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UNIQUENESS OF FREE ACTIONS ON S3 

RESPECTING A KNOT 

MICHEL BOILEAU AND ERICA FLAPAN 

In this paper we consider free actions of finite cyclic groups on the pair 
(S , K), where K is a knot in S . That is, we look at periodic diffeo-
morphisms / o f (S , K) such that / " is fixed point free, for all n less than 
the order of f Note that such actions are always orientation preserving. 
We will show that if K is a non-trivial prime knot then, up to conjugacy, 
(S , K) has at most one free finite cyclic group action of a given order. In 
addition, if all of the companions of K are prime, then all of the free 
periodic diffeomorphisms of (S , K) are conjugate to elements of one 
cyclic group which acts freely on (S3, K). More specifically, we prove the 
following two theorems. 

THEOREM 1. Let K be a non-trivial prime knot. If f and g are free periodic 
diffeomorphisms of (S , K) of the same order, then f is conjugate to a power 
ofg-

THEOREM 2. Let K be a non-trivial prime knot, other than a torus knot, all 
of whose companions are prime. Then there is a cyclic group G which acts, 
freely on (S , K) such that any free periodic diffeomorphism of (S , K) is 
conjugate to an element of G. 

After completing this work we were told by M. Sakuma that he 
independently obtained the same results for free symmetries of a knot [10]. 
In addition, he can extend these results to the case of rotations of a knot 
around a fixed axis by using Thurston's recent result on the geometriza-
tion of irreducible 3-dimensional orbifolds with singular locus of 
dimension at least one (cf. [10] ). In this paper, we use only Thurston's 
Hyperbolization Theorem for Haken manifolds [13], but not the 
geometrization of orbifolds. We would like to thank M. Sakuma for 
valuable comments while comparing our proofs. 

Our basic tools will be the theory of companionship of knots developed 
by Schubert [11], and the work of Jaco-Shalen [3] and Johannson [4] on 
characteristic decompositions. In particular, let K be a non-trivial knot in 
S with exterior E(K). There is a family r of characteristic tori in E(K), 
which is unique up to isotopy, such that: 
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1) The tori in T are disjoint, non-parallel, and essential (i.e., in­
compressible and non-boundary-parallel). 

2) Each closed component of E(K) — r is either Seifert fibered or both 
atoroidal and anannular (i.e., contains no essential torus or annulus). 

3) The number c(K) of tori in r is minimal with respect to the above. 
Let T be some torus in the characteristic family T, and let V and Y be 

the components of S3 — T. Then Fis a solid torus and Fis the exterior of 
a knot K\ which is said to be a companion of K. We shall refer to the 
component X0 of E(K) — r which contains dE(K) as the first component. 
The components of E(K) — X0 are knot complements {^} . By an 
innermost disk argument we can find a meridional disk D{ for some solid 
torus say S3 ~ Yu such that Dx is disjoint from all the other Yt. By gluing 
a neighborhood of Dx onto Y} we can find a ball B] which contains Yx but 
is disjoint from all the other Yt. Repeating this argument in S — Bx, we 
find a ball B2 containing Y2 but disjoint from Bx and all the other Yt. 
Continuing this process we obtain disjoint balls {Bt} such that each Yf is 
contained in a Bt. Let M be the manifold obtained from X0 by replacing 
each of the knot complements Yt, by a solid torus Wh in such a way that a 
meridian of W{ is now where a longitude of Yf was and a longitude of Wl is 
now where a meridian of Yi was. Then M is the exterior E(K0) of a new 
knot K0 in S . Let L, be the link which is made up of the cores of all the 
solid tori { W^. The disks Dt show that each component of Lx is unknotted 
and that Lx is in fact a trivial link. Now let L = K0 U L b and observe that 
A'Q is just the exterior E(L) of the link Z>. Since K0 is homotopically 
non- trivial in S3 - Yt for all /, every 2-sphere in E(L) bounds a ball. By 
construction X0 is either atoroidal and anannular, or X0 is a Seifert fibered 
space. In the former case, by Thurston's Hyperbolization Theorem [13], X0 

has a complete hyperbolic structure of finite volume. In this case, we shall 
refer to L as a hyperbolic link. We shall need the following definitions for 
the case when X0 is Seifert fibered. 

Definition. A cable space is a manifold obtained from a solid torus 
S X D , by removing an open tubular neighborhood of a simple closed 
curve K that lies on a torus S] X / , where / is a simple closed curve in 
Int D~ and K is non-contractible in Sx X D . 

