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Abstract
In this paper we study the idea of consequentialism in dynamic games by considering
two versions: A commonly used utility-based version stating that the player’s preferences
are governed by a utility function on consequences, and a preference-based version which
faithfully translates the original idea of consequentialism to restrictions on the
player’s preferences. Utility-based consequentialism always implies preference-based
consequentialism, but the other direction is not necessarily true, as is shown by means of a
counterexample. In this paper we offer conditions under which the two notions are
equivalent.
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1. Introduction
In philosophy and decision theory, consequentialism reflects the assumption that a
person evaluates an act solely based on the possible consequences that this particular
act may induce, and nothing more. For a detailed account the reader may consult
Hammond (1988), the overviews by Sinnott-Armstrong (2023) and Machina (1989,
section 4), and the references therein.

In the game theoretic literature the notion of consequentialism has rarely been
discussed explicitly. However, the dynamic games we traditionally use implicitly
assume a strong version of consequentialism, by writing down utilities at the
terminal histories, and assuming that the player’s preferences are governed by such
utilities. We refer to this assumption as utility-based consequentialism. It is also
assumed in many well-known decision theoretic models such as von Neumann and
Morgenstern (1944), Savage (1954) and Anscombe and Aumann (1963). Indeed, in
these models the proposed axioms guarantee that the decision maker’s preferences
can be represented by a utility function on consequences, supplemented in Savage
(1954) and Anscombe and Aumann (1963) by a subjective belief on states.
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In classical game theory, the consequences in a dynamic game are typically
identified with the terminal histories – that is, streams of realized actions. We refer
to this as the realization-based consequence structure. But a player could also care
about more than just realized actions, as he may be interested in the counterfactual
actions that he, or his opponents, would have taken at unreached parts of the game
tree. As an illustration, consider the situation where you have a discussion with your
friend Barbara. After a calm start the discussion has entered a stage where you must
decide between staying, leaving the room while slamming the door and leaving the
room calmly. If you stay, Barbara has the option to either start shouting at you or to
teach you a lesson without raising her voice. This leads to the dynamic game form
depicted in Figure 1.

Suppose you are determined to leave, but you still have to decide whether to slam
the door or not. One could easily imagine a scenario where you would be prone to
slam the door if you believe that Barbara would counterfactually start shouting at
you if you were to stay, whereas you would prefer to leave calmly if you believe that
Barbara would not start shouting at you in that situation.

If the consequences would only comprise streams of realized actions then you
would no longer be qualified as a consequentialist, as your preferences also depend
on counterfactual, unrealized actions. However, in this scenario it seems plausible to
enlarge the set of consequences, such that a consequence would also contain the
counterfactual actions that Barbara would have taken at unreached parts of the
game tree. By such a consequentialization, you would now qualify as a
consequentialist.

In fact, the preferences outlined above would be allowed by the psychological
games model of Battigalli and Dufwenberg (2009), in which the player’s utility may
depend on the full strategies of his opponents, containing those opponents’ actions
at information sets he expects not to be reached. For this reason, we define utility-
based consequentialism relative to a consequence structure, which may, but need
not, coincide with the realized-based consequence structure where the consequences
are identified with the streams of realized actions.

The question we wish to investigate in this paper is to what extent the notion of
utility-based consequentialism faithfully represents the original idea of
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Figure 1. Illustration of consequentialism.

2 Andrés Perea

https://doi.org/10.1017/S0266267125100588 Published online by Cambridge University Press

https://doi.org/10.1017/S0266267125100588


consequentialism as described at the beginning of the Introduction. Or is this notion
too strong in some scenarios? To address this question we use the decision theoretic
framework by Gilboa and Schmeidler (2003) and Perea (2025a), which requires the
decision maker to hold a conditional preference relation assigning to every
probabilistic belief over the states a preference relation over his acts. The reason we
use this framework is that it naturally fits the analysis of games. Indeed, if we apply it
to dynamic games, then a player is supposed to hold a preference relation over his
own strategies for every possible probabilistic belief about the opponents’ strategies.
This naturally reflects the game theoretic element that the ranking of your own
strategies crucially depends on what you believe that others will do.

Within this decision-theoretic setting we formulate a preference-based version of
consequentialism which states that the ranking of two strategies under a given belief
should only depend on the probability distributions over consequences induced by
these two strategies under the belief, and nothing more. It is therefore a faithful
translation of the original idea of consequentialism to the setting of dynamic games.
Like with the utility-based version, we define preference-based consequentialism
relative to a consequence structure.

It turns out that utility-based consequentialism always implies preference-based
consequentialism, but the other direction may not be true. We offer an example of a
three-player game where past choices are imperfectly observed such that a particular
player satisfies preference-based, but not utility-based, consequentialism relative to
the realization-based consequence structure.

The difference between the two notions in this example is that utility-based
consequentialism induces additive preference intensities on consequences for this
player, whereas preference-based consequentialism does not. By additive preference
intensities on consequences we mean that for every three consequences x; y and z;
the sum of the intensity by which you prefer x to y and the intensity by which you
prefer y to z equals the intensity by which you prefer x to z:

In fact, we show in Theorem 4.1 that for every dynamic game form, utility-based
consequentialism relative to the realization-based consequence structure can be
characterized by respect of outcome-equivalent strategies and the condition that the
conditional preference relation at hand induces preference intensities on
consequences that are additive. Here, respect of outcome-equivalent strategies
means that the player must be indifferent between two strategies if he assigns
probability 1 to an opponents’ strategy combination that, in combination with the
two strategies, leads to the same consequence.

In turn, Theorem 4.2 states that preference-based consequentialism relative to
the realization-based consequence structure is equivalent to respect of outcome-
equivalent strategies and the weaker requirement that the induced preference
intensities on consequences need only be additive when applied to every pair of
strategies in isolation, but not necessarily for all strategies together. Hence, in
general, utility-based consequentialism imposes more restrictions than preference-
based consequentialism – the faithful translation of the idea of consequentialism.

In Theorem 5.1 we identify conditions under which the two notions of
consequentialism are equivalent, relative to the realization-based consequence
structure. More precisely, it is shown that if the dynamic game form either (i) has
only two strategies for the player under consideration, or (ii) has observed past
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choices or (iii) has only two players and satisfies perfect recall, then the two notions
of consequentialism are equivalent relative to the realization-based consequence
structure, assuming there is an expected utility representation for the conditional
preference relation and there are no weakly dominated strategies. For such
scenarios, the condition of additive induced preference intensities on consequences
is thus implied by preference-based consequentialism alone. These are precisely the
situations where writing down utilities at the terminal histories faithfully reflects the
original idea of consequentialism relative to the realization-based consequence
structure.

The outline of this paper is as follows: In section 2 we introduce our model of
a dynamic game and the decision-theoretic framework as described above.
In section 3 we lay out the two definitions of consequentialism. In section 4 we
provide an example where the two notions of consequentialism are not equivalent,
prove that, relative to the realization-based consequence structure, utility-based
consequentialism is equivalent to respect of outcome-equivalent strategies and the
condition that the induced preference intensities on consequences are additive, and
that preference-based consequentialism is equivalent to respect of outcome-
equivalent strategies and the condition that the induced preference intensities on
consequences are additive for every pair of strategies in isolation. In section 5
we identify a set of sufficient conditions under which the two notions of
consequentialism are equivalent, relative to the realization-based consequence
structure. In section 6 we provide some concluding remarks. The Appendix contains
the proofs of the three theorems, together with some definitions from graph theory,
some preparatory results, and a utility transformation procedure, which are needed
for the proofs.

2. Model
In this section we start by laying out our model of a dynamic game form, followed
by the definition of a strategy and that of a conditional preference relation for a
distinguished player.

2.1 Dynamic game forms

In this paper we consider finite dynamic games that allow for simultaneous
moves and imperfect information. Formally, a dynamic game form is a tuple
D � �I; P; Ia; �Ai;Hi�i2I ;Z�; where

(a) I is the finite set of players;
(b) P is the finite set of past action profiles, or histories;
(c) the mapping Ia assigns to every history p 2 P the (possibly empty) set of

active players Ia p
� � � I who must choose after history p: If Ia p

� �
contains

more than one player, there are simultaneous moves after p: If Ia p
� �

is
empty, the game terminates after p: By Pi we denote the set of histories p 2 P
with i 2 Ia p

� �
;

(d) for every player i; the mapping Ai assigns to every history p 2 Pi the finite set
of actions Ai p

� �
from which player i can choose after history p. The objects
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P; Ia and �Ai�i2I must be such that the empty history ∅ is in P; representing
the beginning of the game, and the non-empty histories in P are precisely
those objects �p; �ai�i2Ia p� �� where p is a history in P; the set Ia p

� �
is non-

empty, and ai 2 Ai p
� �

for every i 2 Ia p
� �

;
(e) for every player i there is a partition Hi of the set of histories Pi where i is

active. Every partition element hi 2 Hi is called an information set for player
i. In case hi contains more than one history, the interpretation is that player i
does not know at hi which history in hi has been reached. The objects Ai and
Hi must be such that for every information set hi 2 Hi and every two
histories p; p0 in hi;we have that Ai p

� � � Ai p
0� �
:We can thus write Ai hi� � for

the unique set of available actions at hi: Moreover, it must be that
Ai hi� � \ Ai h0i

� � � ∅ for every two distinct information sets hi; h0i 2 Hi;
(f) Z � P is the collection of histories p where the set of active players Ia p

� �
is

empty. Such histories are called terminal histories.

This definition follows Osborne and Rubinstein (1994), with the difference that
we do not specify utilities at the terminal histories. This is why we call it a dynamic
game form and not a dynamic game.

Based on this model we can derive the following definitions: We say that a history
p precedes a history p0 (or p0 follows p) if p0 results by adding some action profiles
after p: Let H :� [i2IHi be the collection of all information sets for all players. For
every two information sets h; h0 2 H; we say that h precedes h0 (or h0 follows h) if
there is a history p 2 h and a history p0 2 h0 such that p precedes p0: Two
information sets h; h0 are simultaneous if there is some history p which belongs
to both h and h0: We say that h weakly precedes h0 (or h0 weakly follows h)
if either h precedes h0; or h; h0 are simultaneous.

The dynamic game form satisfies perfect recall (Kuhn 1953) if every player always
remembers which actions he chose in the past, and which information he had about
the opponents’ past actions. Formally, for every player i; every information set
hi 2 Hi; and every two histories p; p0 2 hi; the sequence of player i actions in p and
p0 must be the same (and consequently, the collection of player i information sets
that p and p0 cross must be the same).

The dynamic game form has observed past choices, also known as observable
actions, if every player always observes all choices that have been made in the past.
Formally, for every player i; every information set hi 2 Hi consists of a single
history.

2.2 Strategies

A strategy for player i assigns an available action to every information set at which
player i is active, and that is not excluded by earlier actions in the strategy. Formally,
let ~si be a mapping that assigns to every information set hi 2 Hi some action
~si h� � 2 Ai h� �:We call~si a complete strategy. Then, a history p 2 P is excluded by~si if
there is some information set hi 2 Hi; with some history p0 2 hi preceding p; such
that ~si hi� � is different from the unique player i action at p0 leading to p: An
information set h 2 H is excluded by ~si if all histories in h are excluded by ~si: The
strategy induced by~si is the restriction of~si to those information sets in Hi that are
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not excluded by ~si: A mapping si :
~
Hi ! [h2~Hi

Ai h� �; where ~
Hi � Hi; is a strategy

for player i if it is the strategy induced by a complete strategy.1 By Si we denote the
set of strategies for player i; and by S�i :� × j≠ iSj the set of strategy combinations
for i’s opponents.

Consider a strategy profile s � �si�i2I in × i2ISi: Then, s induces a unique
terminal history z s� �: We say that the strategy profile s reaches a history p if p
precedes z s� �: Similarly, the strategy profile s is said to reach an information set h if s
reaches a history in h:

For a given information set h 2 H and player i we define the sets

S h� � :� fs 2 × i2ISi j s reaches hg;
Si h� � :� si 2 Si j there is some s�i 2 S�i such that si; s�i� � 2 S h� �f g; and
S�i h� � :� s�i 2 S�if j there is some si 2 Si such that �si; s�i� 2 S h� �g:

Intuitively, Si h� � is the set of strategies for player i that allow for information set h
to be reached, whereas S�i h� � is the set of opponents’ strategy combinations that
allow for h to be reached.

