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Cockcroft Properties of Thompson’s Group
W. A. Bogley, N. D. Gilbert and James Howie

Abstract. In a study of the word problem for groups, R. J. Thompson considered a certain group F of self-
homeomorphisms of the Cantor set and showed, among other things, that F is finitely presented. Using
results of K. S. Brown and R. Geoghegan, M. N. Dyer showed that F is the fundamental group of a finite
two-complex Z2 having Euler characteristic one and which is Cockcroft, in the sense that each map of the two-
sphere into Z2 is homologically trivial. We show that no proper covering complex of Z2 is Cockcroft. A general
result on Cockcroft properties implies that no proper regular covering complex of any finite two-complex with
fundamental group F is Cockcroft.

1 Introduction

Thompson’s group F is defined by the presentation

P = (x0, x1, x2, · · · : x−1
j+1x−1

i x jxi, 0 ≤ i < j ∈ Z).

For a discussion of this group and of its discovery by Thompson in 1965, see [Bri], [Bro],
[BG] and the references cited there. The group F is torsion-free [BG, Corollary 1.5] and the
derived subgroup [F, F] is simple [T, Corollary 1.9], [Bro, Theorem 4.16]. Brown and Ge-
oghegan [BG, Corollary 4.2] constructed an infinite-dimensional cubical aspherical CW
complex Y with fundamental group F and showed that Y has the homotopy type of a
CW complex Z with just two cells in each positive dimension. We refer to the complex
Y as the Brown-Geoghegan complex. Using the complex Z, Brown and Geoghegan [BG,
Theorem 7.1] computed the homology of F with trivial integer coefficients, finding that
Hn(F) = Z ⊕ Z for each positive integer n. This provided the first known example of a
torsion-free group of type FP∞ and with infinite cohomological dimension.

It turns out [BG] that the two-skeleton Z2 of the complex Z is modeled on the following
two-generator two-relator presentation for F.

Q = (x0, x1 : [xx0
1 , x0x−1

1 ], [xx0x1
1 , x1x−x0

1 ]).

Here, gh = h−1gh, g−h = h−1g−1h = (gh)−1, and [g, h] = g−1gh = h−gh. A second finite
presentation for Thompson’s group [Bri], [BG] is the following.

Q ′ = (x0, x1 : [xx0
1 , x0x−1

1 ], [x
x2

0
1 , x1x−1

0 ]).

As we shall see, the two-complexes K(Q) and K(Q ′) that model these presentations have the
same simple homotopy type. In fact, these two-complexes are related by three-deforma-
tions. Our immediate objective is to study the second homotopy module of finite two-
complexes with fundamental group F. Our main result on Thompson’s group can be for-
mulated as follows.
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Theorem 1.1 Let K(Q) be the two-dimensional cellular model of the finite presentation Q

for Thompson’s group F.

1. Each map of the two-sphere into K(Q) is homologically trivial.
2. Each proper covering complex of K(Q) supports a map of the two-sphere that is homologi-

cally nontrivial.

In the terminology of [GH], the theorem states that K(Q) is absolutely Cockcroft. Cock-
croft properties (see Section 2 below) are generalisations of asphericity for 2-complexes,
and arise naturally in the context of Whitehead’s asphericity question [W].

These results obviously apply to any two-complex having the same homotopy type as
K(Q). The first conclusion of the Theorem is due to M. N. Dyer [D]; see Lemma 2.1 below.
Our proof of the second statement in the Theorem begins with an explicit description of
the three-skeleton Y 3 of the Brown-Geoghegan complex. This description is given in Sec-
tion 3. In Section 4, we follow the proof of Theorem 5.3 in [BG] to show how the finite
two-complex K(Q) is obtained from the model of a finite subpresentation of P. Computa-
tions in second homotopy modules will be carried out in the cellular chain complex of the
universal covering Ỹ of Y , and in certain subcomplexes. We view these as chain complexes
of right ZF-modules.

In Section 2, we describe the Cockcroft properties of a given two-complex K and their
relationship to the Fox ideal, which is a two-sided ideal in the integral group ring Zπ1(K) of
the fundamental group. These topics are developed in detail in [D], [GH]. In Section 5 the
analysis of Section 4 is used to describe generators for the Fox ideal of a certain finite two-
complex with fundamental group F. The proof of Theorem 1.1 is completed in Section 6.
The paper concludes in Section 7 with a result on the invariance of Cockcroft properties for
two-complexes with fixed fundamental group and Euler characteristic. Using Theorem 1.1,
this invariance result yields the following Corollary.

Corollary 1.2 Suppose that L is a finite connected two-complex with Euler characteristic one
and fundamental group isomorphic to Thompson’s group F.