Definition. A composing space is a manifold homeomorphic to S X W, 
where W is a disk with n = 2 holes. 

Cable spaces, composing spaces and torus knot complements all are 
Seifert fibered manifolds with planar orbit surfaces. It was observed by 
Jaco-Shalen [3] that these are the only Seifert fibered manifolds with 
incompressible boundary which are contained in a knot complement. They 
also observed that the first component of a knot complement is a 
composing space if and only if the knot is composite. 
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We prove Theorems 1 and 2 by induction on the number of 
characteristic tori in the family. In Section 1 we begin the induction by 
proving Theorem 1 for knots with no companions. We complete the proof 
of Theorem 1 in Section 2. Then in Section 3, we prove Theorem 2 and 
conclude with an example illustrating why the theorems fail for composite 
knots, and another example showing how Theorem 2 can fail for a knot 
with a composite companion. 

The authors would like to thank F. Bonahon for many helpful 
conversations during the preparation of this paper, as well as the referee 
for numerous valuable suggestions. 

1. First step of the induction for theorem 1. Let K be a knot in S3, whose 
exterior E(K) is atoroidal. By Thurston's Hyperbolization Theorem [13], 
either E(K) has a complete hyperbolic structure of finite volume or AT is a 
torus knot. 

Let a "keyring link" be a link L = K0 U Lx where K0 is unknotted and 
Lx bounds a collection D of embedded disjoint disks in S3, each of which 
meets K0 in exactly one point. A keyring link is not hyperbolic since its 
complement is a solid torus, S] X S] X /, or a composing space. Such a 
link is illustrated in figure 1. 

Figure 1 "Keyring link" 

LEMMA 1.1. Let L = K0 U Lx be a link such that Lx is empty or is a 
trivial link and every 2-sphere in E(L) bounds a ball. If there is a periodic 
diffeomorphism of (S, Lx) with fixed point set K0 then L is a keyring link. 

Proof Let h be a periodic diffeomorphism of (S , Lx) with fixed point 
set K0. By the solution to the Smith Conjecture [8], K0 cannot be knotted. 
Since Lx is trivial, by the Equivariant Dehn's Lemma [7] there exists 
an invariant collection {Df} of embedded disjoint disks in S where Lx 

is the union of the boundaries of the Dt. Let D be some disk in {£>,-}. If 
D n K0 = 0, then the boundary of a regular neighborhood of D is a 
2-sphere which does not bound a ball in E(L). Thus, K0 intersects D in 
n > 0 points. Since K0 is fixed pointwise by h we must have h(D) = D. 
Now h\D is a periodic diffeomorphism of a disk with n fixed points. So 
n = 1. Thus L is a keyring link. 
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PROPOSITION 1.2. Let L = K0 U Lj 6e a hyperbolic link such that L, is 
empty or a trivial link. Let f and g be free periodic diffeomorphisms of 
(S\ K0, L,) of order p and q respectively. If p = q, then f is conjugate to 
a power of g by a diffeomorphism which is isotopic to the identity on 
(S\ K0, Lj). Otherwise, there is a free periodic diffeomorphism h of(S\ K0, 
L,) of order m = lcm(/?, q) such that fq = hq and gp is conjugate to hp by a 
diffeomorphism which is isotopic to the identity on (S~, K0, Lx). 

Proof. We begin by showing that there is a hyperbolic structure for E(L) 
such that f\E(L) is an isometry and g\E(L) is conjugate to an isometry g. 
Let ( / ) denote the action generated by / , and let M = E(L)/(f) be the 
orbit space of E(L) under this free action. Then M has incompressible 
boundary, and is atoroidal and anannular. So, by Thurston's Hyperboliza-
tion Theorem [13], M has a complete hyperbolic structure of finite volume. 
We lift this structure to obtain a metric ( , )y which gives E(L) a complete 
hyperbolic structure of finite volume, and such that fis an isometry under 
this metric. Similarly we obtain a hyperbolic metric ( , ) under which g is 
an isometry. By Mostow's Rigidity Theorem [9] together with Waldhausen 
[15], there is an isometry isotopic to the identity which takes E(L) with 
( , )y to E(L) with ( , ) Thus g is conjugate to an isometry g of E(L) 
with ( , )y, by a diffeomorphism of E(L) which is isotopic to the 
identity. 

The group of orientation preserving isometries of E(L) extends to a 
finite action of (S3, L). By Lemma 1.1, the finite subgroup generated by / 
and g is identified with its restriction to K0. Hence together, / and g 
generate a free cyclic action of (S , K0, Lx) of order m = lcm(/>, q). Also, if 
p = q then / i s just a power of g. Otherwise, pick h = fg. 