It is well-known that under perfect recall we have, for every player i and every
information set hi 2 Hi; that S hi� � � Si hi� � × S�i hi� �; and that under observed past
choices it holds that S h� � � × i2ISi h� � for every information set h:

For a given strategy si 2 Si; we denote by Hi si� � :� fhi 2 Hi j si 2 Si hi� �g the
collection of information sets for player i that the strategy si allows to be reached.
Similarly, for a given strategy combination s�i 2 S�i and a player j; we denote
by Hj s�i� � :� fhj 2 Hj j s�i 2 S�i hj

� �g the collection of information sets for
player j that the strategy combination s�i allows to be reached.

2.3 Conditional preference relations

Consider a dynamic game form D and a distinguished player i: Then, the acts, or
objects of choice, for player i are his strategies in Si; whereas the states, or the events
about which he is uncertain, are the opponents’ strategy combinations in S�i:
Following Gilboa and Schmeidler (2003) and Perea (2025a), player i holds for every
probabilistic belief about the states a preference relation over his acts. In the
definition below we denote by Δ S�i� � the set of probability distributions over S�i:

Definition 2.1 (Conditional preference relation) For a given dynamic game form
D; a conditional preference relation for player i is a mapping ≿i which assigns to
every belief βi 2 Δ S�i� � over the opponents’ strategy combinations a complete and
transitive preference relation ≿i;βi over the strategies in Si:

This concept reflects the crucial game theoretic element that player i’s ranking
over his strategies depends on the belief he holds about the opponents’ strategies.
For a given conditional preference relation ≿i and two strategies si; ti; we say that si

1What we call a “strategy” is sometimes called a “plan of action” in the literature (Rubinstein 1991), and
what we call a “complete strategy” is often called a “strategy”.
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weakly dominates ti under ≿i if si≿i;βi ti for every belief βi; and si�i;βi ti for some
belief βi:

3. Two Notions of Consequentialism
In this section we introduce the preference-based and the utility-based version of
consequentialism. As both notions depend on what the player views as the relevant
consequences, we start by defining consequence structures.

3.1 Consequence structures

Broadly speaking, consequentialism in a dynamic game form means that the player,
when evaluating his strategies, should only care about the possible consequences that
these strategies may induce, and nothing more. This, in turn, depends on what the
player views as the relevant consequences in the dynamic game. We will model this
by a consequence structure.

Definition 3.1 (Consequence structure) A consequence structure for a dynamic
game form D is pair �C; c� where C is a finite set of consequences, and
c : × i2ISi ! C is a consequence mapping that assigns to every combination of
strategies �si�i2I the consequence c��si�i2I� it induces.

The consequence structure is a personal object, as it specifies what a given player
deems important when evaluating his own strategies, in the light of the possible
strategies that his opponents may choose. We hereby follow Hammond (1988), who
argues that the consequences should contain everything that the decision maker
possibly cares about when making his decisions.

In classical game theory it is typically assumed that the consequences coincide
with the terminal histories in the dynamic game form. That is, the player only cares
about the realized actions, not about the counterfactual actions that he, or his
opponents, would have chosen at unreached parts of the game tree. We refer to this
as the realization-based consequence structure.

Definition 3.2 (Realization-based consequence structure) For a given dynamic
game form D, the realization-based consequence structure is the pair �Z; z�; where Z
is the set of terminal histories in D; and the mapping z : × i2ISi ! Z assigns to every
strategy combination �si�i2I the terminal history z��si�i2I� it induces.

As an illustration, consider the dynamic game form from Figure 1. If, after
leaving, you do not care about what Barbara would have done if you had stayed,
then the relevant consequence structure would be the realization-based consequence
structure �Z; z� in the left-hand panel of Table 1.

However, if after leaving you do care about what Barbara would have done if you
had stayed, then the appropriate consequence structure would be the pair �C; c� in
the right-hand panel of Table 1. Note that c��leave, slam door�; shout�≠ c��leave,
slam door�; don’t shout� and c��leave, don’t slam door�; shout�≠ c��leave, don’t slam
door�; don’t shout� in this case, which highlights that you do not only care about the
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realized actions, but also about Barbara’s counterfactual actions at unreached parts
of the game tree.

3.2 Preference-based consequentialism

For a given consequence structure, we call a conditional preference relation
preference-based consequentialist if for the ranking of two strategies under a given
belief, the player only pays attention to the probability distributions over
consequences induced by these two strategies under that particular belief.

To define it formally we need the following piece of notation: For a given
consequence structure �C; c�, strategy si and belief βi 2 Δ S�i� �; the induced
probability distribution P�si;βi� 2 Δ C� � over consequences is given by

P�si;βi� c� � :�
X

s�i2S�i :c�si;s�i��c

βi s�i� �

for all consequences c 2 C:2

Definition 3.3 (Preference-based consequentialism) A conditional preference
relation ≿i is preference-based consequentialist relative to a consequence structure
�C; c� if for every four strategies si; s0i; ti; t

0
i (not necessarily pairwise different) and

every two beliefs βi and β0
i (not necessarily different) with

P�si;βi� � P�s0i;β0i� and P�ti;βi� � P�t0i;β0i�

it holds that

si≿i;βi ti if and only if s0i≿i;β0i
t0i:

Table 1. Two consequence structures in the dynamic game form of Figure 1

Z; z� � shout don’t shout

stay z1 z2

leave, slam door z3 z3

leave, don’t slam door z4 z4

C; c� � shout don’t shout

stay c1 c2

leave, slam door c3 c4

leave, don’t slam door c5 c6

2Strictly speaking, the probability distribution P si ;βi� � also depends on the consequence structure C; c� �;
and thus we should write P si ;βi ;C;c� �: However, since it will always be clear which consequence structure we
are assuming, we simply write P si;βi� �; as to minimize notation.
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This definition is similar to the notion of probabilistic sophistication in Machina
and Schmeidler (1992) and Grant (1995), which states that within the Savage
framework, the decision maker holds a unique probabilistic belief over states, and
compares two acts only on the basis of their induced probability distributions over
consequences.

As an illustration, let us go back to the dynamic game form in Figure 1. Suppose
you are player 1 and Barbara is player 2. In the definition above choose the belief β1
for you that assigns probability 1 to Barbara shouting, the belief β0

1 that assigns
probability 1 to Barbara not shouting, the strategy s1 � s01 � �leave, slam door� and
the strategy t1 � t01 � �leave, don’t slam door�.

Under the realization-based consequence structure �Z; z� in the left-hand panel
of Table 1, we have that P�s1;β1� � P�s01;β01� � z3� 	 and P�t1;β1� � P�t01;β01� � z4� 	; where
z� 	 denotes the probability distribution that assigns probability 1 to consequence z:
Hence, if you are a preference-based consequentialist relative to �Z; z�, then
s1≿1;β1 t1 if and only if s1≿1;β01 t1: That is, your preference between �leave, slam door�
and �leave, don’t slam door� should not depend on the belief you have about
Barbara’s counterfactual attitude if you were to stay. This matches the intuition
behind the realization-based consequence structure �Z; z�; where only realized
actions are deemed important, and not counterfactual actions.

If, on the other hand, your consequence structure is more fine-grained, and given
by �C; c� in the right-hand panel of Table 1, then no such condition will be imposed
on your conditional preference relation under preference-based consequentialism.
In particular, a conditional preference relation ≿1 where

leave; slam door� � �1;β1 leave; don0t slam door� � and

�leave; don0t slam door� �1;β01�leave; slam door�
is compatible with preference-based consequentialism relative to �C; c�: That is,
under preference-based consequentialism relative to �C; c� you may prefer to slam
the door if you believe that Barbara would have started to shout if you had stayed,
and you may prefer to not slam the door if you believe that Barbara would have
stayed calm in that counterfactual situation. Also this is in accordance with the
particular consequence structure at hand, which reveals that counterfactual actions
may matter when evaluating your own strategies.

Using the more fine-grained consequence structure in this example may be
viewed as an instance of “consequentialization”, where the set of consequences is
enlarged as to make the preferences of the decision maker consequentialist.

3.3 Utility-based consequentialism

Following Gilboa and Schmeidler (2003) and Perea (2025a), we say that a
conditional preference relation has an expected utility representation if there is a
utility function, assigning to every act-state pair some utility, such that for every
belief the decision maker prefers act a to act b precisely when the first act induces a
higher expected utility than the second.
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Definition 3.4 (Expected utility representation) Consider a conditional preference
relation ≿i and a utility function ui : Si × S�i ! R: Then, ui is an expected utility
representation for ≿i if for every belief βi 2 Δ S�i� �; and every two strategies si; ti; we
have that si≿i;βi ti if and only ifX

s�i2S�i
βi s�i� � 
 ui�si; s�i� ≥

X
s�i2S�i

βi s�i� � 
 ui�ti; s�i�:

If, relative to a given consequence structure, this expected utility representation
assigns the same utility to any two strategy combinations that induce the same
consequence, then we say that the conditional preference relation is utility-based
consequentialist.

Definition 3.5 (Utility-based consequentialism) A conditional preference relation
x≿i is utility-based consequentialist relative to a consequence structure �C; c� if it
has an expected utility representation ui such that for every two strategies si; ti and
every two opponents’ strategy combinations s�i; t�i with c�si; s�i� � c�ti; t�i� it holds
that ui�si; s�i� � ui�ti; t�i�:

A utility function ui satisfying the condition above, that ui�si; s�i� � ui�ti; t�i�
whenever c�si; s�i� � c�ti; t�i�; is said to be measurable with respect to the
consequence structure �C; c�: Equivalently, utility-based consequentialism can be
defined as follows: A conditional preference relation ≿i is utility-based
consequentialist relative to �C; c� if there is a utility function wi : C ! R on
consequences, such that si≿i;βi ti if and only ifX

s�i2S�i
βi s�i� � 
 �wi � c��si; s�i� ≥

X
s�i2S�i

βi s�i� � 
 �wi � c��ti; s�i�; (1)

for every two strategies si; ti and every belief βi:
In particular, if we take the realization-based consequence structure �Z; z�; then

(1) states that the conditional preferences are induced by a utility function wi on
terminal histories. This is the traditional way in which consequentialism in dynamic
games is modelled. As such, game theory typically assumes utility-based
consequentialism relative to the realization-based consequence structure.

Utility-based consequentialism is also related to Hammond’s (1988) notion of
consequentialism, which states that whenever two decision trees are equivalent in
terms of consequences, then the prescribed behavior in the two trees must be
equivalent in terms of consequences as well. That is, the prescribed behavior in a
decision tree should only depend on the feasible consequences – not on the precise
structure of the decision tree. In Theorem 9 of Hammond (1988) it is shown that his
notion of consequentialism, in combination with continuity, implies that the
prescribed behavior is governed by a utility function on consequences only.

As an illustration of utility-based consequentialism, consider the dynamic game
form from Figure 1, and the conditional preference relation ≿1 for you that has the
expected utility representation u1 given by Table 2.

Assume the realization-based consequence structure �Z; z� from the left-hand
panel in Table 1. Note that z��leave, slam door�, shout� � z��leave, slam door�, do
not shout� but u1��leave, slam door�, shout�≠ u1��leave, slam door�, do not shout�:
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Despite this, it can be shown that ≿1 is utility-based consequentialist relative to
�Z; z�. Indeed, suppose we add the fixed utility 1 to all utilities in the second column,
leading to a new utility function v1. Then, for every belief the expected utility
differences between strategies will be the same in u1 as in v1, which implies that also
v1 will be an expected utility representation for ≿1:Moreover, it can be verified that
the new utility function v1 is measurable with respect to �Z; z�; and hence ≿1 is
utility-based consequentialist.

It is easily seen that, relative to any consequence structure, every conditional
preference relation which is utility-based consequentialist is also preference-based
consequentialist. However, as we will see in the following section, the other direction
is not always true.

