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ON THE HOMOLOGY
OF FINITE ABELIAN COVERINGS OF LINKS

J. A. HILLMAN AND M. SAKUMA

ABSTRACT.  Let A be a finite abelian group and M be a branched cover of an
homology 3-sphere, branched over a link L, with covering group A. We show that
H1(M; Z[1/|A]]) is determined as a Z[1/|A|][A]-module by the Alexander ideals of L
and certainideal classinvariants.

Let L: uS' — X be a u-component link in an homology 3-sphere . The exterior of
LisX(L) = Z — N(L), where N(L) is an open regular neighbourhood of the image of
L, and the group of L is7L = m(X(L)). Given an epimorphism ¢: 7L — A, we shall
let X,(L) denote the corresponding covering space of X(L); if A is finite My(L) shall
denote the corresponding branched cover of %, branched over L. (We shall henceforth
assume that A is abelian). The homology groups of finite cyclic covering spaces were
among the first invariants used to distinguish knots, and computing these groups for
A abelian has remained a problem of continuing interest. In [Sa95] the second author
gave precise formulae for the (first) Betti numbers of X, (L) and My(L). The formulae
involved the nullities of intermediate infinite cyclic coverings of sublinks, and thusthese
Betti numbers are computable from the Alexander ideals of L. In the same paper there
are also estimates for the order of the torsion subgroups, which are precise only for very
special cases. Here we shall show that if we extend coefficientsto invert |A| (the order of
A) then these homology groups are determined as modules by the Alexander ideals of L,
together with certain Steinitz-Fox-Smythe ideal class invariants. In particular, we may
determine the part of the torsion subgroups of order coprime to |A| from the Alexander
ideals of L. In the final section we shall consider cyclic branched covers of links, and
we shall give examples showing that in general the Alexander polynomials alone do not
determine the full torsion subgroup.

1. Localization away from theorder of A.  Given asubring R of thefield of ratio-
nal numbersQ, let RAm = Ry, t71, ..., tm, t1] and let e: RAy — Rbethe augmentation
homomorphism, determined by «(tj) = 1for all i. (If R = Zwewrite A, rather than ZAn,
and if m = 1 we drop the subscript). If M is afinitely presentable RAy,-module we shall
let A;(M) denote the greatest common divisor of the elements of itsi-th elementary ideal
Ei(M). Let ¢, beafixed primitive n-th root of unity, with minimal polynomial 6, € A. If
x:A — S'isacharacter of finite order nthen R, = R[¢y] = RA/(6n) shall denote the
ring of algebraic numbers generated by R and the values of .
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If ¢:7L — A is an epimorphism H.(X,(L); R) shall be considered as a module
over R[A], and tensor products shall be taken over this ring, unless otherwise indicated.
The Alexander module of the link L is the A,-module A(L) = H1(Xa(L),%; Z), where
a: L — Z" is the abelianization and * is the preimage of a basepoint x € X(L) in the
maximal abelian covering space X, (L). Weshall alsolet L, denotethe sublink of L whose
components have meridians mapped nontrivialy by ¢. (Note that if ¢ is trivial then L,
isempty and X(L,) = Z).

In the next four lemmas we shall assume that A is a finite abelian group and that
R=Z[1/|Al].

LEMMA 1. Let P bea set of characters x: A — St such that every subgroup B < A
with A/B cyclic is the kernel of exactly one character in P. Then RIA] & @, p R,.

PROOF. Foreachy € Plete, = (|A))"1Zx/(a)a, wherethe sumrunsoveral a € A
and all characters y’ with Ker y’ = Ker x. Thenthee, are mutually orthogonal idempo-
tentsand 3, cp e, = 1. n

This lemma correspondsto Lemma 9.2 of [Sa95].

LEMMA 2. Let y: A — S bea character. Then
(i) Hi(X:(1L):Z) @R, 2 Hy(X\4(L); Z) @ Ry;
(i) Hi(My(L);Z) @ R, 2 H1(My(L\0): Z) ©R,.

Proor. Let C, bethesingular chain complex for X,(L), considered as acomplex of
free Z[A]-modules. Then C, ® Z[A/ ker x] isthe singular chain complex for X, ,(L) and
C.®R, = (C, ® Z[A/ kerx]) ® R,. Since R, isadirect summand of alocalization of
Z[A] itisaflat Z[A]-module, and so (i) follows.