Next we treat the case where AT is a torus knot. Recall from the 
introduction that a cable space and a torus knot complement are Seifert 
fibered spaces 

LEMMA 1.3. Let M be either a cable space or the complement of a torus 
knot. Let f be a free orientation preserving periodic diffeomorphism of M 
which respects each boundary component. Then there is a Seifert fibration of 
M such that f leaves each fiber invariant. 

Proof. Let TV = M/(f) be the orbit space of M under the action of / 
Then TV is orientable, irreducible, and has non-empty incompressible 
boundary. Hence by Theorem II.6.3 of [3], N is Seifert fibered. By lifting 
this Seifert fibration to M, we obtain an (/)-invariant Seifert fibration 
of M. 

The periodic diffeomorphism / induces a periodic diffeomorphism of 
the base space of the (/)-invariant Seifert fibration of M. If M is a cable 
space then the Seifert fibration of M has one singular fiber and has 
base space an annulus. If M is the complement of a torus knot then there 
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are two singular fibers with distinct multiplicities, and the base space is a 
disk. In either case, / m u s t respect each singular fiber. Now, because fis 
free, it must preserve the orientation of each singular fiber. Therefore, 
again since / is orientation preserving, the induced periodic diffeomor-
phism on the base must be orientation preserving. But this induced map 
must fix each singular point and respect each boundary component, 
therefore it is the identity map. Thus / leaves each fiber of M invariant. 

PROPOSITION 1.4. Let L be a link whose exterior E(L) is a torus knot 
complement or a cable space. Let f and g be free periodic diffeomorphisms 
of (S , L), of order p and q respectively, which respect each component of 
dE(L). If p = q, then f is conjugate to a power of g by a diffeomorphism 
which is isotopic to the identity on (S , L). Otherwise, there is a free periodic 
diffeomorphism hof(S,L) of order m = lcm(/?, q)y such that fq = hq and 
gp is conjugate to hp by a diffeomorphism which is isotopic to the identity on 
(S\ L). 

Proof By Lemma 1.3, there is a Seifert fibration of E(L) with respect to 
which / leaves each fiber invariant; and there is also a Seifert fibration 
with respect to which g leaves each fiber invariant. By [14] the Seifert 
fibration of E(L) is unique up to isotopy. Hence we can conjugate g, by a 
diffeomorphism isotopic to the identity, to get g which leaves each fiber of 
the first fibration invariant. We can extend the fibration of £ (L) to a 
fibration of S where L consists of fibers. So we can extend g to (S , L), 
still leaving each fiber invariant. Since / a n d g are free, they preserve the 
orientation of each fiber and thus can be embedded in the S1 -action 
generating the Seifert fibration of (S3, L). So after further conjugation we 
can arrange that / and g commute on each fiber. Now by restriction to a 
generic fiber, we see that / a n d g generate a free cyclic action of (S , L) of 
order m = lcm(/?, q). Also, if p = q then / i s just a power of g. Otherwise 
pick h = fg. 

COROLLARY 1.5. Let K be a knot whose exterior E(K) is atoroidal Let f 
and g be free periodic diffeomorphisms of (S , K) of the same order. Then 
f\E(K) is conjugate to a power ofg\E(K) by a diffeomorphism ofE(K) which 
is isotopic to the identity. 

Proof Since / and g are free actions of (S , K), they are orientation 
preserving by Smith Theory [12]. By Thurston [13], since E(K) is 
atoroidal, K is either hyperbolic or is a torus knot. Thus we apply either 
Proposition 1.2 or Proposition 1.4. 

2. Completion of the proof of theorem 1. The proof will be done by 
induction on the number c(K) of tori in the characteristic family r. The 
case of c(K) = 0 follows from Corollary 1.5. Now we work with knots 
with c(K) > 0. We begin by setting up the inductive step. Recall from the 
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introduction that the component of E(K) — T containing dE(K) is called 
the "first component." Further, let W = S3 — E(K). Then we can attach 
solid tori Kh K2, . . . , Vn to the components of d(X0 U W) to obtain the 
complement of a link L = K0 U L}, where XQ now denotes the core of W 
and L, is a trivial link. 