1. Each map of the two-sphere into L is homologically trivial.
2. Each proper regular covering complex of L supports a map of the two-sphere that is homo-

logically nontrivial.

Acknowledgements We are grateful to the referee for some useful comments. W. A. Bog-
ley would like to thank the Department of Mathematics at Heriot-Watt University, Ed-
inburgh, for its gracious hospitality while this work was in progress. Bogley was sup-
ported by a U. K. Engineering and Physical Sciences Research Council Visiting Fellowship
(GR/L49932).

2 Cockcroft Properties and the Fox Ideal

Consider the finite connected two-complex K(Q) that is modeled on the finite presentation
Q for Thompson’s group F. Our study of π2

(
K(Q)

)
begins with the following result of

M. N. Dyer, which relies on the homology calculations of [BG].
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Lemma 2.1 ([D]) Each map of the two-sphere into K(Q) is homologically trivial. That is,
the Hurewicz homomorphism h : π2

(
K(Q)

)
→ H2

(
K(Q)

)
is trivial.

Proof Since both of the relators in Q are commutators, the second homology of K(Q) is free
abelian of rank two: H2

(
K(Q)

)
∼= Z ⊕ Z. The Brown-Geoghegan homology calculations

for F provide that H2(F) is also free abelian of rank two. Since π1

(
K(Q)

)
∼= F, the exact

Hopf sequence

π2

(
K(Q)

) h
→ H2

(
K(Q)

)
→ H2(F)→ 0

reveals that the Hurewicz map h is trivial.

A connected two-dimensional CW complex K is Cockcroft if each map of the two-sphere
into K is homologically trivial. For a subgroup H ≤ π1(K), the two-complex K is H-
Cockcroft if the covering complex of K that corresponds to H is Cockcroft. In this case, we
also say that H is a Cockcroft subgroup of π1(K). The set of Cockcroft subgroups of π1(K)
is denoted by c(K):

c(K) = {H ≤ π1(K) : K is H-Cockcroft}.

This set is partially ordered by inclusion and is closed under conjugation by elements of
π1(K). A fundamental result due independently to Harlander [H] and to Gilbert and
Howie [GH] provides that the partially ordered set c(K) has minimal elements. The two-
complex K is absolutely Cockcroft if c(K) consists of π1(K) alone, that is, if K is Cockcroft
and no proper covering complex of K is Cockcroft. Theorem 1.1 therefore states that the
two-complex K(Q) is absolutely Cockcroft. Other known examples of absolutely Cockcroft
two-complexes [GH] include all two-complexes with finite fundamental group and Euler
characteristic one and all two-spines of closed orientable aspherical three-manifolds. At the
other extreme, an aspherical 2-complex K is H-Cockcroft for all subgroups H of π1(K). In
between these two extremes, Cockcroft behaviour can be quite complicated, as illustrated
for example in [P].

For a connected two-complex K with universal covering p : K̃ → K, a choice of base-
point ∗ ∈ K̃ determines an embedding of the second homotopy module π2(K) in the free
right Zπ1(K)-module C2(K̃) of two-dimensional cellular chains in K̃.

π2(K) ∼= π2(K̃) ∼= H2(K̃) = ker
(
C2(K̃)

∂2−→ C1(K̃)
)
≤ C2(K̃).

The chain module C2(K̃) is the free right Zπ1(K)-module with basis determined by a set of
basic lifts of the two-cells of K to the covering complex K̃. The Fox ideal F(K) of K is the
two-sided ideal in the group ring Zπ1(K) that is generated by the Zπ1(K)-coefficients that
appear when elements of π2(K) are expressed in terms of this free basis for C2(K̃). The Fox
ideal is independent of the choice of basis for C2(K̃), and of the choice of basepoints used
to identify π2(K) in C2(K̃). Clearly, the Fox ideal is generated by the Zπ1(K)-coefficients
that arise from any chosen set of Zπ1(K)-module generators for π2(K). See [D], [GH]. We
will rely on the following relationship between Cockcroft properties and the Fox ideal.

Lemma 2.2 ([D], [GH]) Let K be a connected two-complex and let H be a subgroup of the
fundamental group π1(K). The two-complex K is H-Cockcroft if and only the the Fox ideal
F(K) is contained in the left ideal Zπ1(K) · (H − 1) of the integral group ring Zπ1(K).
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Figure 1: The three-cell (q1 q2 q3)

3 The Brown-Geoghegan Complex

The Brown-Geoghegan complex Y has two-skeleton Y 2 modeled on the infinite presenta-
tion P for Thompson’s group F. The one-skeleton Y 1 is thus a bouquet of circles with a
single zero-cell and with an oriented one-cell for each generator from the presentation P.
For each pair of nonnegative integers q1, q2 ∈ Z with q2 − q1 ≥ 2, the complex Y has an
oriented two-cell whose attaching map is determined by the word x−1

q2
x−1

q1
xq2−1xq1 .