To close this section, let us go back to the example from Figure 1 with the
conditional preference relation ≿1 for you given by the utility function u1 in Table 2.
Suppose we replace the utility 3 by a utility of 6: Then, you prefer �leave, slam door�
to �leave, don’t slam door� if you believe that Barbara would start shouting if you
were to stay, whereas the ranking would be reversed if you believe that Barbara
would not start shouting in this case. Such a conditional preference relation would
not be preference-based consequentialist, and therefore also not utility-based
consequentialist, relative to the realization-based consequence structure �Z; z�.
However, it would be utility-based consequentialist, and hence preference-based
consequentialist, relative to the more fine-grained consequence structure �C; c� in
the right-hand panel of Table 1.

Although this conditional preference relation is excluded by the classical
approach to dynamic games, which assumes utility-based consequentialism relative
to the realization-based consequence structure, it is allowed by the psychological
games model of Battigalli and Dufwenberg (2009). In their definition of a
psychological game, the utility of a player may depend on the full strategies used by
his opponents – and hence in particular on the counterfactual choices of his
opponents at information sets he believes will not be reached. Such counterfactual
choices by the opponents may matter for the player’s preferences as they may trigger
certain emotions that affect his decision making process, even if these choices are
not realized along the course of play. The more fine-grained consequence structure
�C; c� above may account for such emotions.

The conditional preference relation above is also ruled out by the notion of
consistent behavior norms in Hammond (1988), which states that the decision at a
certain node in the decision tree should only depend on the subtree that follows this
node. This is clearly violated by the conditional preference relation at hand, since
your preference between slam door and don’t slam door at the lower decision node

Table 2. Expected utility representation in game of Figure 1

shout don’t shout

stay 2 0

leave, slam door 3 2

leave, don’t slam door 5 4

Economics and Philosophy 11

https://doi.org/10.1017/S0266267125100588 Published online by Cambridge University Press

https://doi.org/10.1017/S0266267125100588


depends on the choice that Barbara would have made at the upper decision node,
which is not included in the subtree that follows the lower decision node.

4. Difference Between the Two Notions
In this section we first present an example where utility-based consequentialism is
more restrictive than preference-based consequentialism, at least for some
consequence structures. We will see that utility-based consequentialism requires
the decision maker to hold additive preference intensities on consequences – a
property that is not required by preference-based consequentialism in this example.
We proceed by offering a formal definition of additive preference intensities on
consequences and show that, in the absence of weakly dominated strategies
and relative to the realization-based consequence structure, utility-based
consequentialism is equivalent to respect of outcome-equivalent strategies and
having additive preference intensities on consequences. Moreover, it is shown that,
under the same conditions, preference-based consequentialism is equivalent to
respect of outcome-equivalent strategies and having additive preference intensities
on consequences for every pair of strategies.

4.1 Example

We will now present an example where utility-based consequentialism is more
restrictive than preference-based consequentialism. Consider the dynamic game
form in the left-hand panel of Figure 2.

Note that there are three players. The information sets for player 1 are h1 and h01;
whereas h2 and h3 are the unique information sets for players 2 and 3, respectively.
The information sets h01 and h2 represent a history where players 1 and 2 choose
simultaneously. The terminal histories are z1; . . . ; z8: At information set h01; the
action pair �c; e� leads to the terminal history z1 whereas �d; f � leads to the terminal
history z2: The sets of strategies for the three players are S1 � f�a; c�; �a; d�; bg;
S2 � fe; f g and S3 � fg; hg; respectively.

Figure 2. Utility based consequentialism may be stronger than preference-based consequentialism.
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We view the dynamic game form from the viewpoint of player 1. Consider the
realization-based consequence structure �Z; z�; depicted by Table 3.

It is first shown that every conditional preference relation ≿1 for player 1 with an
expected utility representation and without weakly dominated strategies is
preference-based consequentialist relative to �Z; z�. In other words, preference-
based consequentialism relative to �Z; z� imposes no additional restrictions.

To see this, consider a conditional preference relation ≿1 with an expected
utility representation u1 such that no two strategies weakly dominate one another.
To show that ≿1 is preference-based consequentialist relative to �Z; z�, consider
four strategies s1; s

0
1; t1; t

0
1 and two beliefs β1;β

0
1 with P�s1;β1� � P�s01;β01� and

P�t1;β1� � P�t01;β01�: We must show that s1≿1;β1 t1 if and only if s01≿1;β01 t
0
1:

As different strategies for player 1 lead to different terminal histories we must
have that s1 � s01 and t1 � t01: If s1 � t1 then it trivially holds that s1≿1;β1 t1 if and
only if s01≿1;β01 t

0
1: Let us therefore assume that s1 ≠ t1:

Suppose first that s1 � �a; c� and t1 � �a; d�: Since P��a;c�;β1� � P��a;c�;β01� it
follows from Table 3 that β1�f ; g� � β0

1�f ; g� and β1�f ; h� � β0
1�f ; h�: Similarly, as

P��a;d�;β1� � P��a;d�;β01� it follows that β1�e; g� � β0
1�e; g� and β1�e; h� � β01�e; h�: We

thus conclude that β1 � β0
1: But then, it trivially holds that s1≿1;β1 t1 if and only if

s01≿1;β01 t
0
1 since s1 � s01 and t1 � t01:

Suppose next that s1 � �a; c� and t1 � b: Since P��a;c�;β1� � P��a;c�;β01� we
must have that β1�f ; g� � β0

1�f ; g� and β1�f ; h� � β0
1�f ; h�: Moreover, as

P�b;β1� � P�b;β01� it follows that β1�e; g� � β1�f ; g� � β0
1�e; g� � β0

1�f ; g� and
β1�e; h� � β1�f ; h� � β0

1�e; h� � β0
1�f ; h�: Altogether, we thus conclude that

β1 � β0
1: But then, it trivially holds that s1≿1;β1 t1 if and only if s01≿1;β01 t

0
1 since

s1 � s01 and t1 � t01:
Suppose finally that s1 � �a; d� and t1 � b: Since P��a;d�;β1� � P��a;d�;β01� we must

have that β1�e; g� � β0
1�e; g� and β1�e; h� � β0

1�e; h�: Moreover, as P�b;β1� � P�b;β01�
it follows that β1�e; g� � β1�f ; g� � β0

1�e; g� � β0
1�f ; g� and

β1�e; h� � β1�f ; h� � β0
1�e; h� � β0

1�f ; h�: Altogether, we thus conclude that
β1 � β0

1: But then, it trivially holds that s1≿1;β1 t1 if and only if s01≿1;β01
t01 since

s1 � s01 and t1 � t01: Summarizing, we conclude that ≿1 is preference-based
consequentialist relative to �Z; z�.

We next show that utility-based consequentialism relative to �Z; z� imposes
restrictions that are absent under preference-based consequentialism. To see this,
consider a conditional preference relation ≿1 without weakly dominated strategies
that is utility-based consequentialist relative to �Z; z�. Then, ≿1 has an expected
utility representation u1 which is measurable with respect to �Z; z�. Note from

Table 3. Realization-based consequence structure for the dynamic game form in Figure 2

Z; z� � e; g� � f ; g� � e; h� � f ; h� �

a; c� � z1 z3 z1 z4

a; d� � z5 z2 z6 z2

b z7 z7 z8 z8
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Table 3 that

z b; e; g
� �� � � z b; f ; g

� �� � � z7; z a; d� �; f ; g
� �� � � z a; d� �; f ; h

� �� � � z2;
z a; c� �; e; g

� �� � � z a; c� �; e; h� �� � � z1; z b; e; h� �� � � z b; f ; h
� �� � � z8;

which is visualized by the graph GD
1 in the right-hand panel of Figure 2. As u1 is

measurable with respect to �Z; z�; we must have that

u1 b; e; g
� �� � � u1 b; f ; g

� �� �
; u1 a; d� �; f ; g

� �� � � u1 a; d� �; f ; h
� �� �

;
u1 a; c� �; e; g

� �� � � u1 a; c� �; e; h� �� �; u1 b; e; h� �� � � u1 b; f ; h
� �� �

;

which implies that

u1�b; �f ; g�� � u1��a; d�; �f ; g��
� �� u1��a; d�; �f ; h�� � u1�b; �f ; h��

� �
� u1�b; �e; g�� � u1��a; c�; �e; g��

� �� u1��a; c�; �e; h�� � u1�b; �e; h��� 	: (2)

Since there are no weakly dominated strategies under ≿1; it follows from Perea
(2025a) that the utility differences v1�s1; s�1� � v1�t1; s�1� are unique across all
expected utility representations v1 for ≿1; up to a positive multiplicative constant.
This means that (2) applies to all expected utility representations v1 for ≿1; and is
thus a structural property of the conditional preference relation ≿1: In fact, it turns
out that the restriction in (2) characterizes all conditional preference relations ≿1
that are utility-based consequentialist.

But what does (2) intuitively mean? In Perea (2025a) it is argued that for a
conditional preference relation ≿1 without weakly dominated strategies, the utility
difference v1�s1; s�1� � v1�t1; s�1�; which is unique up to a positive multiplicative
constant, can be interpreted as the intensity by which player 1 prefers s1 to t1 under
the belief that the opponents choose s�1: This intensity will be negative if
v1�s1; s�1� < v1�t1; s�1�. If we assume that v1 is measurable with respect to �Z; z�, as
we do in this example, then v1�s1; s�1� � v1�t1; s�1� also represents the intensity by
which player 1 prefers the consequence z�s1; s�1� to the consequence z�t1; s�1�; thus
leading to a cardinal interpretation of the utility function.

Consider now the first utility difference in (2), which is
u1�b; �f ; g�� � u1��a; d�; �f ; g��: As z�b; �f ; g�� � z7 and z��a; d�; �f ; g�� � z2; the
utility difference represents the intensity by which player 1 prefers consequence z7
to consequence z2; denoted by intz7�z2 : In a similar way, the second term in (2)
represents intz2�z8 ; the third term represents intz7�z1 ; whereas the last term
represents intz1�z8 : Put together, (2) can be read as

intz7�z2 � intz2�z8 � intz7�z1 � intz1�z8 : (3)

If we assume that preference intensity between consequences is an additive
notion, then both intz7�z2 � intz2�z8 and intz7�z1 � intz1�z8 represent the intensity
by which player 1 prefers consequence z7 over consequence z8: As such, condition
(3), as well as condition (2), reflect the assumption that the player’s preference
intensities on consequences are additive.

Summarizing, we see that utility-based consequentialism requires player 1’s
preference intensities on consequences to be additive, whereas preference-based
consequentialism does not impose such condition in this particular example.
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It may even happen in this example that preference-based consequentialism
allows for non-transitive preferences on consequences. To see this, consider the
conditional preference relation ≿1 given by the expected utility representation u1 in
Table 4.

It follows from our findings above that ≿1 is preference-based consequentialist
relative to �Z; z�.

The facts that u1�b; �f ; g�� � u1��a; d�; �f ; g�� and u1��a; d�; �f ; h�� �
u1�b; �f ; h�� seem to suggest that player 1 is indifferent between consequences z7
and z2; and is indifferent between z2 and z8: On the other hand,
u1�b; �e; g�� > u1��a; c�; �e; g�� and u1��a; c�; �e; h�� > u1�b; �e; h�� seem to indicate
that player 1 prefers z7 to z1; and prefers z1 to z8: This can only be if player 1’s
preferences over consequences are non-transitive.

4.2 Additive preference intensities on consequences

Based on the example above we will now give a formal expression of additive
preference intensities on consequences, which is implied by utility-based
consequentialism. To this purpose we need the following piece of notation: For a
consequence structure �C; c�; strategy si; a pair of opponents’ strategy combinations
s�i; t�i and a consequence c 2 C we write s�i �si;c t�i if c�si; s�i� � c�si; t�i� � c:

Definition 4.1 (Additive preference intensities on consequences) Consider a
conditional preference relation ≿i with an expected utility representation ui and
without weakly dominated strategies, and a consequence structure �C; c�. Then,≿i
induces additive preference intensities on consequences relative to �C; c� if for every
two opponents’ strategy combinations s
�i; t



�i, and every two paths

s
�i �
s1i ;c

1

s2�i �
s2i ;c

2

s3�i . . . �sK�1i ;cK�1
sK�i �s

K
i ;c

K

t
�i
and

s
�i �t
1
i ;d

1

t2�i �t
2
i ;d

2

t3�i . . . �tL�1i ;dL�1
tL�i �t

L
i ;d

L

t
�i
from s
�i to t
�i it holds that

ui�s1i ; s2�i� � ui�s2i ; s2�i�
� �� ui�s2i ; s3�i� � ui�s3i ; s3�i�

� �� . . .