The second assertion follows by use of the transfer. (See Chapter 111.2 of [Br]). ]

This lemma correspondsto step 1 of the proof of Theorem 8.1 of [Sa95].

LEMMA 3. Let x: A — St bea character. Then

Hi(Myo(L0)i Z) @ R, 2 Hy(X\4(L\0): Z) @ R,.

PROOF.  The homomorphism from Hy (X, 4(L,4); Z) @ R, to Hi(M,4(L\); Z) ® R,
induced by theinclusion of X, 4(L,4) into M, 4(L, ) isan epimorphism, with kernel gen-
erated by lifts of multiples of meridians. Since each meridian of L, , hasnontrivial image
under x ¢ each such generator of this kernel is annihilated by t4 — 1, for some proper di-
visor d of the order of . But the images of such termsin R, are invertible, and so the
kernel isO. ]

Thisisessentially the argument of Section 11 of [Sa95].

LEMMA 4. Let x:A — S' be a character of order n(x), and let X: 7L — Z be an
epimorphismlifting x ¢. Then

(i) Hi(XL);R) 2AL) © R

(i) (Hl(xx,(,f)(L); 7)® R\) SR 2 AL) @R, = (AL) @5 RA) /) (AL) @5 RA),
ifx # 1,
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(i) A(L)®5 RA = Hl(Xi(L); R) @ RA. Moreover H1(X; (L); R) hasa square presen-
tation matrix asan RA-moduleand % (Ex(L)) isa principal ideal, generatedby % (As(L))
if = Land by (t — DX (Ay(L)) if p > 1.

Proor. The link exterior X(L) is homotopy equivalent to a finite 2-complex with
one 0-cell and Euler characteristic 0. Hence the relative homology of covering spaces
of the pair (X(L), *) may be computed from chain complexes concentrated in degrees 1
and 2, and so Hy (X, (L), % R) = A(L) @ R[A] and H1 (X; (L), %; R) = A(L) ©® RA (where
* isthe preimage of * in X,(L) or X;(L), respectively). Therefore the first two assertions
and thefirst part of (iii) follow from the exact sequencesof homology for such covering
spaces, together with the facts that R, is aflat Z[A]-module and that R® R, = O unless
x =1

The corresponding cellular chain complex for X (L) (with coefficients R) is a free
RA-chain complex C, with Cy = RA, C; = RA%®! and C, = RA?, for somea > 0.
SinceImd; = Kere = (t — 1) is free of rank 1 and projective RA modules are free
Kero; is free of rank a, and so Hl(Xi(L); R) has a square presentation matrix. Since

$(Ex(L) = Ea(AL) @5 RA) = Eo(Hl(xi(L); R)) it is principal.

We may also see this directly. If 4 = 1 then Ex(L) = (A1(L)), and s0 % (Ea(L)) =
(;}(Al(l_))). If u > Lthen Ex(L) = (t — L,...,t, — 1)(Ay(L)). (See Theorem IV.3
of [Hi]). We may assume that ¥ maps the i-th meridian to d; times a generator of Z.

Since X is an epimorphism the highest common factor (ds,...,d,) must be 1 and so
(% —1),...,(t% — 1)) = (t—1), asidealsin A. Hence {(Ex(L)) = ((t* —1),...,

(t% — 1)) ()}(Al(L))) — (t— 1)()2(A1(L))>. (Note also that if §(21(L)) # O then
%(Ex(L)) being principal implies that Hi(X;(L); R) has a square presentation matrix,
by Theorem 111.9 of [Hi]). ]

It follows from these lemmasthat H (X,(L); Z[1/|A[]) and Ha(M,(L); Z[1/|A]]) are
determined as modules over Z[1/|AJ][A] by the homology of cyclic covers associated
with the characters x ¢ and with coefficients Z[ x (A), 1/|Al], and these are essentially di-
rect summands of quotients of the Alexander module. The coefficient ringsare Dedekind
domains, and the module theory of such ringsis well understood.