LEMMA 2.1. Let K be a non-trivial knot with exterior E(K). Let f be a free 
periodic diffeomorphism of (S , K) which respects the characteristic family r. 
Then 

1) the Jirst component X0 is respected by f 
2) f\ (X0 U W) can be extended to a free periodic diffeomorphism f of 

(S\ * 0 , L,) 
3) at most one component ofdX0 — dE(K) is respected by f 

Proof 1) Since / ( T ) = T and f(dE(K)) = 3£ ( i0 , we must have 

/ (*o ) = *o-
2) We define the map / by extending f\ (X0 JJ WO radially within the 

solid tori Vt. Then it is not hard to show that / is a map of (S3, K0, Lx) 
which is orientation preserving and of finite order. Suppose that / is not 
free. Since f\ (X0 U W) is free, then / m u s t fix pointwise the core of some 
solid torus Vt. Now / leaves a meridian m of Vt invariant. Let Yi be the 
component of E(K) — X0 corresponding to Vt. A meridian of Vt is 
a longitude of Yt\ so / leaves j i longitude of Yi invariant. Now by [2], 
f\Yi cannot be free. Hence / is a free periodic diffeomorphism of 
( S \ KQ, L,). 

3) Suppose there are at least two components Tx and T2 of dX0 U dE(K) 
which are respected by / . These components are also respected by the map 
/ , defined above. Since Lx is a trivial link there is precisely one essential 
2-sphere in S — (T} U T2). Thus using the equivariant sphere Theorem 
( [7], [6] ), we obtain a 2-sphere S which is equivariant under / and which 
separates Tx and T2. Now S bounds balls Bx and B2, in s\ which con­
tain Tx andJT2 respectively. Since / is of finite order and f(Ti)^= Tt we 
must have / (# , ) = Br So by the Brouwer fixed point theorem / must fix 
a point of each Bt. But, as seen above, / is fixed point free. Therefore / 
respects at most one component of dX0 — dE(K). 

If / does respect some component Tx of dX0 — dE(K), then / will 
respect the component F of E(K) — X0 which is bounded by T,. It follows 
from [11] that y is the exterior of a knot K{ which is said to be a companion 
of K. Since c(Kx) < c(K) we would like to apply the inductive hypothesis 
to A ,̂, but Theorem 1 only concerns prime knots and Kx may be 
composite. So, first we must study free actions on composite knots. Recall 
from the introduction that the first component of a composite knot is a 
composing space S] X W, where W is a disk with r ^ 2 holes. 
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LEMMA 2.2. Let K be a composite knot with exterior E(K) and first 
component X0. Suppose f is a free periodic diffeomorphism oj (S\ K) which 
respects X{). Then any product structure for X0 is isotopic to a product 
structure S X Wsuch thatf\X0 = f X f2 where f andf2 are orientation 
preserving periodic diffeomorphisms of S and W respectively, and both have 
the same order as f 

Proof. We begin with some observations about any free periodic 
diffeomorphism / o f (S , K). By Smith Theory [12], fis orientation pre­
serving. Let p be the order of / Now suppose there were some meridian 
m such that fn(m) = m, for some n < p. Then m would bound some 
meridional disk D such that f"(D) = D. But now, by the Brouwer Fixed 
Point Theorem, / " would have to fix a point of Z), and hence /would not 
have been free. Therefore, if m is any meridian for K and n < p then 
f"(m) ¥= m. Also, it follows from [2] that if X is any longitude for K and 
n < p then f"(\) ^ X. 

Let ( /> denote the action generated by / and let TV = X0/(f); then as 
in the proof of Lemma 1.3, N is Seifert fibered. Lift the fibration of N to 
get an (/)-invariant Seifert fibration of X0. It follows from [14] that 
the Seifert fibration induced by this product structure is isotopic to the 
(Z)-invariant fibration. Embed X0 in a solid torus Kwith dE(K) = dV/m 
such a way that the product structure and the (/)-invariant fibration of 
X0 are extended to V. Since f(dE(K) ) = dE(K), we can extend f\X() to an 
orientation preserving, fiber preserving, periodic diffeomorphism / o f V: 
A meridian of V is a longitude of K. So, by our initial remarks, if m is a 
meridian for V and n < p then fn(m) ¥= m. Thus / i s free. 

Pick a meridional disk D such that 

f\D) n D = 0 for all n < p. 