. . .� ui�sK�1i ; sK�i� � ui�sKi ; sK�i�
� �� ui�sKi ; t
�i� � ui�tLi ; t
�i�

� �

Table 4. Non-transitive preferences on consequences for the dynamic game form in Figure 2

e; g� � f ; g� � e; h� � f ; h� �

a; c� � �1 0 1 0

a; d� � 0 0 0 0

b 0 0 0 0
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� ui�s1i ; s
�i� � ui�t1i ; s
�i�
� �� ui�t1i ; t2�i� � ui�t2i ; t2�i�

� ��
� ui�t2i ; t3�i� � ui�t3i ; t3�i�

� �� . . .� ui�tL�1i ; tL�i� � ui�tLi ; tL�i�
� �

:

As there are no weakly dominated strategies under ≿i; it follows by Perea (2025a)
that the sums of the utility differences on the left-hand side and right-hand side are
unique up to a (common) positive multiplicative constant. Therefore, the equality is
a structural property of ≿i that holds for all expected utility representations ui
for ≿i:

Note that the sum of the utility differences on the left-hand side represents

intc1�c2 � intc2�c3 � . . .� intcK�1�cK � intcK�dL (4)

whereas the sum of the utility differences on the right-hand side amounts to

intc1�d1 � intd1�d2 � intd2�d3 � . . .� intdL�1�dL : (5)

The condition in the definition thus states that the sums of the preference
intensities in (4) and (5) must be equal. As, under additivity, both sums represent
the intensity by which player 1 prefers consequence c1 to consequence dL; the
condition in the definition reflects the assumption that the player’s preference
intensities on consequences are additive.

4.3 Characterization of utility-based consequentialism

It turns out that the condition of additive preference intensities on consequences,
together with an additional condition called respect of outcome-equivalent strategies
(Perea 2025b), characterizes precisely those conditional preference relations that are
utility-based consequentialist, provided we use the realization-based consequence
structure. Respect of outcome-equivalent strategies states that a player must be
indifferent between two strategies if he assigns probability 1 to an opponents’
strategy combination that, together with the two strategies, leads to the same
consequence. In the definition below, we denote by s�i� 	 the belief that assigns
probability 1 to the opponents’ strategy combination s�i:

Definition 4.2 (Respect of outcome-equivalent strategies) A conditional
preference relation ≿i respects outcome-equivalent strategies relative to a
consequence structure �C; c� if for every two strategies si; ti and every opponents’
strategy combination s�i where c�si; s�i� � c�ti; s�i�; it holds that si�i; s�i� 	ti:

We now show that, together with additive preference intensities on consequences,
this property characterizes utility based consequentialism, provided we use the
realization-based consequence structure.

Theorem 4.1 (Characterization of utility-based consequentialism) Consider a
dynamic game form D; a player i, a conditional preference relation ≿i for player i that
has an expected utility representation and under which there are no weakly
dominated strategies, and the realization-based consequence structure �Z; z�. Then,
≿i is utility-based consequentialist relative to �Z; z� if and only if ≿i induces additive
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preference intensities on consequences relative to �Z; z�, and respects outcome-
equivalent strategies relative to �Z; z�.

It is relatively easy to show that under the conditions in the theorem, utility-
based consequentialism implies that the conditional preference relation induces
additive preference intensities on consequences and respects outcome-equivalent
strategies. For showing the former property, we basically follow the steps we have
performed in the example of Figure 2.

Showing the other direction is more difficult: Under the conditions in the
theorem, and assuming that ≿i induces additive preference intensities on
consequences and respects outcome-equivalent strategies, we explicitly show how
to transform an arbitrary expected utility representation ui into a new expected
utility representation vi that is measurable with respect to �Z; z�. We will now
illustrate this direction of the proof by means of the example of Figure 2.

We will again view the situation from player 1’s perspective. Consider the
realization-based consequence structure �Z; z�: In the sequel, we will no longer write
“relative to �Z; z�” everywhere, as it is understood that everything is viewed relative
to �Z; z�: The induced consequences are repeated in the left-hand panel of Table 5.

Suppose that the conditional preference relation ≿1 is given by the expected
utility representation u1 in the right-hand panel of Table 5, where x1; . . . ; x12
represent the 12 utilities. Assume that the utility function u1 is such that ≿1 induces
additive preference intensities on consequences, and that there are no weakly
dominated strategies for player 1.

We now transform u1, in a step-by-step fashion, into a new expected utility
representation v1 that is measurable with respect to �Z; z�. We keep the utilities
x1; x2 and x3 in column �e; g� as they are.

We then move to column �f ; g�: Note that z�b; �e; g�� � z�b; �f ; g��. At column
�f ; g� we therefore add a constant utility x3 � x6 to the entries in that column such
that v1�b; �e; g�� � v1�b; �f ; g��:

Also, z��a; c�; �e; g�� � z��a; c�; �e; h��: Similarly, we then add a constant utility
x1 � x7 to the entries in column �e; h� such that v1��a; c�; �e; g�� � v1��a; c�; �e; h��:
This leads to the utility function in the left-hand panel of Table 6.

Table 5. Consequence structure and expected utility representation in the dynamic game form of Figure 2

e; g� � f ; g� � e; h� � f ; h� �

a; c� � z1 z3 z1 z4

a; d� � z5 z2 z6 z2

b z7 z7 z8 z8

u1 e; g� � f ; g� � e; h� � f ; h� �
a; c� � x1 x4 x7 x10

a; d� � x2 x5 x8 x11

b x3 x6 x9 x12
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Here, the numbers y4; y5; x3; x1; y8 and y9 in the second and third column denote
the new utilities for v1 in those columns.

Finally, we move to the remaining column �f ; h�: Note that z��a; d�; �f ; g�� �
z��a; d�; �f ; h�� and z�b; �e; h�� � z�b; �f ; h��: At column �f ; h� we add a constant
utility y5 � x11 to the entries in that column such that v1��a; d�; �f ; g�� �
v1��a; d�; �f ; h��: This leads to the utility function v1 in the right-hand panel of
Table 6. As v1 has been obtained from u1 by adding a constant utility to each of the
columns, it follows that v1 is also an expected utility representation of ≿1: The
procedure we have used here is called the utility transformation procedure, and is
described formally in the Appendix.

We will now show that v1 is measurable with respect to �Z; z�, by proving that
y9 � y12: Our construction above guarantees that

v1 b; e; g
� �� � � v1 b; f ; g

� �� �
; v1 a; c� �; e; g

� �� � � v1 a; c� �; e; h� �� �;
v1 a; d� �; f ; g

� �� � � v1 a; d� �; f ; h
� �� �

:
(6)

Consider the graph GD
1 in the right-hand panel of Figure 2. Note that this graph

contains two alternative paths from �e; g� to �f ; h�: As ≿1 induces additive
preference intensities on consequences, we conclude that

v1�b; �f ; g�� � v1��a; d�; �f ; g��
� �� v1��a; d�; �f ; h�� � v1�b; �f ; h��

� �
� v1�b; �e; g�� � v1��a; c�; �e; g��

� �� v1��a; c�; �e; h�� � v1�b; �e; h��� 	: (7)

By combining (6) and (7) we conclude that v1�b; �f ; h�� � v1�b; �e; h��; and
hence y9 � y12: Therefore, v1 is measurable with respect to �Z; z�: As v1 is an
expected utility representation for ≿1; it follows that ≿1 is utility-based
consequentialist relative to �Z; z�.

4.4 Characterization of preference-based consequentialism

Above we have seen that, relative to the realization-based consequence structure,
utility-based consequentialism can be characterized by requiring that the induced
preference intensities on consequences are additive and that the conditional

Table 6. Construction of utility function v1 in the dynamic game form of Figure 2

e; g� � f ; g� � e; h� � f ; h� �

a; c� � x1 y4 x1 x10

a; d� � x2 y5 y8 x11

b x3 x3 y9 x12

e; g� � f ; g� � e; h� � f ; h� �
a; c� � x1 y4 x1 y10

a; d� � x2 y5 y8 y5

b x3 x3 y9 y12
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preference relation respects outcome-equivalent strategies. This raises the question:
How does preference-based consequentialism relate to additive preference
intensities on consequences? The following result shows that this weaker version
of consequentialism is equivalent to demanding that every pair of strategies induces
additive preference intensities on consequences, together with requiring respect of
outcome-equivalent strategies.

To formally state this result we need the following piece of notation. For a given
conditional preference relation ≿i and pair of strategies fsi; tig; we denote by ≿fsi;tig

i
the restriction of ≿i to the strategies si and ti: That is, ≿

fsi;tig
i ranks, for every belief,

only the strategies si and ti; and for every belief βi we have that si≿
fsi;tig
i;βi

ti if and only
if si≿i;βi ti and ti≿

fs;tig
i;βi

si if and only if ti≿i;βi si:

Theorem 4.2 (Characterization of preference-based consequentialism) Consider
a dynamic game form D; a player i, a conditional preference relation ≿i for player i
that has an expected utility representation and under which there are no weakly
dominated strategies, and the realization-based consequence structure �Z; z�. Then,
≿i is preference-based consequentialist relative to �Z; z� if and only if ≿i respects
outcome-equivalent strategies relative to �Z; z�, and for every pair of strategies si; ti
the restricted conditional preference relation ≿fsi;tig

i induces additive preference
intensities on consequences relative to �Z; z�.

The proof of this theorem can be found after the proof of Theorem 5.1 in the
Appendix, as it relies on some parts of the proof of Theorem 5.1. In view of the
Theorems 4.1 and 4.2, the difference between utility-based and preference-based
consequentialism can be characterized by the induced preference intensities on
consequences: Utility-based consequentialism requires these preference intensities
to be additive for the set of all strategies, whereas preference-based consequentialism
only demands this property for every pair of strategies in isolation.

An immediate consequence of Theorems 4.1 and 4.2 is that a conditional
preference relation ≿i is preference-based consequentialist relative to �Z; z�
precisely when the restricted conditional preference relation ≿fsi;tig

i is utility-based
consequentialist relative to �Z; z� for every pair of strategies si; ti:However, for every
pair si; ti a different expected utility representation usi;tii may be used that is
measurable with respect to �Z; z�: In general it may not be possible to “merge” these
different utility functions into a single expected utility representation ui that is
measurable with respect to �Z; z� and that works for all pairs of strategies
simultaneously. For this to be possible, we need that ≿i induces additive preference
intensities on consequences relative to �Z; z�:

5. When the Two Notions are Equivalent
As the example in Figure 2 has shown, there are dynamic game forms where
preference-based and utility-based consequentialism are different. The reason is
that utility-based consequentialism implies additive preference intensities over
consequences, whereas preference-based consequentialism only implies this
property for every pair of strategies. The example in Figure 2 shows that the
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first condition may be more demanding than the second. It may thus be argued that
for these scenarios, the notion of utility-based consequentialism imposes more than
what is required by the original idea of consequentialism.

We will now provide sufficient conditions under which the two notions of
consequentialism are equivalent, provided we use the realization-based consequence
structure.

Theorem 5.1 (Equivalence) Consider a dynamic game form D and a player i such
that either (i) player i only has two strategies, (ii) D has observed past choices or (iii) D
only has two players and satisfies perfect recall. Moreover, consider a conditional
preference relation ≿i for player i without weakly dominated strategies that has an
expected utility representation. Then, ≿i is preference-based consequentialist relative
to the realization-based consequence structure �Z; z� if and only if ≿i is utility-based
consequentialist relative to �Z; z�.