A choice of a zero-cell ∗ in the universal covering complex Ỹ 2 determines a set of ba-
sic lifts for the cells of Y . These basic lifts in turn determine a basis for the free cel-
lular chain complex C∗(Ỹ ) of right ZF-modules. Here, C0(Ỹ ) = C0(Ỹ 2) = ZF is the
free right ZF-module of rank one with basis corresponding to the zero-cell ∗. The right
ZF-module C1(Ỹ ) = C1(Ỹ 2) has free basis determined by basic lifts of the oriented one-
cells of Y . In keeping with the notation developed in [BG], we denote the basis element
that corresponds to the generator xq by (q) ∈ C1(Ỹ ). The boundary homomorphism

∂1 : C1(Ỹ ) → C0(Ỹ ) = ZF is the right ZF-homomorphism determined on this basis by
∂1(q) = 1− xq. The chain module C2(Ỹ ) = C2(Ỹ 2) is the free right ZF-module with basis
consisting of all ordered pairs (q1 q2) of nonnegative integers with q2−q1 ≥ 2. The bound-
ary homomorphism ∂2 : C2(Ỹ ) → C1(Ỹ ) is the right ZF-homomorphism determined on
this basis by ∂2(q1 q2) = −(q2) + (q2 − 1) · xq1 + (q1) · (1− xq2 ).

The three-skeleton Y 3 of the Brown-Geoghegan complex is obtained by attaching a cubi-
cal three-cell for each ordered triple (q1, q2, q3) of nonnegative integers satisfying qi+1−qi ≥
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2, i = 1, 2. The attaching map for this three-cell is indicated in Figure 1.
Placement of the asterisk in Figure 1 refers to the selection of a basic lift of the pictured

three-cell to the universal cover Ỹ 3, and determines a ZF-basis element (q1 q2 q3) for the
free right chain module C3(Ỹ ) = C3(Ỹ 3). The cellular boundary map ∂3 : C3(Ỹ )→ C2(Ỹ )
is the ZF-homomorphism determined on this basis by the following formula.

∂3(q1 q2 q3) = (q2 q3)− (q2− 1 q3− 1) · xq1 − (q1 q3) + (q1 q3− 1) · xq2 + (q1 q2) · (1− xq3 ).

These boundaries determine elements ∂2(q1 q2 q3) ∈ π2(Y 2) under the identifications
π2(Y 2) ∼= π2(Ỹ 2) ∼= H2(Ỹ 2) ≤ C2(Ỹ ). Since Y is aspherical, these three-cell boundaries
actually generate π2(Y 2) as a right ZF-module.

4 Finite Presentations for F

For the purposes of computing within second homotopy modules, it is convenient to start
with the following finite subpresentation R of the infinite presentation P for Thompson’s
group.

R = (x0, x1, x2, x3, x4 : xx0
1 = x2, x

x1
2 = x3, x

x2
3 = x4, x

x0
2 = x3, x

x1
3 = x4).

The cellular model K(R) is a finite subcomplex of the two-skeleton Y 2 = K(P) of the
Brown-Geoghegan complex Y .

Lemma 4.1

1. The inclusion of the finite two-complex K(R) in K(P) induces an isomorphism of funda-
mental groups.

2. The two-complex K(R) three-deforms to the model K(Q) of the presentation Q and also to
the model K(Q ′) of the presentation Q ′.

In particular, the presentations Q,Q ′, and R are all finite balanced presentations for
Thompson’s group F.

Proof (1) The two-complex K(R) has a single zero-cell, one one-cell for each of the five
generators x0, . . . , x4, and the five two-cells corresponding to the pairs (0 2), (1 3), (2 4),
(0 3), and (1 4). Following the proof of [BG, Theorem 5.3], let Y 2

− denote the subcom-
plex of Y 2 consisting of the entire one-skeleton Y 1 together with the two-cells (q q + 2),
q ≥ 0 (called collapsible two-cells in [BG]), and the two-cells (0 3) and (1 4) (the essential
two-cells). The collapsible two-cells (q q + 2), q ≥ 3, support group theoretic relations
x

xq

q+1 = xq+2, which show how to inductively express the generators x5, x6, . . . in terms of

the generators of R. Topologically, the inclusion K(R) ⊆ Y 2
− is a homotopy equivalence.

