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AN IRREDUCIBLE REPRESENTATION OF sl(2) 

BY 

F. W. LEMIRE(1) 

In a recent paper [1] MM. Arnal and Pinczon have classified all complex 
irreducible representations (/>, V) of sl(2) having the property (P) that there exists 
a non-zero element x G sl(2) such that p(x) admits an eigenvalue. It is the purpose 
of this note to demonstrate, by example, that there exist irreducible representa­
tions of sl(2) which do not have property (P). As usual, we consider sl(2) embedded 
in its universal enveloping algebra U and identify the representations of sl(2) and U. 

By a Car tan basis of sl(2), we shall mean a linear basis {7, X, H} satisfying 
[X, Y]=H, [H,X]=2X and [H, 7 ] = -2Y. If {Y',X',H'} is a second Cartan 
basis of sl(2), we have that H^oLX'+fiY'+yH' where oc£+y2=l. The corre­
sponding expressions for the elements X and Y in terms of the basis {7 ' , X\ H'} 
must be separated into three types. First, if /MO, then 

Y = / c ^ Y ' - C y - l ) 2 * ' + # y - l ) f f ' } 
( 1 ) X = ka{pzY'-(y+l)*x'+P(y+l)H'} 

where k±k2= — 1/4/S2 

Secondly, if /?=0 and y = l , then 

X = k2X 
where fc^ = 1 

Finally, if /9=0 and ̂ = — 1 then 

Y = fciX' 

(3) x = fc2{r-^2r+^j 
where Z : ^ = 1 

Now fix one Cartan basis { 7, X, H} of sl(2) and let M denote a maximal left 
ideal of U containing Y2+X— 1. Such a maximal left ideal exists since Y2+X— 1 
is not invertible in £/. We claim that the left regular irreducible representation of 
sl(2) on U modulo M is not equivalent to any irreducible representation of sl(2) 
having property (P). To prove this, it suffices to show that for any irreducible 
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representation (/>, V) of sl(2) having property (P), p(Y2+X— 1) has zero kernel 
since, if UjM is equivalent to (/>, V) we would have ker p(Y2+X—1)^(0}. Using 
the classification of [1] adapted to our notation, we divide the irreducible repre­
sentations of sl(2) having property (P) into three cases. 

CASE I. Suppose (/>, V) is a finite dimensional, say dim V=m+1, irreducible 
representations of sl(2). Then V admits a basis {v0,.. . , vm} such that 

pifyvt = (m—lfjVi for all i = 0, 1, . . . , m 

/>(!>, = t>i+i for i = 0, 1 , . . . , m - 1 

0 for i = m 

p(X)vt = z(m—(j —l)X_i for i = 0, 1, 2, . . . , m 

Take f=A0f0+ • • • +Amvm e ker p(Y2+X— 1) then by direct computation 

0 = / ) (y 2 +X- l ) t ; = (mA1-A0K+(2(m~lM2-A1)z;1+- • .+(Aw_2-AJi;m 

Solving this system of equations, we find that /l,=0 for all / and hence 
ker p(Y2+X-l)={0}. 

CASE II. Suppose (/>, V) is an infinite dimensional irreducible representation of 
sl(2) for which there exists a Cartan basis {Y'9 X\ H'} with p(H') admitting an 
eigenvalue. Without loss of generality, we may assume the eigenvalues of p(H') 
have no lower bound (they may or may not have an upper bound) and V admits 
a basis {• • • v_±, v0, vl9 . . .} of eigenvectors of p(H') with 

p(jff')i>i = (a-2*X- for all i 

p(Y)vi = vi+1 for all i 

p(X )v{ = non zero multiple of vt_x for i not minimum 

0 for i minimum index. 

Let v=Aiv^4-terms with lower index be an element of ker p(7 2+Z— 1). Assuming 
that the Cartan bases {Y, X, H} and {Y\ X', H'} are related as in (1), we have 

p(Y2+X-l) = kl^p{Yrf+terms involving p ( r x ' ) , p(X)\ etc. 

Then p(Y2+X— l)v contains a non-zero multiple of vi+2. Thus ker p(Y2-\-X— 1) = 
{0}. If the Cartan bases are related as in (2) or (3), we can, in an analogous manner, 
verify that ker p(Y2+X-l) = {0}. 

CASE III. Finally, suppose (p, V) is an irreducible representation of sl(2) for 
which there exists a Cartan basis {Y\ X', H'} with p(X') admitting an eigenvalue 
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1. Then there exists a basis {vQ, vl9 v2,...} of v with 

p(H )vt = vi+1 for all i 

ptx'fa = {p(H)-2)\ for all i 

pÇï'X = (p(H,)+2)Xyt;o"-it;1-ii;2) for all i 

(y is an arbitrary scalar). 

Again let v=A0vQ+ • • • +Anvn belong in the kernel of p( Y2+X— 1). Assuming that 
the Cartan bases {Y, X, H) and {Y'9X\ H'} are related as in (1), we have 

p(Y2+X-l) = kîP*p(Y)2+terms involving p(YX\ p(X)\ etc. 

Then p(Y2+X—l)v contains a non-zero multiple of vn+4: and we conclude that 
ker p(Y2+X—1)={0}. If the Cartan bases are related as in (2) or (3) by similar 
considerations, we verify that ker p(Y2+X—l)={0}. 

Thus for all irreducible representations (p, V) having property (P) we have 
ker p(Y2+X—l)={0} and hence the constructed irreducible representation does 
not have property (P). 

REMARK. I have recently learned that MM. Arnal and Pinczon [C.R. Acad. Sc. 
Paris, t274 (1972) pp. 248-250] have also constructed irreducible representations 
of sl(2) which do not have property (P). Their construction arises from a study of 
the action of the enveloping algebra automorphisms on the equivalence classes of 
irreducible representations. 
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