Note that the example from the previous section, where the two notions of
consequentialism are not equivalent relative to �Z; z�, violates the conditions (i), (ii)
and (iii) above. Indeed, the dynamic game form in the example has more than two
strategies for player 1, violates observed past choices and has more than two players.
To see that it violates observed past choices, note that player 3, at his information set
h3; does not perfectly observe what players 1 and 2 have chosen in the past.

We will now provide a sketch of the proof. Again, we omit the phrase “relative to
�Z; z�” from now on, as we fix the consequence structure �Z; z�: The easy direction
is to show that utility-based consequentialism implies preference-based consequen-
tialism. The other direction is more challenging: We must show that, under the
conditions of the theorem, every conditional preference relation ≿i that is
preference-based consequentialist is also utility-based consequentialist. We do so by
transforming the utility function ui that represents ≿i into an expected utility
representation vi that is measurable with respect to �Z; z�, in the same way as we did
in the proof of Theorem 4.1.

We illustrate this direction of the proof by a new example. Consider the dynamic
game form D between player 1 and player 2 in the left-hand panel of Figure 3, with
the associated consequence structure �Z; z� in the left-hand panel of Table 7.

We will view the situation from player 1’s perspective. Suppose that the
conditional preference relation ≿1 is given by the expected utility representation u1
in the right-hand panel of Table 7. Assume that the utility function u1 is such that
≿1 is preference-based consequentialist relative to �Z; z�, and that there are no
weakly dominated strategies for player 1.

We now transform u1, in a step-by-step fashion, into a new expected utility
representation v1 that is measurable with respect to �Z; z�. We keep the utilities x1
and x2 in column �c; e� as they are.

We then move to column �c; f �: Note that z�a; �c; e�� � z�a; �c; f ��. At column
�c; f � we therefore add a constant utility x1 � x3 to the entries in that column such
that v1�a; �c; e�� � v1�a; �c; f ��:

Also, z�b; �c; e�� � z�b; �d; e��: Similarly, we then add a constant utility x2 � x6
to the entries in column �d; e� such that v1�b; �c; e�� � v1�b; �d; e��: This leads to the
utility function in the left-hand panel of Table 8.
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Here, the numbers x1; y4; y5 and x2 in the second and third column denote the
new utilities for v1 in those columns.

Finally, we move to the remaining column �d; f �: Note that �a; �d; e�� �
z�a; �d; f �� and z�b; �c; f �� � z�b; �d; f ��: At column �d; f � we add a constant utility
y4 � x8 to the entries in that column such that v1�b; �c; f �� � v1�b; �d; f ��: This
leads to the utility function v1 in the right-hand panel of Table 8.

Figure 3. Proof
sketch of Theorem
5.1.

Table 7. Consequence structure and expected utility representation in the dynamic game form of Figure 3

c; e� � c; f� � d; e� � d; f� �

a z1 z1 z2 z2

b z3 z4 z3 z4

u1 c; e� � c; f� � d; e� � d; f� �
a x1 x3 x5 x7

b x2 x4 x6 x8

Table 8. Construction of utility function v1 in the dynamic game form of Figure 3

c; e� � c; f� � d; e� � d; f� �

a x1 x1 y5 x7

b x2 y4 x2 x8

u1 c; e� � c; f� � d; e� � d; f� �
a x1 x1 y5 y7

b x2 y4 x2 y4
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We will now show that v1 is measurable with respect to �Z; z�, by proving that
y5 � y7: Our construction above guarantees that

v1 a; c; e� �� � � v1 a; c; f
� �� �

; v1 b; c; e� �� �
� v1 b; d; e� �� � and v1�b; �c; f �� � v1�b; �d; f ��: (8)

Consider the beliefs β1 :� 1
2 ��c; e�	 � 1

2 ��d; f �	 and β
0
1 :� 1

2 c; f
� �� �� 1

2 d; e� �� 	;
where s2� 	 is the probability distribution that assigns probability 1 to player 2’s
strategy s2: Then, we conclude from the consequence structure �Z; z� in Table 7 that

P a;β1� � � P a;β
0
1� � �

1
2
z1� 	 � 1

2
z2� 	 and P b;β1� � � P b;β

0
1� � �

1
2
z3� 	 � 1

2
z4� 	:

Since ≿1 is assumed to be preference-based consequentialist, we know that
a≿1;β1b if and only if a≿1;β01b: As there are no weakly dominated strategies for player
1, it can be shown that this implies that v1�a; β1� � v1�b;β1� �
v1�a;β0

1� � v1�b; β01�;which means that

1
2
v1�a; �c; e�� �

1
2
v1�a; �d; f �� �

1
2
v1�b; �c; e�� �

1
2
v1�b; �d; f ��

� 1
2
v1�a; �c; f �� �

1
2
v1�a; �d; e�� �

1
2
v1�b; �c; f �� �

1
2
v1�b; �d; e��: (9)

By combining (8) and (9) it then follows that v1�a; �d; f �� � v1�a; �d; e��: That is,
y5 � y7; which was to show.We thus obtain an expected utility representation v1 for
≿1 which is measurable with respect to �Z; z�. As such, ≿1 is utility-based
consequentialist relative to �Z; z�.

In the proof of Theorem 5.1 the construction of the new utility function vi
proceeds along the same lines. The construction is based on a graph GD

i where two
columns (opponents’ strategy combinations) s�i and t�i are “connected” by a
strategy si if s�i and t�i only differ at one information set3 and z�si; s�i� � z�si; t�i�:
Such a connection means that the utilities at s�i and t�i are interrelated, since we
must make sure that vi�si; s�i� � vi�si; t�i�: For every connected component in the
graph GD

i we start by copying the utilities of ui at a distinguished column s0�i; and
step by step we construct the new utilities of vi at the other columns by following
sequences of connected columns, in the same way as we have done for the example
above. The graph GD

1 for the example above can be found in the right-hand panel of
Figure 3. The label a at the edge between �c; e� and �c; f � indicates that
z�a; �c; e�� � z�a; �c; f ��; and similarly for the other edges.

Showing that vi is measurable with respect to �Z; z� only poses problems if there
is a column s�i that can be reached through two different paths of connected
columns from s0�i; thus yielding a cycle. This was the case in the graph GD

1 above,
since the column �d; f � could be reached through the path �c; e� ! �c; f � ! �d; f �
but also through the path �c; e� ! �d; e� ! �d; f �, yielding the cycle
�c; e� ! �c; f � ! �d; f � ! �d; e� ! �c; e�: In the proof of Theorem 5.1 we show

3More precisely, if s�i� � � �sj�j≠ i and t�i � �tj�j≠ i then there is an opponent j and an information set hj
such that sj and tj only differ at hj and the information sets that follow, whereas sk � tk for all other
opponents k: See the Appendix for more details.
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that the conditions (i), (ii) or (iii) on the dynamic game form in the theorem
guarantee that there are at most two strategies, si and ti; that connect all the columns
in the cycle. Similarly to the example above, such a cycle then induces two beliefs βi
and β0

i such that P�si;βi� � P�si;β0i� and P�ti;βi� � P�ti;β0i�: As ≿i satisfies preference-
based consequentialism relative to �Z; z�, we can derive equalities like (9) to show
that vi is measurable with respect to �Z; z�.

6. Concluding Remarks
What is the appropriate set of consequences? Our definitions of preference-based
and utility-based consequentialism in this paper have been defined relative to some
set of consequences, which is meant to reflect the elements that the player in
question cares about when evaluating his strategies. This naturally raises the
question: What is the appropriate set of consequences for the player?

When analysing the example from Figure 1 we have discussed various options: If
you only care about streams of realized actions and nothing else, then the
realization-based consequence structure, where consequences are identified with
terminal histories, seems most appropriate. If, on the other hand, after leaving the
room you care about the counterfactual action that Barbara would have taken if you
had stayed in the room, then the set of consequences must be refined to take into
account such counterfactual behaviour at unreached parts of the game tree. As an
extreme, one could identify consequences with combinations of strategies for you
and Barbara here.

But in some situations it can also be natural to coarsen the set of consequences
relative to the realization-based consequence structure, by “merging” different
terminal histories into one and the same consequence. Suppose, for instance, that
the players receive some monetary payoff at each of the terminal histories in the
game. In many applications in economics and game theory it is assumed that the
players only care about these monetary payoffs (“culmination outcomes” in
Hausman’s (2006) terminology), and not about how these payoffs were realized
through a particular stream of actions. In that case, the appropriate set of
consequences would be the culmination outcomes which, from a given player’s
perspective, are still allowed to contain the monetary payoffs of other players. The
set of consequences would have to be coarsened even more if the player in question
is assumed only to care about his own monetary payoff, as is often presupposed in
economics and game theory.

It could also be that the player cares about the particular streams of actions that
lead to the monetary payoffs (“comprehensive outcomes” in Hausman’s (2006)
words). Then, the appropriate set of consequences could be the set of
comprehensive outcomes, which would bring us back to the realization-based
consequence structure.

Hammond (1996) argues that the realization-based consequence structure may
be cognitively too demanding for a boundedly rational player, as the full set of
terminal histories could be too overwhelming if the dynamic game is large. In that
case, it seems appropriate to use a coarsening of the realization-based consequence
structure, by merging those terminal histories between which the player cannot
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distinguish into a single consequence. The size of these equivalence classes would
then be a measure for the “degree” of bounded rationality of the player. A classical
example is chess where a player may decide to identify all terminal histories that lead
to a win, a draw, and a loss, respectively. But the player may also care about (some
elements of) the sequence of moves involved in a win, draw or loss, which would
lead us to refine the player’s set of consequences compared with before.

Writing down utilities at consequences may imply more than consequentialism.
The analysis in this paper has shown that writing down utilities at the terminal
histories in a dynamic game, resulting in utility-based consequentialism relative to
the realization-based consequence structure, may imply conditions that go beyond
preference-based consequentialism. Indeed, we have characterized utility-based
consequentialism by respect of outcome-equivalent strategies and the condition that
the induced preference intensities on consequences are additive, and the example
from Figure 2 indicates that the latter condition need not follow from preference-
based consequentialism. For such situations it may thus be argued that utility-based
consequentialism relative to the realization-based consequence structure, which is
typically assumed in game theory, is more restrictive than the original idea of
consequentialism.

Possible extensions of our results. We have identified conditions on dynamic
game forms under which preference-based consequentialism is equivalent to utility-
based consequentialism relative to the realization-based consequence structure, and
where the condition of additive preference intensities on consequences is thus
implied by preference-based consequentialism alone. An open question is whether
these conditions on the dynamic game form can be sharpened to conditions that are
both sufficient and necessary for the equivalence. That is, if the conditions are
violated, then we can find a conditional preference relation that is preference-based,
but not utility-based, consequentialist relative to the realization-based consequence
structure.

Additionally, it may be interesting to extend our theorems in this paper, which
are restricted to the realization-based consequence structure, to more general
consequence structures. Also, Theorem 5.1 relies on the assumption that there are
no weakly dominated strategies under the conditional preference relation we
consider. It is currently unclear whether, and if so how, this result can be extended to
situations that allow for weakly dominated strategies.
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7. Appendix
7.1 Definitions from graph theory

An undirected graph G � �N; E� consists of a set of nodes N; and a set of edges E;
where every edge e 2 E is an unordered pair �n; n0� 2 N × N with n≠ n0: A graph
G0 � �N 0; E0� is a subgraph of G � �N; E� if N 0 � N; E0 � E and every edge
�n; n0� 2 E0 is such that n; n0 2 N 0.

In a graphG � �N; E�; a path from n 2 N to n0 2 N is a sequence �n0; n1; . . . ; nK �
with n0 � n and nK � n0 such that �nk; nk�1� 2 E for every k 2 f0; . . . ;K � 1g and
all edges �nk; nk�1� are pairwise different. A cycle is a path �n0; n1; . . . ; nK�
where nK � n0.