Thus it suffices to show that the inclusion Y 2
− ⊆ Y 2 induces an isomorphism of fundamen-

tal groups.
We argue by induction on the lexicographically ordered pairs (q1 q2) to show that the

relation supported by each two-cell of Y 2 is a consequence of the relations supported by
the two-cells of Y 2

−. The base of the induction is trivial since the two-cell (0 2) lies in Y 2
−.

Now consider a fixed two-cell (q1 q2) that does not lie in Y 2
−, so that q2 − q1 ≥ 3. Suppose
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first that q2 = q1 + 3, in which case we also have that q1 ≥ 2. The attaching map for the
three-cell (q1 − 2 q1 q1 + 3) shows that the relation supported by the two-cell (q1 q1 + 3) is
a consequence of the relations supported by the two-cells (q1 − 1 q1 + 2), (q1 − 2 q1 + 3),
(q1 − 2 q1 + 2), and (q1 − 2 q1). Algebraically, this is seen as follows.

x
xq1
q1+2 = x

xq1−2xq1
q1+1 using (q1 − 2 q1 + 2)

= x
xq1−1xq1−2

q1+1 using (q1 − 2 q1) twice

= x
xq1−2

q1+2 using (q1 − 1 q1 + 2)

= xq1+3 using (q1 − 2 q1 + 3).

Thus the relation (q1 q1 + 3) is a consequence of preceding relations in the lexicographic
ordering. If q2 − q1 ≥ 4 and q1 ≥ 0, then a similar argument using the attaching map for
the three-cell (q1 q2 − 2 q2) can be used to show that the relation supported by (q1 q2) is a
consequence of those supported by the two-cells (q2 − 2 q2), (q2 − 3 q2 − 1), (q1 q2 − 1),
and (q1 q2 − 2), each of which either lies in Y 2

− or else precedes (q1 q2) in the lexicographic
ordering on two-cells.

(2) To see that the two-complex K(R) three-deforms to K(Q), use the relations corre-
sponding to the collapsible two-cells (0 2), (1 3), and (2 4) to rewrite the generators x2, x3,
and x4 in terms of x0 and x1 (giving rise to a three-deformation of K(R)), and then elimi-
nate these collapsible two-cells by collapsing across the free one-cells corresponding to the
eliminated generators. We leave it to the reader to check that the resulting presentation is
precisely Q, up to free equivalence of the relators. To see that K(R) three-deforms to K(Q ′),
first carry out an elementary expansion in dimension three by attaching the two-cell (0 4)
and the three-cell (0 2 4) to K(R). The two-cell (1 4) is then a free face of the attached
three-cell and so K(R) three-deforms to the model of the presentation

R ′ = (x0, x1, x2, x3, x4 : xx0
1 = x2, x

x1
2 = x3, x

x2
3 = x4, x

x0
2 = x3, x

x0
3 = x4).

Now use the two-cells (0 2), (0 3), and (0 4) to rewrite x2, x3, and x4 in terms of x1 and x0

and then collapse these three two-cells across free one-cells. The result is the model K(Q ′)
of the presentation Q ′.

5 The Fox Ideal

Let K = K(R) be the cellular model of the balanced presentation R for Thompson’s
group F. We now wish to identify certain elements in the Fox ideal F(K). In the proof
of Lemma 4.1, the two-cells (0 3) and (1 4), identified as essential by Brown and Geoghe-
gan, are seen to determine the defining relations in the two-relator presentation Q for F.
Along the same lines, Brown and Geoghegan identified the three-cells (0 3 6) and (1 4 7) as
essential. With this in mind, we now begin with the complex K and perform a series of ele-
mentary expansions to form a three-complex W that is contained in Y 3 and is large enough
to support the attaching maps for these essential three-cells. The added cells in dimension
two, together with the accompanying free one-dimensional faces, are as follows.

(5) + (3 5); (6) + (4 6); (7) + (5 7).
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The elementary expansions in dimension three are these.

(0 4) + (0 2 4); (0 5) + (0 3 5); (0 6) + (0 4 6);
(1 5) + (1 3 5); (1 6) + (1 4 6); (1 7) + (1 5 7);
(2 5) + (0 2 5); (2 6) + (2 4 6); (2 7) + (2 5 7);
(3 6) + (1 3 6); (4 7) + (2 4 7).

There is a strong deformation retraction r : W → K and we use the induced map
r∗ : C2(W̃ ) → C2(K̃) to compute the coefficients of r∗

(
∂3(0 3 6)

)
and r∗

(
∂3(1 4 7)

)
in

terms of the ZF-basis for C2(K̃) consisting of the two-cells (0 2), (0 3), (1 3), (1 4), and
(2 4). For example, since K is two-dimensional we have r∗

(
∂3(0 2 4)

)
= 0. Using the fact

that r fixes K, we can thus render the added two-cell (0 4) in terms of the two-cells of K as
follows.

r∗(0 4) = (2 4)− (1 3) · x0 + (0 3) · x2 + (0 2) · (1− x4).