Since the (/)-invariant fibration of V is isotopic to the Seifert fibra­
tion induced by the product structure, we can actually pick D so that each 
fiber of V will meet D in precisely one point. Let W = D n A .̂ Then 
f\W) n W = 0 for all n < /?, and W meets each fiber of X0 in precisely 
one point. Now X0 has a product structure S] X W which is isotopic to the 
original product structure, and / i s a product action with respect to this 
structure. Thus f = f X f2 where / and f2 are periodic diffeomorphisms 
of S and W respectively. Since /preserves the orientation of both S and 
K, both / and f2 are orientation preserving. Since fn(W) n W = 0 for 
all n < p, the order of / , is p. Also, by our preliminary remarks, if m is 
a meridian for K then fl\m) ¥* m, for all n < p. So the order of f2 

is also /?. 

LEMMA 2.3. L ^ K be a composite knot with exterior E(K) and first 
component X0. Suppose f and g are free periodic diffeomorphisms oj (S , K) 
of the same order which respect X0. Then there exists a diffeomorphism g of 
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X0 which is conjugate to g\X0 by a diffeomorphism which is isotopic to the 
identity on dE(K) and such that f and g induce the same permutation on 
the components of dX0. 

Proof. Let p be the order of / and g. Suppose there is some collection 
{Tx, T2,. . . , Tr} of components of dX0 — dE(K) such that f(Tt) = Ti+X, 
for / < r, and f(Tr) = Tx. Then for all / ' ^ r w e have fr(Tt) = Tr But by 
Lemma 2.1, at most one component of dX0 — dE(K) is respected by f", 
for any n < p. Therefore, either / ro ta tes all the components of dX{) — 
dE(K) in cycles of order p, or / leaves one component invariant and 
rotates the others in cycles of order/?. Similarly for g. Since the order of 
both / a n d g is/?, it follows that / leaves one component invariant if and 
only if g leaves one component invariant. Both / and g leave dE(K) 
invariant. So the permutations of the components of dX0 induced by / a n d 
g are conjugate by a permutation which fixes dE(K). Now it follows from 
Lemma 2.2 that we can conjugate g by a diffeomorphism isotopic to the 
identity on dE(K), to get a diffeomorphism g which will induce the same 
permutation as / o n the components of dX0. 

LEMMA 2.4. Let K be a composite knot with exterior E(K) and first 
component X0. Suppose f and g are free periodic diffeomorphisms of(S,K) 
which respect X0, and which induce the same permutation on the components 
of dX0. Iff\dE(K) is conjugate to g\dE(K) by a diffeomorphism of dE(K) 
which is isotopic to the identity, then f\X0 is conjugate to g\X0 by a diffeo­
morphism of X0 which is isotopic to the identity on dX0. 

Proof By Lemma 2.2, XQ has a product structure such that / is a 
product action, and another product structure such that g is a product 
action; and these structures are isotopic. So after conjugating g by a 
diffeomorphism isotopic to the identity, we can assume that both / a n d g 
are product actions under the same S] X W structure. So by Lemma 2.2, 
f\X0 = f X f2 and g\X0 = g, X g2, where / , /2 , g,, g2, are orientation 
preserving periodic diffeomorphisms of the same order. So / , must be 
conjugate to g\, for some / < /?, by a diffeomorphism of S] which is iso­
topic to the identity. Also, since / a n d g induce the same permutation on 
the components of dX0 and W is planar, f2 must be conjugate to g", for 
some u < p, by a diffeomorphism which is isotopic to the identity on 3 W. 
So / , X f2 is conjugate to g\ X g2 by a diffeomorphism of X0 which 
is isotopic to the identity on 3^ 0 . However, by hypothesis, f\dE(K) is con­
jugate to g\dE(K) by a diffeomorphism of dE(K) which is isotopic to the 
identity. Now 

f\dE(K) = ( / X f2) \dE(K) and g\dE(K) = (g, X g2) \dE(K). 

Thus ( / X / 2) \dE(K) is conjugate to (g, X g2) \dE(K). So (g\ X gl{) \ 
dE(K) is conjugate to (gj X g2) \dE(K) by a diffeomorphism of dE(K) 
which is isotopic to the identity. Thus / = 1 and u = 1, and f\X0 is 

https://doi.org/10.4153/CJM-1987-049-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-049-3


FREE ACTIONS ON S3 977 

conjugate to g\X0 by a diffeomorphism which is isotopic to the identity 
on 3X0. 

Before we can prove Theorem 1 we need one final lemma to tell us how 
to glue together the conjugacy maps we obtain on different components of 
E(K) - T. 