A subgraph CC � �N 0; E0� of G � �N; E� is a connected component of G if (i)
E0 � f�n; n0� 2 E j n; n0 2 N 0g; (ii) for every two nodes n; n0 2 N 0 there is a path
from n to n0 in G and (iii) for every n 2 N 0; n0 2 NnN 0 there is no path from n to n0
in G:

A graph T � �N; E� is a tree if there is some n0 2 N such that for every
n 2 Nn n0

� �
there is a unique path in T from n0 to n: In this case, we call T a tree

with root n0:A subgraph� �N 0; E0� of G � �N; E� is a spanning tree for G ifN 0 � N
and T is a tree. For a given graph G; it is well-known that for every connected
component CC of G there is a spanning tree for CC:
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7.2 Preparatory results

To prove the theorems in this paper we need some preparatory results.

Lemma 7.1 (Implication of preference-based consequentialism) Consider a conditional preference
relation ≿i that is preference-based consequentialist relative to �Z; z�, two strategies si; ti that do not weakly
dominate one another under ≿i, and an expected utility representation ui for ≿: Then, for all beliefs
βi; β

0
i 2 Δ S�i� � such that P�si ;βi� � P�si ;β0i� and P�ti;βi� � P�ti ;β0i� we have that

ui�si; βi� � u�ti; βi� � u�si;β0
i� � ui�ti;β0i�:

Proof. Since si and ti do not weakly dominate one another, it follows from Perea
(2025a) that there is a belief β


i with β

i s�i� � > 0 for all s�i 2 S�i such that si�i;β
i

ti:
We can choose ɛ > 0 small enough such that β

00
i :� β


i � ɛ�βi � β0
i� is a belief. We

show that P�si;β00i � � P�si;β
i � and P�ti;β00i � � P�ti;β
i �:
Indeed, for every consequence z 2 Z we have that

P�si;β00i � z� � � P�si;β
i � z� � � ɛ P�si;βi�
� �

z� � P�si;β0i��z�� � P�si;β
i � z� �;
since P�si;βi� � P�si;β0i�: In a similar way it can be shown that P�ti;β00i � z� � � P�ti;β
i � z� �
for every consequence z 2 Z:

Since si�i;β
i
ti and ≿i is preference-based consequentialist relative to �Z; z�, it

follows that si�i;β00i
ti also. As ui is an expected utility representation for ≿i we know

that ui�si;β

i � � ui�ti;β


i � and ui�si;β00
i � � ui�ti;β00i �: Hence,

0 � ui�si;β00
i � � ui�ti;β00

i �

� ui� �si;β

i � � ui�ti; β
i �� � ε��ui�si;βi� � ui�ti;βi�� � �ui�si;β0

i� � ui�ti; β0i���

� ɛ��ui�si;βi� � ui�ti; βi�� � �ui�si;β0
i� � ui�ti;β0

i���;
where the second equality follows from the definition of β00

i ; and the third equality
follows from the fact that ui�si;β


i � � ui�ti;β

i �: We thus conclude that

ui�si;βi� � u�ti;βi� � u�si;β0
i� � ui�ti;β0

i�: This completes the proof. ▪

Lemma 7.2 (Constant utility carries over) Consider a conditional preference relation ≿i that ispreference-
based consequentialist relative to �Z; z�, two strategies si; ti that do not weakly dominate one another, and an
expected utility representation ui for ≿i: Take two opponents’ strategy combinations s�i; t�i with
z�si; s�i� � z�si; t�i�; z�ti; s�i� � z�ti; t�i� and ui�si; s�i� � ui�si; t�i�: Then, ui�ti; s�i� � ui�ti; t�i�:

Proof. If we define the beliefs βi :� s�i� 	 and β0i :� t�i� 	 it follows that
P�si;βi� � P�si;β0i� and P�ti;βi� � P�ti;β0i�: By Lemma 7.1 we conclude that
ui�si;βi� � u�ti;βi� � u�si;β0

i� � ui�ti;β0
i�; and hence ui�si; s�i� � u�ti; s�i�

� u�si; t�i� � ui�ti; t�i�: Since ui�si; s�i� � ui�si; t�i� it follows that
ui�ti; s�i� � ui�ti; t�i�; which completes the proof. ▪

For the following result we need some additional definitions. We say that two
strategies si; ti 2 Si are minimally different if there is an information set
hi 2 Hi si� � \ Hi ti� � such that (i) si hi� �≠ ti hi� �; and (ii) si h

0
i

� � � ti h
0
i

� �
for all

h0i 2 Hi� �si� \ Hi�ti��n hif g: In this case, we call si; ti minimally different at hi: Two
strategy combinations s�i � �sj�j≠ i and t�i � �tj�j≠ i in S�i are called minimally
different if there is some j≠ i such that sj; tj are minimally different at some
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hj 2 Hj sj
� � \ Hj tj

� �
, and sk � tk for all k≠ i; j: In this case, we say that s�i; t�i are

minimally different at hj.

Lemma 7.3 (Equal consequences) Consider a dynamic game form D with two players, i and j; that satisfies
perfect recall. Let the strategies sj; tj be minimally different at the information set hj 2 Hj sj

� �\Hj tj
� �

: Then,
for every strategy si we have that z�si; sj� � z�si; tj� if and only if si=2Si hj

� �
:

Proof. (a) Suppose first that z�si; sj� � z�si; tj�: Then, �si; sj�=2S hj
� �

: By perfect
recall we have that S hj

� � � Si hj
� �

× Sj hj
� �

: Since sj 2 Sj hj
� �

we conclude
that si=2Si hj

� �
:

(b) Suppose next that si=2Si hj
� �

: Then, by definition, �si; sj�=2S hj
� �

: But then,
z�si; sj� � z�si; tj�: The proof is hereby complete. ▪

To formally express the condition of two strategies per connected component,
which plays an important role in the proof of Theorem 5.1, we need the following
definition. For a dynamic game form D with distinguished player i; consider the
undirected graph GD

i � �N; E� where (i) the set of nodes N is the set of all strategy
combinations in S�i; and (ii) the set of edges E contains exactly those pairs
�s�i; t�i� 2 N × N where s�i; t�i are minimally different and there is some strategy
si 2 Si with z�si; s�i� � z�si; t�i�: In this case, we also denote this edge by s�i �si;z t�i;
where z � z�si; s�i� � z�si; t�i�:
Definition 7.1 (Two strategies per connected component) The graph GD

i satisfies two strategies per
connected component if for every connected component CC there are two strategies si; ti 2 Si such that for
every edge �s�i; t�i� in CC either z�si; s�i� � z�si; t�i� or z�ti; s�i� � z�ti; t�i�:

The following result states that the condition of two strategies per connected
component is always satisfied under the conditions on the dynamic game form in
Theorem 5.1.

Lemma 7.4 (Two strategies per connected component) Consider a dynamic game form D and a player i
such that either (i) player i only has two strategies, or (ii) there are observed past choices or (iii) there are only
two players and perfect recall is satisfied. Then, the induced graph GD

i satisfies two strategies per connected
component.

Proof. (i) If player i only has two strategies, it trivially follows that GD
i satisfies

two strategies per connected component.
(ii) Assume next that the dynamic gameD is with observed past choices. LetHfirst

i
be the collection of information sets in Hi that are not preceded by any other
information in Hi: For every hi 2 Hfirst

i select two different actions
ai hi� �; bi hi� � 2 Ai hi� �: Let s
i be a strategy with s
i hi� � � ai hi� � for all hi 2 Hfirst

i ;
and t
i a strategy with t
i hi� � � bi hi� � for all hi 2 Hfirst

i :
Now, consider an edge �s�i; t�i� in GD

i with s�i� � � �sj�j≠ i and t�i� � � �tj�j≠ i.
Then, s�i; t�i are minimally different at some hj 2 Hj sj

� � \ Hj tj
� �

for some player
j≠ i; and there is some strategy si with z�si; s�i� � z�si; t�i�: We distinguish two
cases: (1) hj 2 Hj s�i� � \ Hj t�i� �; and (2) hj=2Hj s�i� � \ Hj t�i� �:
Case 1. Suppose that hj 2 Hj s�i� � \Hj t�i� �: As z�si; s�i� � z�si; t�i� and �s�i; t�i� are minimally different
at hj; it must be that �si; s�i�=2S hj

� �
: Since the game is with observed past choices we know that
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S hj
� � � Si hj

� �
× S�i hj

� �
: Note that s�i 2 S�i hj

� �
as hj 2 Hj s�i� �: But then, �si; s�i�=2S hj

� �
implies that

si=2Si hj
� �

: This can only be if hj is preceded by some hi 2 Hfirst
i :

As the game is with observed past choices, there is a unique action a
i hi� � 2 Ai hi� � that leads to hj: By
construction, either s
i hi� �≠ a
i hi� � or t
i hi� �≠ a
i hi� �: This means that either �s
i ; s�i� =2 S hj

� �
or

�t
i ; s�i� =2 S hj
� �

: As s�i; t�i are minimally different at hj we conclude that either z�s
i ; s�i� � z�s
i ; t�i� or
z�t
i ; s�i� � z�t
i ; t�i�:

Case 2. Suppose that hj =2 Hj s�i� � \Hj t�i� �: Since s�i and t�i only differ at hj and afterwards, it follows that
hj =2 Hj s�i� �; which implies that �si; s�i� =2 S hj

� �
for every strategy si: But then, z�si; s�i� � z�si; t�i� for every

strategy si: In particular, z�s
i ; s�i� � z�s
i ; t�i�:

In view of Cases 1 and 2, two strategies per connected component holds.
(iii) Suppose finally that the dynamic game form D is with two players, i and j;

and that it satisfies perfect recall. Take a connected component CC in the induced
graph GD

i ; and let

Hj CC� � :� hj 2 Hj

�
there is an edge �sj; tj

�
in CC such that sj; tj minimally dif f erent at hjg:

Let Hfirst
j CC� � be the collection of information sets in Hj CC� � that are not

preceded by any other information set in Hj CC� �:
Claim 1. For every hj; h

0
j 2 Hfirst

j CC� � there is a strategy sj in CC

with sj 2 Sj hj
� � \ Sj h0j

� 	
:

Proof of claim 1. Take two different hj; h
0
j 2 Hfirst

j CC� �. Then, by definition,
there are edges �sj; tj� and �s0j; t0j� in CC such that sj; tj are minimally different at hj
and s0j; t

0
j are minimally different at h0j: In particular, sj 2 Sj hj

� �
and t0j 2 Sj h0j

� 	
:

Since tj; s0j 2 CC; there is a path �s1j ; . . . ; sKj � in CC from tj to s0j: Hence, there are
information sets h1j ; . . . ; h

K�1
j 2 Hj CC� �; such that for every k 2 f1; . . . ;K � 1g

the strategies skj ; s
k�1
j are minimally different at hkj 2 Hj CC� �: This implies that s1j

and sKj only differ at information sets in Hj CC� �: Recall that s1j � tj and sKj � s0j:
As sj; tj are minimally different at hj 2 Hj CC� � and s0j; t

0
j are minimally different

at h0j 2 Hj CC� �; it follows that sj and t0j only differ at information sets in
Hj CC� �:

Hence, sj and t0j coincide at information sets in Hj that precede information sets

in Hfirst
j CC� �: As h0j 2 Hfirst

j CC� �; this implies that sj and t0j coincide at information

sets in Hj that precede h0j: Since t0j 2 Sj h0j
� 	

we conclude that sj 2 Sj h0j
� 	

as well.

Recall that sj 2 Sj hj
� �

: Therefore, sj is in CC and sj 2 Sj hj
� � \ Sj h0j

� 	
: This completes

the proof of Claim 1.
Claim 2. Every two hj; h0j 2 Hfirst

j CC� � are preceded by the same sequence of
player j actions.

Proof of claim 2. If hj and h0j are not preceded by any player j actions, the
statement is trivially true. Suppose now that hj is preceded by a at least one player j
action. Let a1j ; . . . ; a

K
j be the player j actions that precede hj:We show that a1j ; . . . ; a

K
j

also precede h0j:

Suppose not. Then, there is some action akj 2 Aj hkj
� 	

that precedes hj but not h
0
j:

We distinguish two cases: (1) hkj precedes h
0
j; and (2) hkj does not precede h0j:
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Case 1. Suppose that hkj precedes h
0
j: By Claim 1 there is some s
j 2 Sj hj

� �\ Sj h0j
� 	

: Since s
j 2 Sj hj
� �

and akj
is the unique action at hkj that precedes hj; we have that s



j hkj
� 	

� akj : Since s


j 2 Sj h0j

� 	
and hkj precedes h

0
j it

would follow that akj precedes h0j as well, which is a contradiction.