In this way, all of the free faces of the added three-cells of W can be expressed in terms of
the two-cells of K.

Lemma 5.1 The Fox ideal F(K) = F
(
K(R)

)
contains the following two elements in the

integral group ring ZF.

ξ0 = x2
0 + x2

3 + x6 − x0x1 − x3x4 − 1

ξ1 = x0x2
1 + x0x2

4 + x0x7 + x1x4x5 + x3x4x5 + x2x2
4

+ x3 + x1 + x5 + x2x7 + x4x7 + x7

− x0x1x2 − x0x4x5 − x0 − x2x4x5 − x3x2
4 − x1x2

4

− x3x7 − x2 − x4 − x1x7 − x5x7 − 1.

Proof The elements ξ0 and ξ1 are the negatives of the (1 4)-coefficients of r∗
(
∂(0 3 6)

)
and

r∗
(
∂3(1 4 7)

)
respectively. Details are left to the reader.

Remark The proof of Theorem 5.3 in [BG] actually shows that the elements r∗
(
∂3(0 3 6)

)
and r∗

(
∂3(1 4 7)

)
generate π2(K) ∼= H2(K̃) as a ZF-submodule of C2(K̃) ≤ C2(Ỹ ). A set

of generators for the Fox ideal is obtained by calculating the coefficients of these homotopy
generators. Lemma 5.1 is enough for our purposes.

6 Proof of Theorem 1.1

Our goal in this section is to prove that the two-complex K = K(R) is absolutely Cockcroft.
Theorem 1.1 follows at once from Lemma 2.1 and Lemma 4.1 since Cockcroft properties
are preserved by homotopy equivalences. The proof of Theorem 1.1 proceeds directly from
Lemma 5.1.

Throughout this section, we let H be a subgroup of π1(K) = F such that K is H-
Cockcroft. Our aim is to prove that H = F. By Lemma 2.2, the Fox ideal F(K) is contained
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in the left ideal ZF · (H− 1), which is the kernel of the canonical projection ZF → Z[F/H]
from the free module of rank one onto the transitive permutation module Z[F/H] with
Z-basis consisting of left cosets gH, g ∈ F.

Lemma 6.1 If some F-conjugate of x1 belongs to H, then H = F.

Proof The generators xn, n ≥ 1, are all conjugate in F. Replacing H by an F-conjugate if
necessary, we can assume that x6 ∈ H. Since ξ0 lies in the two-sided ideal F(K), we have

x−1
0 · ξ0 · x0 = x2

0 + x2
4 + x7 − x0x2 − x4x5 − 1 ∈ F(K) ⊆ ZF · (H − 1).

Since this element lies in the kernel of ZF → Z[F/H], one of the cosets x2
0H, x2

4H, x7H

must equal 1H = H. If x2
4 ∈ H, then x8 = x

x2
4

6 ∈ H and so x7 = x
x−1

6
8 ∈ H. Similarly, if

x2
0 ∈ H, then x7 ∈ H. In all cases we therefore have x6, x7 ∈ H, and hence xn ∈ H, n ≥ 6.

Now

x−5
0 · ξ0 · x

5
0 = x2

0 + x2
8 + x11 − x0x6 − x8x9 − 1 ∈ F(K) ⊆ ZF · (H − 1)

and x2
8, x11, x8x9, 1 ∈ H so x2

0H = x0x6H = x0H, whence x0 ∈ H. Finally, x1 = x
x−5

0
6 ∈ H,

which implies that H = F since F is generated by x0 and x1.

Lemma 6.2 x2
0 ∈ H.

Proof Just suppose that x2
0 
∈ H, and so H contains no conjugate of x1 by Lemma 6.1. For

any n ≥ 1,

x3−n
0 · ξ0 · x

n−3
0 = x2

0 + x2
n + xn+3 − x0x

xn−3
0

1 − xnxn+1 − 1 ∈ F(K) ⊆ ZF · (H − 1)

so H ∈ {x2
0H, x2

nH, xn+3H}. Since x2
0, xn+3 /∈ H, we obtain x2

n ∈ H for all n ≥ 1. Similarly,
for any m ≥ 1, we have

x1−m
0 · ξ0 · x

m−1
0 = x2

0 + x2
m+2 + xm+5 − x0xm − xm+2xm+3 − 1 ∈ F(K) ⊆ ZF · (H − 1)