LEMMA 2.5. Let X U Y be a 3-manifold with X n Y = T, a torus. Let f 
and g be free periodic diffeomorphisms of X U Y respecting X and Y. Let q 
and r be positive integers less than the order of g. Suppose f\X is conjugate to 
gq\X by a diffeomorphism $ of X which is isotopic to the identity on T; and 
f\ Y is conjugate to gr\ Y by a diffeomorphism ^ of Y which is isotopic to the 
identity on T. Then q = r and fis conjugate to gq by a diffeomorphism Y such 
that T\X = $. 

Proof On T, we have / = $gq$~l and / = tygrV~\ so 

Thus q = r. 
Pick a collar neighborhood T X / of T X {0} in Y, such that f\T X I is 

a product action. On T, the map O ^ - 1 commutes with / , and (^>^_1) \T 
is isotopic to the identity. Therefore, there is an induced diffeomorphism 
on T/(f) which is isotopic to the identity. We can lift this isotopy of 
T/(f) to get an isotopy H:T X I -> T X I such that Hx is the identity, 

H0 = ($* _ 1 ) | r x {0}, 

and H commutes with / on T X I. We shall define the diffeomorphism T 
as follows. First define Q: Y —> Y by 

@\T X / = H and @| (Y - (T X I) ) = the identity. 

Then define T|Y = 0 * . 

Now we finally prove Theorem 1r, which immediately implies Theorem 1. 

THEOREM Y. Let K be a non-trivial prime knot with exterior E(K). Iff 
and g are free periodic diffeomorphisms of(S , K) respecting E(K) which are 
of the same order, then f is conjugate to a power of g by a diffeomorphism 
which is isotopic to the identity on dE(K). 

Proof We argue by induction on the number c(K) of tori in a 
characteristic family for E(K). If c(K) = 0 then E(K) is atoroidal. So the 
theorem follows from Corollary 1.5. Assume the theorem is true for any 
non-trivial prime knot AT', with c(Kf) < n. Let AT be a non-trivial prime 
knot with c(K) = n > 0. By [5], there is an (/)-invariant characteristic 
family T, and a (g)-invariant characteristic family. These character­
istic families are isotopic by [4] [3]. So, after conjugating g by a 
diffeomorphism which is isotopic to the identity, we shall assume without 
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loss of generality, that r is invariant under both / a n d g. Thus 

/ ( T ) = T = g(T) and / ( 3 £ ( K ) ) = dE(K) = g(3E(tf ) ), 

so / (*o ) = * 0 = g(A-0). 
Let W = S3 — E(K). By Lemma 2.1 part 2), we can extend 

/ | (X0 U WO and g| (X0 U WO to free periodic diffeomorphisms / a n d g of 
(S3, K0, Lj). Since ^ is prime, X0 is not a composing space, hence it is 
either a cable space, or it is atoroidal and anannular. In the latter case, by 
[13]JL = K0 U Lj is a hyperbolic link. So by Proposition 1.2 or 1.4 applied 
to / and g, there is an integer q such that / is conjugate to gq by a 
diffeomorphism which is isotopic to the identity on (S , K0, L,). Hence 
f\X0 is conjugate to gq\X0 by a diffeomorphism 0 of Â 0 which is isotopic 
to the identity. In particular, / a n d gq induce the same permutation of the 
components of dX0. 

Let Yj, . . . , Ymbe the components of £ ( # ) — X0 which are moved by / 
and gq. For all i less than the order p of / by Lemma 2.1 part 3), 
f respects at most one component of E(K) — X0. Therefore Yh . . . , Ym 

are moved by f\ for all i < p. Let 

Z = X0 U Yx U . . . U Ym. 

Now the orbit space of Z under the action of / i s homeomorphic to the 
orbit space of Z under the action of gq. Thus the conjugacy map 4> of X{) 

can be extended to a conjugacy map of Z, which we will still call O. If 
there was no component of E{K) — X0 which / a n d gq left invariant then 
E(K) = Z and so we are done. 

Suppose there is some component Y of E(K) — X0 which / a n d gq leave 
invariant. By [11], Y is the exterior E(K') of a non-trivial knot K'. Since gq 

leaves Y invariant, and p and q are relatively prime, g also must leave Y 
invariant. So f\E(K') and g\E(K') are free orientation preserving periodic 
diffeomorphisms of order p. Using radial extension, f\E(K') and g\E{Kf) 
can be extended to periodic diffeomorphisms / and g' of (S3, Kr). Now 
since f\dE(K') and g\dE(K') are free, f and g' preserve the orientation of 
K'. Thus if any power of / and g' fixed any point of K they would fix 
every point of K and hence contradict the Smith Conjecture [8]. Thus, in 
fact, / and gr are free. 