Case 2. Suppose that hkj does not precede h
0
j: By Claim 1 there is some s
j in CC with s
j 2 Sj hj

� �\ Sj h0j
� 	

:

Take some si 2 Si h0j
� 	

: As s
j 2 Sj h0j
� 	

and, by perfect recall, S h0j
� 	

� Si h0j
� 	

× Sj h0j
� 	

; we conclude that

�si; s
j � 2 S h0j
� 	

: Since hkj does not precede h
0
j it must be that �si; s
j �=2S hkj

� 	
: Recall that akj 2 Aj hkj

� 	
precedes

hj; which implies that hkj precedes hj: Since s


j 2 Sj hj

� �
it follows that s
j 2 Sj hkj

� 	
: As �si; s
j �=2S hkj

� 	
and, by

perfect recall, S hkj
� 	

� i hkj
� 	

× Sj hkj
� 	

; we conclude that si=2Si hkj
� 	

:

Now, let tj be a strategy that is minimally different from s
j at hkj : Since si =2 Si hkj
� 	

; it follows from

Lemma 7.3 that z�si; s
j � � z�si; tj�: Since s
j 2 CC this would imply that tj 2 CC and hkj 2 Hj CC� �:
However, this is a contradiction since hkj precedes H

first
j CC� �; and can therefore not be in Hj CC� �:We thus

obtain a contradiction.

By Cases 1 and 2 we conclude that the actions a1j ; . . . ; a
K
j preceding hj also

precede h0j: Hence, all player j actions that precede hj also precede h0j: In a similar
fashion, it follows that all player j actions preceding h0j also precede hj: Thus, hj and
h0j are preceded by the same player j actions. This completes the proof of Claim 2.

Claim 3. For every two hj; h0j 2 Hfirst
j CC� � we have that Sj hj

� � � Sj h0j
� 	

:

Proof of Claim 3. By Claim 2, hj and h0j are preceded by the same player j actions
a1j ; . . . ; a

K
j at the information sets h1j ; . . . ; h

K
j : But then, by construction,

Sj hj
� � � fsj 2 Sjjsj hkj

� 	
� akj f or all k 2 f1; . . . ;Kgg � Sj�h0j�:

This completes the proof of Claim 3.
We will now show that the induced graph GD

i satisfies two strategies per
connected component. Take a connected component CC:We distinguish two cases:
(1) Hfirst

j CC� � contains only one information set, and (2) Hfirst
j CC� � contains at least

two information sets.

Case 1. Suppose that Hfirst
j CC� � contains a single information set h
j : As h



j 2 Hj CC� � there are strategies

s
j ; t


j in CC that are minimally different at h
j and a strategy s
i with z�s
i ; s
j � � z�s
i ; t
j �: By Lemma 7.3 we

know that s
i =2Si h
j
� 	

: As all other information sets inHj CC� � follow h
j we conclude that s


i =2Si hj

� �
for every

hj 2 Hj CC� �:
Take an edge �sj; tj� in CC: Hence, sj and tj are minimally different at some hj 2 Hj CC� � and there is

some si with z�si; sj� � z�si; tj�: As we have seen above that s
i =2Si hj
� �

; it follows by Lemma 7.3 that
z�s
i ; sj� � z�s
i ; tj�: Thus, two strategies per connected component is satisfied. In fact, one strategy s
i turned
out to be sufficient for the connected component CC:

Case 2. Suppose that Hfirst
j CC� � contains at least two information sets h1j and h2j : Choose a strategy

s1i 2 Si h1j
� 	

and a strategy s2i 2 Si h2j
� 	

:

Now, take an edge �s
j ; t
j � in CC. Then, s
j ; t


j are minimally different at some h
j 2 Hj CC� � and there is

some strategy si with z�si; s
j � � z�si; t
j �: By definition ofHfirst
j CC� �; information set h
j weakly follows some
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hj 2 Hfirst
j CC� �: In fact, by perfect recall, h
j weakly follows exactly one information set in Hfirst

j CC� �: We

distinguish two cases: (2.1) h
j does not weakly follow h1j ; and (2.2) h
j does not weakly follow h2j :

Case 2.1. Assume that h
j does not weakly follow h1j : Then, we show that z�s1i ; s
j � � z�s1i ; t
j �: Suppose that
h
j weakly follows hj 2 Hfirst

j CC� �n h1j
n o

: As s
j 2 Sj h
j
� 	

and h
j weakly follows hj we conclude that

s
j 2 Sj hj
� �

: Since we know, by Claim 3, that Sj hj
� � � Sj h1j

� 	
it follows that s
j 2 Sj h1j

� 	
: Recall from above

that s1i 2 Si h1j
� 	

: Since, by perfect recall, S h1j
� 	

� Si h1j
� 	

× Sj h1j
� 	

; we conclude that �s1i ; s
j � 2 S h1j
� 	

:

Since h
j does not weakly follow h1j we conclude that �s1i ; s
j �=2S h
j
� 	

: As s
j ; t


j are minimally different at h
j it

follows that z�s1i ; s
j � � z�s1i ; t
j �:

Case 2.2. Assume that h
j does not weakly follow h2j : Then, it can be shown in a similar fashion as above that
z�s2i ; s
j � � z�s2i ; t
j �:

By Cases 2.1 and 2.2, the condition of two strategies per connected component is
satisfied. Together with Case 1, we see that two strategies per connected component
is satisfied whenever the game has two players and satisfies perfect recall. This
completes the proof. ▪

Lemma 7.5 (Strategy combinations leading to same consequence) Consider a strategy si and two
opponents’ strategy combinations s�i; t�i with z�si; s�i� � z�si; t�i�: Then, there are opponents’ strategy
combinations s0�i; s

1
�i; . . . ; s

K
�i such that (i) s0�i � s�i; (ii) sK�i � t�i; (iii) sk�i; s

k�1
�i minimally different for every

k 2 f0; . . . ;K � 1g; and (iv) z�si; sk�i� � z�si; sk�1
�i � for all k 2 f0; . . . ;K � 1g:

Proof. Let the set of players be I � f1; . . . ; ng and assume, without loss of
generality, that i � 1: Let s�i � �s2; . . . ; sn� and t�i � �t2; . . . ; tn�: For every
opponent j let

Hdif
j �sj; tj� :� fhj 2 Hj�sj� \ Hj�tj�jsj hj

� �
≠ tj hj

� �g
be the collection of information sets where sj; tj differ.

Take an opponent j 2 f2; . . . ; ng; and suppose that Hdif
j �sj; tj� consists of Kj

information sets fh1j ; . . . ; h
Kj

j g. We define strategies s0j ; . . . ; s
Kj

j as follows: Set s0j :� sj;

and for every k 2 f1; . . . ;Kjg let skj be the unique strategy that (i) coincides with tj at

all information sets hj 2 fh1j ; . . . ; hkj g; (ii) coincides with tj at all information sets

hj 2 Hj tj
� �

that follow an information set in fh1j ; . . . ; hkj g; and (iii) coincides with sj

at all other information sets in Hj skj
� 	

: Then, by construction, s
Kj

j � tj; and sk�1j ; skj
are minimally different at hkj for every k 2 f1; . . . ;Kjg:

For every j 2 f2; . . . ; ng and k 2 f1; . . . ;Kjg let

sj:k�i :� �t2; . . . ; tj�1; skj ; sj�1; . . . ; sn�:

Then, we define the sequence of opponents’ strategy combinations s0�i; s
1
�i; . . . ;

sK�i by
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s0�i; s
1
�i . . . :; s

K
�i :� s�i; s2:1�i ; . . . ; s

2:K2
�i ; s3:1�i ; . . . ; s

3:K3
�i ; . . . ; sn:1�i ; . . . ; s

n:Kn
�i :

By construction, s0�i � s�i; sK�i � t�i and sk�i; s
k�1
�i are minimally different for

every k 2 f0; . . . ;K � 1g: It remains to show that z�si; sk�i� � z�si; sk�1
�i � for

every k 2 f0; . . . ;K � 1g:
Recall that z�si; �i� � z�si; t�i�: Let z :� z�si; s�i� � z�si; t�i�: Then, �si; s�i� and

�si; t�i� select all the actions on the path to z: Now, take some k 2 f0; . . . ;K � 1g;
and suppose that sk�i; s

k�1
�i minimally differ at some hj 2 Hj: Then, by construction,

s�i; t�i also differ at hj: Since �si; s�i� and �si; t�i� select all the actions on the path to
z; it must be that hj is not on the path to z: Hence, we conclude that
z�si; sk�i� � z�si; sk�1

�i � � z also. Thus, z�si; sk�i� � z�si; sk�1
�i � for every

k 2 f0; . . . ;K � 1g: This completes the proof. ▪

Lemma 7.6 (Induced probability distributions on consequences) Consider the realization-based
consequence structure �Z; z�; two strategies si; s

0
i 2 Si and two beliefs βi; β

0
i with P�si ;βi� � P�s0i;β0i�: Then,

P�si ;βi� � P�s0i ;βi� � P�si ;β0i�:

Proof. For every consequence z; let Si z� � be the set of strategies si 2 Si that select
all player i actions on the path to z; and let S�i z� � be the set of opponents’ strategy
combinations s�i 2 S�i that select all opponents’ actions on the path to z: Take some
consequence z with P�si;βi� z� � > 0: Then, si 2 Si z� � and P�si;βi� z� � � βi S�i� �z��: As
P�s0i;β0i� z� � � P�si;βi� z� � > 0 we have that s0i 2 Si z� � and P�s0i;β0i� z� � � β0i S�i� �z��: Since
P�s0i;β0i� z� � � P�si;βi� z� � it follows that βi S�i� �z�� � β0

i S�i� �z��: But then, we conclude
that

P s0i;βi� � z� � � βi S�i z� �� � � P si;βi� � z� � and P�si;β0i� z� � � β0
i S�i� �z�� � βi S�i� �z��

� P�si;βi� z� �:
As this holds for every z with P�si;βi� z� � > 0; it follows that

P�si;βi� � P�s0i;βi� � P�si;β0i�: This completes the proof. ▪

7.3 Utility transformation procedure

Consider a conditional preference relation ≿i with an expected utility representation
ui, and the realization-based consequence structure �Z; z�: The following procedure,
which we call the utility transformation procedure, transforms the utility function ui
into a new utility function vi which is still an expected utility representation for ≿i
and that, under certain conditions, is measurable with respect to �Z; z�. This
procedure is used in the proofs of Theorems 4.1 and 5.1.

Take a dynamic game form D; a player i; and a conditional preference relation ≿i
for player i with an expected utility representation ui: Recall from above the
definition of the graph GD

i induced by the dynamic game form D for player i, and fix
a connected component CC: Then, there is a spanning tree T for CC with root s0�i in
CC: If there are K nodes in CC; choose a bijective numbering m : CC ! f1; . . . ;Kg
such that m s�i� � > m t�i� � whenever s�i ≠ t�i and t�i lies on the unique path in T
from s0�i to s�i: Hence, m s0�i

� � � 1: We define the new utilities vi�si; s�i� for the
nodes s�i in CC by induction on m s�i� �; as follows: For the node s0�i with
m s0�i
� � � 1; set
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vi�si; s0�i� :� ui�si; s0�i� (10)

for every strategy si:
Now, consider a node s�i ≠ s0�i in CC; and suppose that vi�si; t�i� has been

defined for all strategies si and all nodes t�i in CC with m t�i� � < m s�� �: Consider
the unique path in T from s0�i to s�i; and let p s�i� � be the predecessor to s�i on this
path. Then, m p

� �
s�i�� < m s�i� � which implies that vi�si; p�s�i�� has been defined

for all strategies si. Moreover, let strategy ti s�i� � be such that
z ti� �s�i�; p�s�i�� � z ti� �s�i�; s�i�: Define

vi�si; s�i� :� ui�si; s�i� � vi ti� �s�i�; p�s�i�� � ui ti� �s�i�; s�i� (11)

for every strategy si: Then, by construction, vi ti� �s�i�; s�i� � vi ti� �s�i�; p�s�i��:
In this way we define the new utility vi�si; s�i� for every strategy si and every node

s�i in CC: If we do so for every connected component CC we define the new utility
vi�si; s�i� for every strategy si and every opponents’ strategy combination s�i 2 S�i:
The description of the new utility function vi is hereby complete.