and so x2
0H ∈ {x0xmH, xm+2xm+3H}. Suppose now that m ≥ 1 is such that x2

0H = x0xmH.
Then for any n > m + 1, it follows that x2

0H = xn+2xn+3H; for otherwise x2
0H = x0xmH =

x0xnH so that x0H = xmH = xnH where 1 ≤ m < n− 1, whence

x2
0H = x0xnH = xn−1x0H = xn−1xmH = xmxnH = x2

mH = H,

which contradicts the fact that x2
0 /∈ H. We conclude that there is a positive integer N such

that x2
0H = xnxn+1H for all n ≥ N . For any n ≥ N , we have

x−n
0 · ξ0 · x

n
0 = x2

0 + x2
n+3 + xn+6 − x0xn+1 − xn+3xn+4 − 1 ∈ F(K) ⊆ ZF · (H − 1)

and so xn+6H = x0xn+1H = xnx0H. Thus, for each n ≥ N , we have x−1
n xn+6H = x0H.

Now, x−1
N xN+6H = x−1

N+1xN+7H so that x−1
N+6xN x−1

N+1xN+7 = x−1
N+6xN+7xN x−1

N+1 ∈ H. Hence,

https://doi.org/10.4153/CMB-2000-034-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-034-8


276 W. A. Bogley, N. D. Gilbert and James Howie

xN+6xN+7H = xN xN+1H = xN x−1
N+1H = x−1

N+7xN+6H = xN+6x−1
N+8H = xN+6xN+8H. This

implies that xN+7H = xN+8H, which leads to the contradiction

x2
0H = xN+7xN+8H = x2

N+7H = H.

This final contradiction completes the proof, showing that x2
0 ∈ H.

Our goal is to prove that H = F. Consider the element x−1
0 ·ξ0 ·x0 ∈ F(K) ⊆ ZF·(H−1).

The fact that x2
0 ∈ H implies that

x2
4 + x7 − x0x2 − x4x5 ∈ ZF · (H − 1).

There are these two cases to consider:

(A1) x2
4H = x0x2H and x7H = x4x5H

(B1) x4H = x5H and x7H = x0x2H.

Case 1 Suppose first that the conditions (B1) hold. Since x2
0 ∈ H, we have x2kH = x2k+1H

for all k ≥ 1. Consider the image of the element ξ1 ∈ F(K) ⊆ ZF · (H − 1) under the
projection ZF → Z[F/H]. Using (B1), we have the following identifications of terms with
opposite signs.

x0x2
4H = x0x4x5H

x1x4x5H = x1x2
4H

x3x4x5H = x3x2
4H

x2x2
4H = x2x4x5H

x3H = x2H

x5H = x4H

x2x7H = x6x2H = x6x3H = x3x7H

x4x7H = x6x4H = x6x5H = x5x7H.

Working modulo ZF · (H − 1), we cancel these terms and find that

x0x2
1 + x0x7 + x1 + x7 − x0x1x2 − x0 − x1x7 − 1 ∈ ZF · (H − 1).

It follows that H = 1H ∈ {x0x2
1H, x0x7H, x1H, x7H}. If H is equal to x1H or x7H, then

H = F by Lemma 6.1. Similarly, if H = x0x7H = x2
0x2H, then x2 ∈ H (using (B1) and

Lemma 6.2), and so H = F by Lemma 6.1. We may therefore assume that x0x2
1 ∈ H. Next,

we have x1H ∈ {x0x1x2H, x0H, x1x7H}. If x1H = x1x7H, then x7 ∈ H, and so H = F
by Lemma 6.1. If x1H = x0H, then H = x0x2

1H = x0x1x0H = x2
0x2H, and so x2 ∈ H,

whence H = F as before. We may therefore assume that x1H = x0x1x2H, which implies
that x7H ∈ {x0H, x1x7H}. If x7H = x1x7H, then xx7

1 ∈ H and so H = F by Lemma 6.1. We
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can therefore assume that x7H = x0H and x0x7H = x1x7H. With all these assumptions in
place, we have

H = x2
0H = x0x7H = x1x7H = x1x0H = x0x2H = x7H.

with the last equality coming thanks to (B1). We conclude finally that x7 ∈ H and so H = F
by Lemma 6.1.

Case 2 Now suppose that the conditions (A1) hold. In particular, x7H = x4x5H. Consid-
ering the image of ξ1 under ZF → Z[F/H], we have the following identifications of terms
having opposite signs.

x0x7H = x0x4x5H

x1x4x5H = x1x7H

x3x4x5H = x3x7H

x2x7H = x2x4x5H.

We conclude that the following element lies in ZF · (H − 1).

λ = x0x2
1 + x0x2

4 + x2x2
4 + x3 + x1 + x5 + x4x7 + x7

− x0x1x2 − x0 − x3x2
4 − x1x2

4 − x2 − x4 − x5x7 − 1.

