = {JC,, x2 xn) be a set; each element of X will be called a variable.
Let / / x , , x2,...,xn) and f2(xl,xl,...,xn) be two words in the variables
JC,, x2,... ,xn (not necessarily containing all the letters xu x2,... ,xn). Then the
pair of words (fi(xi,x2,...,xn), f2(xlt x2,...,xnj) is called an identity in the
variables x,, x2,... ,xn, and is usually written as

fl(xl, x2,...,xn)
 = f2\xx, x2,...,xn).
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By a permutation identity in the variables xu x2>... ,xn (« > 2) we mean an
identity

(2) x 1 x 2 - - - x n = x i x i i - - - x i n

where (/,, z2, . . . , / „ ) is a permutation of the sequence ( 1 , 2 , . . . , « ) . The identities

( C ) commutativity x i x
2

= xixu

(LN) leftnormahty xlx2x3 = xtx3x2,

(RN) right normahty xxx2x3 = x2xxx3,

(N) normahty x{x2x3x4 = xix3x2x4,

are all permutation identities.
An identity P = Q is said to be preserved under epis if for all semigroups U and

5 such that U < S and Doms(U) = S, U satisfying P = Q implies that S satisfies
P=Q.

RESULT 2 [8, Theorem 3.1]. All permutation identities are preserved under epis.

RESULT 3. Let U and S be any semigroups with U a subsemigroup of S. Take any
d G S^U such that d G Doms(C/). Let (I) be a zigzag of shortest possible length m
over U with value d. Then Xj, ̂ . 6 S\U, for j = 1,2,...,m.

PROOF. Since d G S\U, obviously xl G S\U. So, let us suppose to the con-

trary thatxj. G U for some k G {2,.. . , m). Then

d=aoxu aQ=ylal,

a2k-3xk-\ = a2k-2xk G U>yk-\(
a2k-2Xk) = d>

is a zigzag of length k — 1 < m, a contradiction, as required. Similarly j y G S\U
forj = 1,2,.. .,m.

RESULT 4. Let U and S be any semigroups with U a subsemigroup of S and
Doms(U) = S. Then for any d G S\U and any positive integer k, there exist
au a2,. ..,ak G U anddk G S\Usuch thatd = axa2 • • • a kdk. In particular d G Sk

for each positive integer k.

PROOF. Since d G S\U and Doms(U) = S, by Result 1, there exist ax G U,
dx G S\U such that d = axdv Applying again Result 1, but this time to </,, we
get d = axa2d2 for some a2G U and d2 G S\U. Continuing this process gives us
the required result.

We use whenever possible, and often without comment, the notations and
conventions of Clifford and Preston [1] or Howie [4].
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3. Some consequences of permutation identities

An identity Px = Qx is said to be implied by an identity P2 = Q2 if every
semigroup satisfying P2 = Q2 also satisfies Px = Qx.

PROPOSITION 3.1. Let S be any semigroup satisfying (2) with n > 3.
(i) For each) G (2 ,3 , . . . ,n} such that xj_lxj is not a subword of xixii • • • x,v S

also satisfies the permutation identity
xxx2 • • • Xj_xxyxj-- • xn = xxx2 • • • Xj_xyxxj- • • xn.

(ii) If xx ¥= xt then S also satisfies the permutation identity

xyxxx2 • • • * „ = yxxxx2 •••xn.

PROOF. Consider S1, and put x0 = 1. Then S1 satisfies the condition that
xoxxx2 • • • xn = xoxt xt • • • Xj for all xx, x2,... ,xn G S. Take any j G
(1,2 ,3 , . . . ,n) such that XJ_XXJ is not a subword of the word xoxjxh • • • xin (this
enables us to prove both statements of the proposition simultaneously).

Lety = ip. Then ip_x ¥=j — 1. Let ip_x = k. For convenience let us assume
that k <j (the case when k >j can be dealt with entirely similarly to the case
when k <j). Define

U(XQ, XX, X2,. . . ,Xn) — XQXXX2 • • " Xn,

and
V\XQ, XX, X 2 , . .. ,xn) — x0xitxi2 • • • x^.

Now take any xx, x2,... ,xn, x, y G S. Then

xoxxx2 • • • Xj_xxyXj- • • xn = u\xQ, XX, x2,...,Xj_xx, yxj,... ,xn)

f^Xg, X[, x2,... ,Xj_xx, yXj,... ,xn)

= v(x0, xu...,xky,...,Xj_xx, Xj,...,xn)

(since ip-X = k and ip = j)

— u\x
0, xx,... ,xky,... ,Xj_xx, Xj,... ,xn)

= u(x0, xx,... ,xky,... ,Xj_x, xxj,... ,xn)

= v(xQ, xx,...,xky,...,Xj_x, xxj,...,xn)

= v(xQ,xx,...,xk, ...;xj_x,yxxj,...,xn)

(since ip_x = k and ip =j)

= u(x0, xx,...,Xj_x, yxxj,...,xn)

= xoxxx2---xj_xyxxj---xn

as required, proving both statements of the proposition.
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REMARK 1. Proposition 3.1 strengthens Lemmas 19 and 20 of [9].