LEMMA 5. Let D be a Dedekind domain and M a finitely generated D-module, with
D-torsion submodule T. Then M = T & (M/T) and M/T is projective of rank r =
min{j|Ej(M) # 0}. 1f r > 0thenM /T =~ D""1 & A(M/T), and A,(M/T) is determined
by the Seinitz-Fox-Smythe row ideal class derived from any presentation matrix for M.
Thetorsion submodule T is determined by the elementary ideals of M.

ProOOF. Since M/T is torsion free it is projective, by the remark following
Lemmal.5of [Mi],andsoM = T @& (M/T). Therank of M /T isr = min{j|§;(M/T) #
0}.1f r > 0then(M/T) = D" & J for someideal J of D, by Theorem 1.6 of [Mi]. Itis
clear that J = A(M/T) and so the ideal class of J is just the Steinitz-Fox-Smythe row
classinvariant of M, by Theorem I11.12 of [Hi].
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If Qisafinitely generated projective complement to M /T with (M/T) & Q = D™,
say, then E;(M/T)Es(Q) = (1), andso E;(M/T) = (1) for i > r. Since Ej(M) isthe ideal
generated by (Jo<j<i Ej(T)Ei—j(M/T), it follows that E;(M) = Ofori <r and E;+j(M) =
E;(T) forj > 0. Now since T is a finitely generated torsion D-module its annihilator
Ann(T) is nonzero, and so is contained in only finitely many maximal ideals {m|i €
I}, by Proposition 1.3.6 of [Se]. Thelocalization Dg with respect to the multiplicatively
closed set S = D — |Jig; m isaPID, sinceit is a Dedekind domain with only finitely
many maximal ideals. (See the Corollary to Proposition 1.3.7 of [Se]). Hence T = Ts
is determined as an Ds-module by its elementary ideals Ei(Ts) = E;i(T)s, which are
generated by the images of the elementary idealsof H in Ds. ]

REMARK. Any ideal in a Dedekind domain may be generated by at most two ele-
ments. (This follows easily from Lemma 1.10 of [Mi]).

LEMMA 6. Let R bea subring of Q and let H be a finitely generated RA-module.
ThenH = H/6nH is determined as a module by the elementary ideals of H and an ideal
classinvariant. In particular, the torsion subgroup T hasorder |T| = ‘R/\/(Er(H),Hn)’,
wherer = min{j|E (H) ¢ (fn)}, and so T/ is divisiblein Rby |Res(A(H), 6)|.

ProOOF. Thering RA/(0n) = R[¢(n] isaDedekind domain, by Theorem 1.4 of [Mi].
The quotient H is afinitely generated R[¢,]-module, of rank r = mi n{j|IE(H) Z (6n)},
and its (Z-)torsion subgroup T is aso its R[¢y]-torsion submodule. Since the elementary
ideals of H are just the images of the elementary ideals of H in R[¢,] the first assertion
follows from Lemma 5.

Let S= R[¢n] — Ui m be the complement of the maximal ideals dividing Ann(T).
Since Ts and R[¢q]s/ Eo(Ts) are R¢n]s-torsion modules they have finite composition se-
ries. The simple R[¢,]s-modules are the quotients R[¢n]s/mis = R[¢a] /my (for i € 1) and
the number of simple factors isomorphic to a given simple module R[¢,]s/ms in any
such composition series for R[¢n]s/Eo(Ts) is the same as for Ts. Hence |T| = |Tg| =
IRG]s/Eo(Ts)| = RIG] /Eo(T)] = [RA/ (Ex(H), én)|.

Thefinal observationis clear, since (E;(H), 6n) C (Ar(H), ¢n). .

If H isa/A-modulewith asquare presentation matrix P and 6, doesnot divide Ag(H) =
detPthenr = OandH/6,H = T.Inthiscase |H/6,H| = [Res(Ao(H), 6n)| = [MAo(w)],
where the product is taken over al primitive n-th roots of unity w.