Now consider the element ξ0 = x2
0 + x2

3 + x6 − x0x1 − x3x4 − 1 ∈ F(K) ⊆ ZF · (H − 1).
Since x2

0 ∈ H we have that

x2
3 + x6 − x0x1 − x3x4 ∈ ZF · (H − 1).

It follows that one of the following two conditions is satisfied.

(A0) x2
3H = x0x1H and x6H = x3x4H

(B0) x3H = x4H and x6H = x0x1H

We treat these two possibilities as separate subcases.

Subcase 2(i) Suppose that the condition (B0) is satisfied. In particular, x2kH = x2k−1H
for all k ≥ 1 since x2

0 ∈ H. In this event, there are the following additional cancellations of
terms when the element λ is projected into Z[F/H]. We have

x0x2
1H = x0x1x2H

x2x2
4H = x2

3x2H = x2
3x1H = x1x2

4H

x3H = x4H

x1H = x2H

https://doi.org/10.4153/CMB-2000-034-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-034-8


278 W. A. Bogley, N. D. Gilbert and James Howie

and also

x4x7H = x6x4H = x6x3H = x3x7H = x3x4x5H = x3x4x6H = x3x5x4H

= x3x5x3H = x2
3x6H = x2

3x5H = x3x4x3H = x3x2
4H.

We are left to conclude that H ∈ {x0x2
4H, x5H, x7H}. Since the hypothesis (A1) provides

that x0x2
4H = x2

0x2H, we find that H contains a conjugate of x1 and so H = F by Lemma 6.1.

Subcase 2(ii) Here we assume that the conditions (A0) are satisfied. Consider again the
image of λ in Z[F/H]. One of the positive terms must cancel with the negative term−1H.
If any of x3, x1, x5, or x7 lies in H, then H = F by Lemma 6.1. If H = x0x2

4H = x2
0x2H, then

x2 ∈ H and so H = F (using (A1) and Lemma 6.1). We may therefore assume that

H ∈ {x0x2
1H, x2x2

4H, x4x7H}.

If x0x2
1 ∈ H, then conjugating by x2

0 ∈ H we have x0x2
3 ∈ H. Using (A0) we find

x0x1H = x2
3H = x−1

0 H = x0H

so that x1 ∈ H, whence H = F.

Now suppose that x2x2
4 = x2

3x2 ∈ H. Then x3x2H = x−1
3 H and using (A1) we find

H = x2x2
4H = x2x0x2H = x0x3x2H = x0x−1

3 H = x−1
2 x0H

and so x0H = x2H. Using (A0) together with conjugation by x−2
0 ∈ H, we obtain

x4H = x1x2H = x1x0H = x0x2H = x2
0H = H

whence H = F by Lemma 6.1.

For the final case, suppose that x4x7 = x6x4 ∈ H. Conjugating by x−2
0 ∈ H, we have

x4x2 ∈ H, so that x2H = x−1
4 H = x7H. Using (A0) and the fact that x−1

6 H = x4H, it fol-
lows that x6H = x3x4H = x3x−1

6 H = x−1
5 x3H and so x3H = x5x6H = x8H. Conjugating

by powers of x2
0, it follows that xkH = xk+5H for all k ≥ 1. With (A0) and (A1), conjugation

by powers of x2
0 reveals that x0xkH = x2

k+2H and xkxk+1H = xk+3H for all k ≥ 1. Now,

x1x0H = x0x2H = x2
4H = x4x9H = x8x4H = x8x9H = x11H = x1H

which implies that x0 ∈ H. With this we have x4H = x4x0H = x0x5H = x2
7H = x7x2H =

x2x8H = x2x3H = x5H. Conjugating by powers of x0, this leads to the conclusion that
xkH = xk+1H for all k ≥ 1. Finally, x2

1H = x1x2H = x4H = x1H and so x1 ∈ H. This
implies that H = F and completes the proof of Theorem 1.1.
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7 Cockcroft Properties and Euler Characteristic

The Euler characteristic of a finite connected Cockcroft two-complex is determined by its
fundamental group. For if L is a finite connected two-complex with fundamental group
isomorphic to G, then H1(L) ∼= H1(G) and L is Cockcroft if and only if the canonical
surjection H2(L)→ H2(G) is an isomorphism, whence

χ(L) = 1− rkZ

(
H1(G)

)
+ rkZ

(
H2(L)

)
≥ 1− rkZ

(
H1(G)

)
+ rkZ

(
H2(G)

)
,

with equality holding if and only if L is Cockcroft. Applying this to Thompson’s group F,
let L be a finite connected two-complex with fundamental group isomorphic to F. Using
the fact that H1(F) and H2(F) are both free abelian of rank two, the Euler characteristic
formula above shows that L is Cockcroft if and only if χ(L) = 1.