4. Epis and permutation identities

A semigroup 5 satisfying a nontrivial permutation identity will be called
permutative.

PROPOSITION 4.1. Let U be a permutative semigroup and S any semigroup
containing Uproperly such that Doms(U) = S. Then for any x, y £ 5 and s, t G
S\U,

sxyt = syxt.

PROOF. Since U is permutative, by Result 2, S is also permutative. Therefore,
by Proposition 3.1 there exist n andj G {1,2,...,«} such that S also satisfies the
following permutation identity

X i X 2 • • • Xj- l X y X j • • • X n = X \ X 2 - - - Xj- \ y X X j • • • X n

(when 7 = 1, we assume that the word xxx2 • • • Xj_, is the empty word).
Since, by Result 4, for all s, t G S\U we have s, t G Sk for all positive integers

k, the result now follows.

REMARK 2. Proposition 4.1 can also be proved by appealing to [10, Theorem 1]
and Result 2.

The proof of Proposition 4.1 could be easily modified to give the following
corollaries. In Corollaries 4.3 and 4.4 bracketed statements are dual to the other
statements.

In results 4.2 to 4.7, U is any semigroup satisfying (2), and S is any semigroup
containing U properly and such that Doms(U) — S.

COROLLARY 4.2. / / (2) is nontrivial, then sxtx2 • • • xkt = sxjXj2 • • • Xjt for all
s, t G S\U, xx, x2,-.-,xk G S, and for any permutation j of the set (1 ,2 , . . . , k).

COROLLARY 4.3. / / /, ¥= 1 [iB ¥= n), then xyt = yxt [sxy - syx] for all x, y G 5
andt GS\U[s G S\U].

COROLLARY 4.4. / / / , ¥= 1 [/„ # n], then

xyx2 • • • xkt = xhxh • • • xht [sxxx2 •••xk = sxhxh • • • xJk],

for all xx, x2,... ,xk G S, t G S\U[s G S\U], and for any permutation j of the set

{1,2,..,,*}.
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PROPOSITION 4.5. / / /, ¥= 1 and either /„_, ¥= n — I or in ¥= n, then xyz — yxz
for all x,zGS andy E SW.

PROOF. Sincey £ 5\C/, we may let (1) be a zigzag of shortest possible length m
over U with value y. Then

xyz = xaoxiz

= aoxxiz (by Corollary 4.3, since i, ¥= 1 and x, £ S\U)
= ylalxx}z

= yxxaxxxz (by Corollary 4.4, since /, ^ 1 and xx E S\U)
= yxxa2x2z

= yxa2xx2z (by Corollary 4.4, since /, ¥= 1 and x2 G S\U)

= y2aixx2z = ••• =yma2m_lxxmz

= ymxa2m_ixmz (by Corollary 4.4, since ix ^ 1 and xm G S\U)

by Proposition 3.1 if *'„_, ¥= n — 1 and /„ = n since

l e r 1 , otherwise by Corollary 4.4 sinceym

= yxz,

as required.

We give a corollary to Proposition 4.5 and its dual.

COROLLARY 4.6. / / / , ¥= 1 andin ¥= n, then SyS^^ = SjSJ2shfor any sx, s2, s3 G S
with one or more being in SW, and for any permutation j of the set {1,2,3).

COROLLARY 4.7. Ifix¥=\ and either in_, =£ n — lorin¥=n, then

S\S\S2

for any sx, s2,...,sk G S such that sq G S^U for some q G {l,2,...,k — 1} and

for any permutation j of the set {1,2,..., k — 1}.

PROOF. We have
S\S2 • • • s<, • • • sk = -V2 •' • V I V I ' ' ' sk-\s

q
sk (by Proposition 4.5)

= S,S • • • 5, Si • • • S, SnSr.
J\ Jl Jl-\ Jl+\ Jk-\ 1 k

(where sq = sJf, by Corollary 4.4)

= S: s, • • • s, S.S/ • • • Sj sk (by Proposition 4.5)

= S/ Si • • • S/ i t as required.
J] Jl Jk-\ * ^
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5. Saturated permutative varieties

A variety °V admitting a nontrivial permutation identity is called permutative.