THEOREM. Let L bea p-component link in an homology 3-sphere > and let ¢: 7L —
A be an epimorphismto a finite abelian group. Let R = Z[1/|A|]. Then
(i) Ha(Xo(L): Z[1/|All) = @\ep Hi(X\0(L): Z) @Ry
(i) Hi(My(L); Z[1/|A]) & @, ep H1(X\6(Ly0): Z) @ R,
In particular, Hy (X,(L); Z[1/|A[]) and H1(M,(L); Z[1/|A]]) are determined as mod-
ulesover Z[1/|AJ][A] by the Alexander ideals of L together with the Steinitz-Fox-Smythe
row classinvariants correspondingto characters x € P suchthat R, isnota PID.

PrROOF. The direct sum decompositions follow from Lemmas 1-3, and the further
assertions then follow from Lemmas 4 and 6. ]
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Let null (L; x) = max{d | x¢(E4(L)) = 0} and let E(L; x) = x&(Enuri+a(L))-
(Thus E(L; x) isanidedl in thering of cyclotomic integers Z,). Let ¢(n) = [Q(é) @ Q]
be Euler’s totient function.

COROLLARY [SA95]. (i) B1(Xs(L)) = Syep e (n(x))null (L; x) and B1(My(L)) =
Z,\ epP @(n(X)) null (L)\¢; X):

(i) Up to powers of primes dividing |A| we have |Tor(H1(>Q5(L);Z)>| =
I,ep |Z, /E(L; x)| and ‘Tor(Hl(Mq)(L);Z))‘ = Il,ep |Z, /E(L,4; X)|- Moreover if x has
order n and X:7L — Z is an epimorphism lifting x¢ then |Z, /E(L;x)| =
IA/(R(E(L; 1), 0n)| and is divisible by |Res(>”<(Anu” GoaL) 6n)

Note in particular that Hi (M,(L); Z) isfinite if and only if x¢(A1(L,,)) # 0inQ,,
foral x € P.

The aboveargument doesnot work for integral homology, since Z[ A] doesnot decom-
pose as a direct sum of Dedekind domains. However the natural homomorphism from
Z[A] to @, cp Z, isinjective, and its cokernel F is a finite Z[A]-module with exponent
dividing |A|. Thelong exact sequence of homology derived from the coefficient module
sequence 0 — Z[A] — @, cp Z, — F — 0 givesrise to the sequence

- Ha(X(WL); F) — Hi (X, (L) Z) — Q}PHl(XW(L);Z) ®Z, — Hi(X(L);F) — 0.
XE

Mayberry and Murasugi give a formula for the order of Hy(M,(L); Z), when it is
finite, without localization. (See Theorem 10.1 of [MM]). In our termsthisformulareads
approximately asfollows: [H1(M,(L); Z)| = D(¢) IT,cp Res(i(Al(quﬁ)),Gn(/\O , Where
D(9) is an integer defined in [MM] which depends only on the homomorphism from
Z" = (rL)® to Ainduced by ¢, and n(x) isthe order of .

In[Sa82] it is shown that the order of the cokernel of the natural homomorphism from
Hi(Xx(L); Z) toH1(M,(L); Z) isR(¢) = Mny /|A|, wheren; istheorder of theimage (t)
of thei-th meridian. How is this number related to the term D(¢) of [MM]?

2. Cyclicbranched coverings. Inthissectionwe shall assumethat A= Z/nZ and
that ¢ maps each meridian of L to a generator of A. (In the terminology of [MM] the
covering is meridian cyclic or £-cyclic).

Let Jﬁ:wL — Z be an epimorphism lifting ¢, and let v = (t" — 1)/(t — 1). The
coefficient module sequence0 — Z — A/(t" — 1) — A/(v) — O givesrise to an
exact sequence Hy (X(L); Z) — Hy(X,(L); Z) — Hi(X(L); A/ (v)) — O, where the first
map is the transfer. Since ¢ maps each meridian of L to a generator of A the image of
the transfer is the submodule generated by the lifts of the n-th powers of the meridians
and so Hy(M,(L); Z) = Hiy(X(L); A/(v)). On the other hand the latter group may be
described as a quotient of the homology of X;)(L), viathe short exact sequence of chain
complexes0 — C, — C, — C, /v — 0, where C, is the singular chain complex for
X;(L). Hence Hi(My(L); Z) = Hy(X;(L); Z) /vH1(X;(L); Z). It isfinite if and only if

https://doi.org/10.4153/CMB-1997-037-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-037-9

314 J. A.HILLMAN AND M. SAKUMA

|Res($s(Al(L)),y)| # 0, in which case it has order |R$($(A1(L)),y) (if w = 1) or

n|Res<<}(A1(L)),V) (if © > 1). (See[Sa79], [Sa81]. Note also that these formulae are
special cases of the formula of [MM], in the light of their Theorem 4.5).