Lustig has asked [DGH, Problem 19] whether the Cockcroft properties of a finite con-
nected two-complex are determined by the Euler characteristic and fundamental group.
More precisely, suppose that K and L are finite connected two-complexes with isomorphic
fundamental groups and equal Euler characteristics. Is there an isomorphism c(K)→ c(L)
of partially ordered sets? Is such an isomorphism of partially ordered sets induced by an
isomorphism π1(K) → π1(L) of fundamental groups? Does each isomorphism π1(K) →
π1(L) induce an isomorphism c(K) → c(L)? For example, using the fact that a finite 2-
complex with finite fundamental group is absolutely Cockcroft if its Euler characteristic is
+1, and not Cockcroft otherwise [GH, Theorem 4.1], it is easy to see that each of these
questions has a positive answer in the case of finite fundamental group. Our next result
shows that the questions also have positive answers if we restrict attention to normal sub-
groups.

Theorem 7.1 Let K and L be two finite CW-complexes with equal Euler characteristics. If
θ : π1(K) → π1(L) is a group isomorphism and N is a normal subgroup of π1(K) such that L
is θ(N)-Cockcroft, then K is N-Cockcroft.

Proof Since the Cockcroft properties of a 2-complex depend only on the (simple) homo-
topy type, we may apply elementary expansions to K and L without changing the problem.
Hence we may assume, without loss of generality, that K and L have isomorphic 1-skeleta,
and that moreover this isomorphism of 1-skeleta induces the given isomorphism θ between
the fundamental groups.

Let G denote the fundamental group π1(K). Then G acts on the universal covering L̃ via
θ, and so the cellular chain complexes C∗(K̃) and C∗(L̃) are both chain complexes of free
right ZG-modules.

The isomorphism of 1-skeleta also induces an isomorphism of ZG-chain complexes be-
tween the cellular chain complexes of the 1-skeleta of the universal covers of K and L. This
can be extended to a ZG-chain homomorphism φ : C∗(K̃) → C∗(L̃). Now consider the
effect of applying the functor −

⊗
ZN Z to these chain complexes and chain maps. We

obtain the cellular chain complexes of the covers KN and Lθ(N) of K and L correspond-
ing to N and θ(N) respectively, and a Z(G/N)-chain map between them that we will also
call φ. Note that there is an isomorphism between the 1-skeleta of KN and Lθ(N) that in-
duces an isomorphism of fundamental groups, and that the corresponding isomorphism
between chain-complexes is given by φ in dimensions 0 and 1. It follows that φ restricts to
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an isomorphism between the 1-dimensional cycle and boundary groups Z1 and B1 of KN

and Lθ(N).
Now consider the short exact sequences

0→ H2(KN )→ C2(KN )→ B1(KN )→ 0

and
0→ H2(Lθ(N))→ C2(Lθ(N))→ B1(Lθ(N))→ 0.

The chain-map φ induces an isomorphism on B1, and an epimorphism on H2 (since
H2(Lθ(N)) → H2(N) is an isomorphism), and hence also an epimorphism on C2, by the
5-Lemma. On the other hand, the fact that K and L have equal Euler characteristics and
isomorphic 1-skeleta implies that the free Z(G/N)-modules C2(KN ) and C2(Lθ(N)) have
equal ranks. The epimorphism φ∗ : C2(KN ) → C2(Lθ(N)) is therefore an isomorphism, by
Kaplansky’s theorem [K], [M]. Hence so is φ∗ : H2(KN ) → H2(Lθ(N)) ∼= H2(N), by the
5-Lemma again. Hence K is N-Cockcroft, as claimed.

Corollary 7.2 For any finite connected two-complex K, the automorphism group
Aut
(
π1(K)

)
acts on the partially ordered set nc(K) of all normal Cockcroft subgroups of π1(K).

Proof Taking L = K in Theorem 7.1, we see that nc(K) = {N 
π1(K) : K is N-Cockcroft}
is invariant under the natural action of Aut

(
π1(K)

)
on the set of subsets of π1(K).

Theorem 1.1 shows that there is a finite connected absolutely Cockcroft two-complex
K with fundamental group F and Euler characteristic one. The following restatement of
Corollary 1.2 is an immediate consequence of Theorem 1.1 and Theorem 7.1.

Corollary 7.3 Let L be a finite connected two-complex with fundamental group isomorphic
to Thompson’s group F. For a normal subgroup N 
 π1(L), L is N-Cockcroft if and only if
χ(L) = 1 and N = π1(L).
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