THEOREM 5.1. Let U be a permutative semigroup. Then U is saturated if U
satisfies an identity I such that (i) / is not a permutation identity, and (ii) at least one
side of I has no repeated variable.

PROOF. TO prove the theorem, we can assume without loss of generality, which
we prove below, that / has the form

(3) xlx2---xm = w(x1,x2,...,xm)

where \xj\w > 1 for / = l,2,...,m, and \Xj\w 3= 2 for some7 G { l , 2 , . . . , w } (\x\w

for any variable x is the number of occurrences of the variable x in the word w).

For if / is homotypical, as / is nonpermutative, / has to be of the form (3). So

let us assume next that / is not homotypical. Then / has one of the following three

forms:

(i) x , x 2 •••xm= / ( * „ x2,... ,xm, xm+l,... ,xm+k) w h e r e / i s some word in the

v a r i a b l e s x , , . . . ,xm+k such that k > 0, and | J C ( - ^ > 1, / = 1,2,...,m + k;

(ii) xxx2 • • • xm = / ( x , , x2,...,xm) where / is some word in the variables

xx,...,xm such that for some/ , j G {l,2,...,m}, \xt\f — 0 and I*, I/5* 1;

(m)xix2---xm=f(xl,...,xm,xm+l,...,xm+k), k>0, w h e r e / i s some word

in x , , x2,...,xm+k such that for some / G {l,2,...,m}, \xt\f- 0, and \xm+j\** 1

fory = \,...,k.

Now in case (i), by replacing the variables xm + 1 >. . . ,xm+k, if necessary, by x,
for somej G {1,2,. . . ,m), we immediately get an identity of the form (3).

In case (ii), lety G (1,2,. . . ,m} be such that Xj £ C ( / ) (the content of/) . Now
by replacing the variable Xj by xj we get that S satisfies the identity xxx2 • • • xm

= xxx2 • • • Xj_ixjxJ+i • • • xm (since the R.H.S. of / is independent of the choice
of the variable Xj) which is of the form (3) above.

Finally in the last case we can get an identity of the form (3) simply by
applying the techniques of the above two cases.

To prove the theorem let us now assume to the contrary that U is not saturated.
Therefore there exists a semigroup S containing U properly such that Doms(U)

LEMMA 5.2. For all a G U, x, y G S\U, and for some q > 2

xay = xaqy.

PROOF. Sincey G S\U, from Result 4, we have

y = axa2---amym
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for some>>m G S\Uand ax, a2,. ..,am £ U. Now

xay = xaaxa2---amym

= xala2 • • • (aaj) • • • amym (by Corollary 4.2)

= xw(ax,a2,...,aaj,...,am)ym

= xa"w(ax, a2,...,ap...,am)ym (by Corollary 4.2, where q =\xj\w s* 2)

= xa"axa2 • • • amym - xa"y, as required.

We give a corollary to the proof of Lemma 5.2.

COROLLARY 5.3. For all a & U, s,t G Sl and x, y G S\U, xsaty = xsaqty for

some q>2.

Now to complete the proof of Theorem 5.1, we take any d G S\U, and let (1)

be a zigzag for d of shortest possible length m over U. Then

d = j , a , X | = y\a\xx (by Result 3 and Lemma 5.2)

= yla?-ia2x2

^ lx2 (by Corollary 4.2)

= y2cii~]a3x2 (by Corollary 4.2)

= y2a1~]a%x2 (by Corollary 5.3)

l • • • * ! « - 1

(by Corollary 4.2, where w' = a\~2al~2 • • • a^'l,)

• • • a2m-2a\W'a2m- \Xm

• • a2m_2w'a2m_xxm (by Corollary 4.2)

= aoa2a4 • • • alm_2w'a2m G U,

a contradiction. This completes the proof of the theorem.

The next theorem characterizes all permutative varieties which are saturated,

and thus provides a generalization of Theorem 3.4 of [7] from commutative

varieties to permutative varieties.
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THEOREM 5.4. A permutative variety is saturated if and only if it admits an
identity I such that

(i) / is not a permutation identity, and
(ii) at least one side of I has no repeated variable.

PROOF. The 'if statement' of the theorem follows from Theorem 5.1. So it
remains only to show that any saturated permutative variety Thas to admit an
identity / of the above form. Now take any saturated permutative variety % and
suppose to the contrary that Tdoes not admit any identity / of the above form.
Therefore all the identities of Tare either permutation identities or of the type
whose both sides have repeated variables. Since the semigroup U of [2] is
commutative, it satisfies all identities of *Y by [2, Lemma 3], whence U G % As U
is not saturated, Tcannot be saturated, a contradiction. This completes the proof
of the theorem.