We consider the situations when K is prime and when Kf is composite 
separately. Suppose K is prime. Then since c(K') < c(K), we can apply 
the inductive hypothesis to K'. Thus / is conjugate to (g0r by a 
diffeomorphism <3>r which is isotopic to the identity on dE(K'). Now by 
Lemma 2.5, we can glue the conjugacy maps on E(K') and X0 together. 
Also be Lemma 2.5 we can conclude that q = r. Thus / i s conjugate to gq 

by a diffeomorphism which is isotopic to the identity on dE(K), so we 
are done. 

Now suppose K was composite. Let Xx be the first component of 
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E(K') — T. By Lemma 2.3, there is a diffeomorphism ty of E(K') which is 
isotopic to the identity on dE(K') and such that / ' and ^ g ' ^ - 1 induce the 
same permutat ion on the components of dX}. Now start the proof from 
the beginning using h = ^ g ' ^ - 1 instead of g. Thus f\Z is conjugate to 
hq\Z by a diffeomorphism 0 of Z which is isotopic to the identity. Now f 
and h induce the same permutation of the components of dXx. So by 
Lemma 2.4, f\X} is conjugate to hq\Xx by a diffeomorphism <£' of Xx which 
is isotopic to the identity on dXx. Glue 4> and <[>' together using Lemma 
2.5. Thus f\ (Z U Xx) is conjugate to hq\ (Z U X t ) by a diffeomorphism 
which is isotopic to the identity on 3(Z U X,). Now repeat the above 
arguments for the action of / a n d h on the components of E(KX) — Xx. 
Eventually we conclude that / is conjugate to hq by a diffeomorphism 
y which is isotopic to the identity on èE(K). Thus fis conjugate to gq 

by ^ y which is isotopic to the identity on dE(K). 

It is important to observe that the conjugacy map we constructed above 
is not necessarily isotopic to the identity on all of E(K). This is because 
Dehn twists may occur when we glue the conjugacy maps together along 
the tori in T. 

T H E O R E M 2.6. Let K be a composite knot with exterior E(K). Suppose/ 
and g are free periodic diffeomorphisms of(S , K) of the same order such that 
f\dE(K) is conjugate to gq\dE(K) by a diffeomorphism of dE(K) which 
is isotopic to the identity. Then f is conjugate to gq by a diffeomorphism 
which is isotopic to the identity on dE(K). 

Proof This is just the second half of the proof of Theorem 1. 

3. Theorem 2. As in Theorem 1, we will proceed by induction on the 
number of characteristic tori. We begin with a preliminary lemma. 

L E M M A 3.1. Let T be a torus with free orientation preserving periodic 
diffeomorphisms hx and h2, both of order m. Let p and q be relatively prime 
integers such that m = pq. Suppose h\ is conjugate to hj, and hp

x is conjugate 
to hp

2, in each case by a diffeomorphism which is isotopic to the identity. Then 
hx is conjugate to h2 by a diffeomorphism which is isotopic to the identity. 

Proof For / = 1 and / = 2, the map ht is conjugate by a diffeomorphism 
isotopic to the identity to a map of the form 

&(a, j8) = (a + 2 ^ . / ^ , j8 + lirsi/bt) 

where (rir at) = (st, bt) = 1 and lcmfa,-, bt) = m. By hypothesis, h\ is 
conjugate to h\, and hp

x is conjugate to hp
2. Thus 

qrxlax == qr2/a2 (mod 1), qsx/bx = qs2lb2 (mod 1), 

prxlax = pr2/a2 (mod 1), and psx/bx = ps2/b2 (mod \). 

Since p and q are relatively prime, 
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r]/a] = r2/a2 (mod 1), and sx/bx = s2/b2 (mod 1). 

Hence hx is conjugate to h2 by a diffeomorphism which is isotopic to 
the identity. 

The proof of Proposition 3.2 is very similar to that of Theorem 1. 

PROPOSITION 3.2. Let K be a non-trivial prime knot all of whose 
companions are prime. Let f and g be free periodic diffeomorphisms of E(K) 
of order p and q respectively, with (/?, q) = 1. Then there is a free periodic 
diffeomorphism h ofE(K) of order m = pq, such thatfq and gp are conjugate 
to hq and hp respectively, by diffeomorphisms which are isotopic to the 
identity on dE(K). 