Supposethat ¢(Ay(L)) # 0 and let H be the image of Hy(X,(L); Z) in Hi(X;(L); Z).
The cokernel of theinclusion of H into Hy (X;(L); Z) isZ*~* = (A/(t— 1))”7l (by an
iterated Wang sequence argument). HenceH 1(M¢(L); Z) isanextensionof (Z/nz)"~! =
(N (t—1, 1/))”_l by H/vH. Since Hy(X;(L); Z) has a square presentation matrix with
nonzero determinant it is a torsion A-module of projective dimension < 1. HenceH is
also atorsion A-module of projective dimension < 1 and so also has a square presen-
tation matrix with nonzero determinant, by Theorem 111.9 of [Hi]. If Vq:) (L) is the latter
determinant then V5 (L) = (N;S(Al(L))/(t — 1)1 by Lemmalll.5of [Hi]. Ifn= p'isa
prime power then Res(V;(L),v) = E(V&(L))pr_p modulo (p), and so H /vH isfinite of
order primeto p if (s(V&(L)),p) = 1. Moreover if s; < S, then (s, ) = (Op2, P).-
HenceH /vH =~ &, ,(H/60p=H) and Lemma5 appliesto give the structure of these sum-
mands.

If » maps all meridians to the same generator of A then 55 is (up to sign) the total
linking number homomorphism and V(L) is the Hosokawa polynomial of L. (In theter-
minology of [MM] the covering is strictly cyclic). In this case the formula for the order
of Hy(My(L); Z) wasfirst givenin [Fo] for knotsin S*, and in [HK] for linksin S°.

If Lisaknot (i.e., u = 1) thenH = A(L) isthe Alexander moduleof L, V(L) = A¢(L)
and £(V(L)) = £1, and Hy(X,(L); Z) = Hi(My(L); Z) @ Z. If we specialize further
to the case when n = p is a prime then Hy(M,(L); Z) is a finite Z[¢,]-module of order
primetop. Whenp = 2itiseasily seenthat any finite group of odd order may berealised.
(Cyclic groupsof odd order may berealized by knotswith cyclic knot module; thegeneral
case follows on taking connected sums). The modules that arise from knots in this way
when p is odd have been determined in [Da]. His description involves consideration of
the linking pairing on the torsion of Hl(M(,;(L); Z), on which the covering group acts
isometrically, and triviality of an ideal class invariant of the torsion, deriving from the
fact that M, (L) is homotopy equivalent to afinite complex on which A actscellularly. He
givesalso criteriafor thecase . > 1 andn = p an odd prime, modulo p-primary torsion;
here theideal classinvariant for the torsion may be nontrivial, but is determined by the
Steinitz-Fox-Smythe invariant for the torsion-free part.

If the first homology of such a cyclic branched cover of S® is finite then its order is
determined by the Alexander polynomial of the branch set. However the polynomials
need not determine the structure. For example, the Alexander ideals for the knots 6,
and 945 are E1(61) = E1(96) = (2t2 — 5t +2), Ex(61) = (1), E2(946) = (3,1 + 1)
and Ej(61) = Ej(946) = (1) for al j > 3. Hence these knots each have first Alexander
polynomial 2t — 5t + 2 and higher Alexander polynomials 1, but the first homology
groups of the 2-fold branched coversare Z/9Z and (Z/ 3Z)?, respectively.

https://doi.org/10.4153/CMB-1997-037-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-037-9

HOMOLOGY OF FINITE ABELIAN COVERINGS 315

Weber has given examplesto show that in general the Alexander polynomialsalonedo
not even determinethe prime divisors of the order of thetorsion of Hl(Mn(K); Z[1/ n]) Jif
thisgroup isinfinite [We]. It remains open to what extent the Alexander ideal s determine
the torsion.
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