REMARK 3. P. M. Higgins has independently shown with a different technique
[3, Corollary to Theorem 19] that if a variety T admits an identity of the form
given in the statement of the Theorem 5.4 and a permutation identity (2) such
htat /, ¥= 1 and in ^ n, then °\fis saturated.

6. On applications of Proposition 3.1.

A semigroup S is said to be medial if it satisfies the normality identity (AT).
Below we give direct and short proofs of all the results of Putcha and Yaqub [10]
and strengthen them by reducing the number of factors that are needed in each
case.

PROPOSITION 6.1. Let S be a semigroup. Take any integers m > 0, p > 0, n > 2.
If S satisfies the permutation identity

x \ x i • • • xmyxy2 • • •ynzxz1 •••zp = xxx2 • • • xmytjh • • •yizlz2 • • • zp

where /, ¥= 1 and in ¥= n, then for all k > In, S also satisfies any permutation
identity of the form

••Z
P = x \ x i • • • xmyJlyh • • -yj/^i •••z

P

for any permutation j of the set {1,2,...,k).

PROOF. Since/, ¥= landin¥=n,xmyi,ynzlandyq_\yqforsomeqG {2,3,...,n}
are not subwords of xxx2 • • • xmyxy2 • • -ynzxz2 • • • zp. The proof now follows
from repeated applications of Proposition 3.1 to the word xxx2 •• •xmyiy2

• • •ykzlz2 • • • zp. This is so because we can commute any adjacent pair of >>,'s, by
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Proposition 3.1, if we have the following:
(i) m elements to the left of the pair and (n + p) to the right, or
(ii) (w + n) elements to the left of the pair and/? to the right, or
(iii) (w + q — 1) elements to the left and (n + p — q + 1) to the right.
Since k > 2w, at least one of the cases (i), (ii) and (iii) will always occur.

REMARK 4. Proposition 6.1 implies Lemma 1 and Lemma 2 of [10], and gives a
much smaller value for k than that given in [10].

COROLLARY 6.2. Let S be any semigroup satisfying (2) with n s» 3 and with ix ¥= 1
and in ^ « . Then for all integers k > In, S satisfies every permutation identity in k
variables.

The following proposition is easily proved from Proposition 3.1.

PROPOSITION 6.3. Let S be any semigroup satisfying (2) with n > 3. Then for each
j G { 2 , 3 , . . . , n} such that Xj_ xXj is not a subword ofx^x^ • • • xt, for all m >_/ — 1,
p > n — j + 1 and for all u G Sm, v G Sp we have uxxx2v = ux2xYv for all
xx, x 2 G S. In particular SK is medial for all k > max(/ — \,n— j + 1).

REMARK 5. As corollaries to Corollary 6.2 and Proposition 6.3, we get Theorem
2 and 1 of [10] respectively.

Let £2 be any class of semigroups. Let P , = P2 and Qx = Q2 be permutation
identities. Then Px = P2 and Qx = Q2 are said to be equivalent with respect to fl if
every semigroup of fl satisfying Px — P2 also satisfies Qx — Q2 and vice-versa.

A semigroup S is globally idempotent if for every a G S there exist x, y G S
such that a = xy, that is, if S = S2.

THEOREM 6.4. Let Q be the class of globally idempotent semigroups. Let

(4) xxx2---xn = xixh---xia

be any nontrivialpermutation identity. Then (4) is equivalent with respect to S to
(i) commutativity if ix "¥= 1 and in ¥= n,
(ii) left normality if ix = 1 and in ¥= n,
(iii) right normality ifix ¥^ 1 and in = n,
(iv) normality if ix — 1 and in = n.

PROOF. Suppose that a globally idempotent semigroup S satisfies (4).
(i) Take any x,y G S. Since 5 is globally idempotent, for any m > 1 we have

y — ab for some a, b G Sm.
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Now by Proposition 3.1, we have

xy = xab

= axb (since/, =£ I)

= abx (since in¥= n)
= yx.

Hence S satisfies commutativity.
(ii) Take any x, y, z G S. Since x G S", and in ¥= n, by Proposition 3.1, we

have xyz = xzy.
(iii) This is the dual statement of statement (ii).
(iv) Take any x, y, z, w G 5. Since S is globally idempotent x, y, z,w G S".

Now, since n > max(/ — 1, n — j + 1) for anyy such that Xj_ xXj is not a subword
of Xj Xj • • • xt, from Proposition 6.2 we have that xyzw = xzyw.

The converse implications are obvious.

REMARK 6. As a corollary to Theorem 6.4, we have Theorem 6 of Yamada [11].
Since commutativity, left normality, right normality and normality are nonequiva-
lent to each other with respect to the class of bands, they are also nonequivalent
to each other with respect to the class of globally idempotent semigroups.
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