Proof We proceed by induction on c(K). If c(K) = 0, then K is a torus 
knot or a hyperbolic knot. So we apply Proposition 1.2 or 1.4. Suppose the 
proposition is true for any knot Kf satisfying the hypotheses and such that 
c(K) = n > 0. As in the proof of Theorem 1, we can assume, using [5], 
that T is a characteristic family for E(K) which is invariant under both / 
and g. Let X0 be the first component of E(K) — r. Also as in the proof of 
Theorem 1 we apply Proposition 1.2 or 1.4 to get a periodic diffeomor­
phism hx of X0 such that the order of hx ism = pq, and h\ = fq\X{Y and hp

x 

is conjugate to gp\X0 by a diffeomorphism of X0 which is isotopic to the 
identity. 

By Lemma 2.1, hx respects at most one component of E(K) — X{). 
Let Yh . . . , Ym be the components of E(K) — X0 which are moved by 
A,. Let 

z = A0ur Iu.. .uy f f l . 
Again as in Theorem 1, we can extend hx so that h\ = fq\Z, and hl\ is 
conjugate to gp\Z. If there was no component of E(K) — X0 which hx left 
invariant, then we are done. 

Suppose y is a component of E(K) — X0 which is respected by hx. 
Again Y is the exterior E(K') of a knot K\ satisfying the hypotheses of the 
proposition. Since c(K') < c(K) we can apply the inductive hypothesis to 
get a periodic diffeomorphism h2 of E(K') such that h\ and hp

2 are conju­
gate to fq\E{K') and gp\E(Kr), respectively, by diffeomorphisms which are 
isotopic to the identity on dE(K'). By Lemma 3.1, hx\dE(Kf) is conjugate 
to h2\dE(K') by a diffeomorphism of dE(K') which is isotopic to the 
identity. So conjugate h2\E(K') to get a diffeomorphism h2 of E(K') such 
that 

h2\dE(IC) = hx\dE(K'). 

Now define h on E(K) by h\E(K') = h2 and h\Z = hx\Z. Thus hq is conju­
gate to fq and hp is conjugate to gp, both by diffeomorphisms isotopic to 
the identity on dE(K). 
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THEOREM 2. Let K be a non-trivial prime knot, other than a torus knot, all 
of whose companions are prime. Then there is a cyclic group G which acts 
freely on (S , K) such that any free periodic diffeomorphism of (S , K) is 
conjugate to an element of G. 

Proof. Since K is not a torus knot, by [1], the orders of periodic dif-
feomorphisms of (S3, K) are bounded. Let / be a free periodic diffeo­
morphism of (S , K) of order p, such that p is a maximum. Let g be any 
other free periodic diffeomorphism of (S , K). Raise g to an appropriate 
power to obtain a free periodic diffeomorphism g' which has order ql\ 
where q is a prime. Suppose r = gcd(p, q") < qf\ and let s = p/r. Let 
f = fr. Then f is a free periodic diffeomorphism of (S3, K) with order s, 
and s is relatively prime to qn. Now by Proposition 3.2, there is a free 
periodic diffeomorphism h of (S~, K) of order m = sqn. Since r < qr\ it 
follows that m > p. But /? was chosen to be a maximum, hence r = q". 
Thus the order of g actually divides/». So by Theorem 1, g is conjugate to 
some power of f Thus, in fact, ( / ) is the free action G. 

If K is a torus knot then (S3, K) has an Sx-action which induces the 
Seifert fibration of E(K). By Lemma 1.3 and [14], any free periodic 
diffeomorphism of (S3, K) is conjugate to one which embeds in this 
Sx -action by a diffeomorphism which is isotopic to the identity. 

In figure 2 is an example to illustrate why our theorems fail for 
composite knots. This knot has three non-conjugate free Z4 actions 
determined by whether the knot is twisted meridianally by mil, 77, or 3-7772 
as it is rotated longitudinally by 77/2. The induced action on the 
composing space leaves the outer boundary component invariant, and 
rotates the other four components. 

n 
Figure 2 

https://doi.org/10.4153/CJM-1987-049-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-049-3


982 M. BOILEAU A N D E. F L A P A N 

We conclude by describing an example of how Theorem 2 can fail for a 
prime knot with a composite companion. Let / be a knot with a free 
Z2-action. Let Kx be the connected sum of three copies of J. Now, Kx has a 
free Z3-action which rotates the copies of J, as well as a free Z2-action 
which leaves one copy of J invariant and switches the other two. Observe 
that these two free actions do not embed in a cyclic action. Let K be a 
(5, 7)-cable on Kx. Then AT is a prime knot which has a free Z2-action and a 
free Z3-action, but these two actions do not embed in a cyclic action. 
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