We will now show that the new utility function vi still represents the conditional
preference relation≿i: On the basis of (10) and (11) we conclude that

vi�si; s�i� � vi�ti; s�i� � ui�si; s�i� � ui�ti; s�i�
for every two strategies si; ti and every node s�i: As such, for every belief the
expected utility difference between any two strategies will be the same under ui as
under vi, which implies that vi represents the same conditional preference relation
as ui: Since ui represents the conditional preference relation ≿i; it follows that vi
represents ≿i also.

7.4 Proof of Theorem 4.1

We are now ready to prove Theorem 4.1. The proof of Theorem 4.2 can be found in
section 7.6.

Proof of Theorem 4.1. In this proof we omit the phrase “relative to �Z; z�”
everywhere, as it is understood that we are always using the consequence
structure �Z; z�:

(a) Suppose first that ≿i is utility-based consequentialist. Then, ≿i has an
expected utility representation ui on consequences that is measurable with respect to
�Z; z�. To show that ≿i induces additive preference intensities on consequences, take
two opponents’ strategy combinations s
�i; t



�i, and two paths

s
�i �
s1i ;z

1

s2�i �
s2i ;z

2

s3�i . . . �sK�1i ;zK�1
sK�i �s

K
i ;z

K

t
�i
and

s
�i �
t1i y

1

t2�i �
t2i ;y

2

t3�i . . . �tL�1i ;yL�1
tL�i �t

L
i ;y

L

t
�i
from s
�i to t
�i: Then,

ui�s1i ; s2�i� � ui�s2i ; s2�i�
� �� ui�s2i ; s3�i� � ui�s3i ; s3�i�

� �� . . .

. . .� ui�sK�1i ; sK�i� � ui�sKi ; sK�i�
� �� ui�sKi ; t
�i� � ui�tLi ; t
�i�

� �
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� ui�s1i ; s2�i� � ui�tLi ; t
�i�: (12)

Indeed, since z�ski ; sk�i� � z�ski ; sk�1
�i � for all k 2 f2; . . . ;K � 1g and

z�sKi ; sK�i� � z�sKi ; t
�i�; and ui is measurable with respect to �Z; z�, we have that
ui�ski ; sk�i� � ui�ski ; sk�1

�i � for all k 2 f2; . . . ;K � 1g and ui�sKi ; sK�i� � ui�sKi ; t
�i�:
In a similar fashion it follows that

ui�s1i ; s
�i� � ui�t1i ; s
�i�
� �� ui�t1i ; t2�i� � ui�t2i ; t2�i�

� ��
� ui�t2i ; t3�i� � ui�t3i ; t3�i�

� �� . . .� ui�tL�1i ; tL�i� � ui�tLi ; tL�i�
� �

� ui�s1i ; s
�i� � ui�tLi ; tL�i�: (13)

Since z�s1i ; s2�i� � z�s1i ; s
�i� and z�tLi ; t
�i� � z�tLi ; tL�i�; and ui is measurable with
respect to �Z; z�, it follows that ui�s1i ; s2�i� � ui�s1i ; s
�i� and ui�tLi ; t
�i� � ui�tLi ; tL�i�:
If we combine this with (12) and (13) we conclude that

ui�s1i ; s2�i� � ui�s2i ; s2�i�
� �� ui�s2i ; s3�i� � ui�s3i ; s3�i�

� �� . . .

. . .� ui�sK�1i ; sK�i� � ui�sKi ; sK�i�
� �� ui�sKi ; t
�i� � ui�tLi ; t
�i�

� �
� ui�s1i ; s
�i� � ui�t1i ; s
�i�

� �� ui�t1i ; t2�i� � ui�t2i ; t2�i�
� ��

� ui�t2i ; t3�i� � ui�t3i ; t3�i�
� �� . . .� ui�tL�1i ; tL�i� � ui�tLi ; tL�i�

� �
:

Hence, ≿i induces additive preference intensities on consequences.
To show that ≿i respects outcome-equivalent strategies, take two strategies si; ti

and an opponents’ strategy combination s�i such that z�si; s�i� � z�ti; s�i�: As ui is
an expected utility representation for ≿i that is measurable with respect to �Z; z�; it
follows that ui�si; s�i� � ui�ti; s�i�; and hence si�i; s�i� 	ti:

(b) Assume next that ≿i has an expected utility representation ui; induces
additive preference intensities, respects outcome-equivalent strategies, and has no
weakly dominated strategies. Use the utility transformation procedure presented
above to transform ui into a new expected utility representation vi: We will now
show that vi is measurable with respect to �Z; z�:

Within the graph GD
i ; consider a connected component CC and the associated

spanning tree T with root s0�i chosen in the utility transformation procedure. We
prove, for every strategy si and every edge �s
�i; t
�i� in CC that

vi�si; s
�i� � vi�si; t
�i� whenever z �si; s
�i� � z�si; t
�i�: (14)

We distinguish two cases: (1) the edge �s
�i; t
�i� is in the spanning tree T; and (2)
the edge �s
�i; t
�i� is not in the spanning tree T:

Case 1. Suppose that the edge �s
�i; t
�i� is in the spanning tree T with t
�i � p s
�i
� �

; where p s
�i
� �

is the
predecessor to s
�i in the utility transformation procedure. Since t
�i � p s
�i

� �
we know by (11) in the utility

transformation procedure that vi ti� �s
�i�; s
�i� � vi ti� �s
�i�; t
�i�: Take any strategy si with
z�si; s
�i� � z�si; t
�i�: By construction of ti s



�i

� �
we also know that z ti� �s
�i�; s
�i� � z ti� �s
�i�; t
�i�: Consider

the two paths from t
�i to s
�i given by

t
�i �ti s
�i� �;z
s
�i and t
�i �si ;z

0
s
�i;
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where z :� z ti� �s
�i�; s
�i� � z ti� �s
�i�; t
�i�; and z0 :� z�si; s
�i� � z�si; t
�i�: As ≿i induces additive preference
intensities on consequences and vi is an expected utility representation of ≿i; we conclude that

vi ti� �s
�i�; s
�i� � vi�si; s
�i� � vi ti� �s
�i�; t
�i� � vi�si; t
�i�:

Since vi ti� �s
�i�; s
�i� � vi ti� �s
�i�; t
�i� it follows that vi�si; s
�i� � vi�si; t
�i�; and
hence (14) holds.

Case 2. Suppose that the edge �s
�i; t
�i� is not in the spanning tree T: Let

s0�i �s
0
i ;z

0

s1�i �s
1
i ;z

1

s2�i . . . �sL�1i ;zL�1
sL�i �s

L
i ;z

L

s
�i (15)

be the unique path in T from s0�i to s
�i: Moreover, let

s0�i �t
0
i ;y

0

t1�i �t1i ;y1 t2�i . . . �tM�1
i ;yM�1

tM�i �tMi ;yM
t
�i

be the unique path in T from s0�i to t
�i.
As �s
�i; t
�i� is an edge, there is a strategy ti such that z�ti; t
�i� � z�ti; s
�i� �: y: Then,

s0�i �t
0
i ;y

0

t1�i �t
1
i ;y

1

t2�i . . . �tM�1
i ;yM�1

tM�i �t
M
i ;yM

t
�i �ti ;y s
�i (16)

is an alternative path from s0�i to s


�i: Since≿i induces additive preference intensities on consequences, and vi

is an expected utility representation for ≿i; it follows from (15) and (16) that

vi�s0i ; s1�i� � vi�s1i ; s1�i�
� �� vi�s1i ; s2�i� � vi�s2i ; s2�i�

� �� . . .

. . .� vi�sL�1i ; sL�i� � vi�sLi ; sL�i�
� �� vi�sLi ; s
�i� � vi�ti; s
�i�

� �
� vi�s0i ; s0�i� � vi�t0i ; s0�i�

� �� vi�t0i ; t1�i� � vi�t1i ; t1�i�
� ��

� vi�t1i ; t2�i� � vi�t2i ; t2�i�
� �� . . .� vi�tM�1

i ; tM�i� � vi�tMi ; tM�i�
� �� vi�tMi ; t
�i� � vi�ti; t
�i�

� �
: (17)

Note that all edges in (15) and (16), except t
�i �ti ;y s
�i; are in T: By Case 1 it therefore follows that

vi�ski ; sk�i� � vi�ski ; sk�1
�i � f or all k 2 f0; . . . ; L � 1g; vi�sLi ; sL�i� � vi�sLi ; s
�i�;

vi�t0i ; s0�i� � vi�t0i ; t1�i�; vi�tki ; tk�i� � vi�tki ; tk�1
�i � f or all k 2 f1; . . . ;M � 1g and

vi�tMi ; tM�i� � vi�tMi ; t
�i�: (18)

Combining (17) and (18) then yields vi�ti; s
�i� � vi�ti; t
�i�:

Now, take an arbitrary si with z�si; s
�i� � z�si; t
�i�: As we have seen above that
z�ti; s
�i� � z�ti; t
�i� and vi�ti; s
�i� � vi�ti; t
�i�; it follows by the same argument as
in Case 1 that vi�si; s
�i� � vi�si; t
�i�; and hence (14) holds. By Cases 1 and 2 we
conclude that (14) holds for every edge �s
�i; t
�i� in the connected component CC:

We finally show that the utility function vi so constructed is measurable with
respect to �Z; z�. Take strategies si; ti and opponents’ strategy combinations s�i; t�i
with z�si; s�i� � z�ti; t�i�: We will show that vi�si; s�i� � vi�ti; t�i�:

As z�si; s�i� � z�ti; t�i� �: z; strategies si; ti select all player i actions on the path
to z; and s�i; t�i select all opponents’ actions on the path to z: But then,
z�si; s�i� � z�si; t�i� and z�si; t�i� � z�ti; t�i�:

As z�si; s�i� � z�si; t�i�; it follows by Lemma 7.5 that we can choose opponents’
strategy combinations s0�i; s

1
�i; . . . ; s

M
�i such that (i) s0�i � s�i; (ii) sM�i � t�i; (iii)

sk�i; s
k�1
�i are minimally different for every k 2 f0; . . . ;M � 1g; and (iv)
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z�si; sk�i� � z�si; sk�1
�i � for all k 2 f0; . . . ;M � 1g: By (14) it then follows that

vi�si; sk�i� � vi�si; sk�1
�i � for all k 2 f0; . . . ;M � 1g; which implies

that vi�si; s�i� � vi�si; t�i�:
Moreover, as z�si; t�i� � z�ti; t�i� and ≿i respects outcome-equivalent strategies,

we have that si�i; t�i� 	ti: Since the utility function vi represents ≿i it follows
that vi�si; t�i� � v�ti; t�i�:

Together with the insight above that vi�si; s�i� � vi�si; t�i� we conclude that
vi�si; s�i� � vi�ti; t�i�: As such, the utility function vi is measurable with respect to
�Z; z�. Altogether, we have constructed an expected utility representation vi for ≿i
that is measurable with respect to �Z; z�. Hence, ≿i is utility-based consequentialist.
This completes the proof. ▪

The proof of Theorem 4.2 can be found in section 7.6.

7.5 Proof of Theorem 5.1

Proof of Theorem 5.1. Also in this proof, we omit the phrase “relative to �Z; z�”,
since we only consider the consequence structure �Z; z�:

(a) Suppose first that ≿i is utility-based consequentialist. Then, ≿i has an
expected utility representation ui that is measurable with respect to �Z; z�. Hence,
for every consequence z there is a unique utility bui z� � such that

ui si; s�i� � �bui z� � f or all si; s�i� � 2 Si × S�i with z �si; s�i� � z:

For every strategy si and belief βi we then have that

ui�si; βi� �
X
s�i2S�i

βi s�i� � 
 ui�si; s�i� �
X
z2Z

�
X

s�i2S�i :z�si;s�i��z

βi�s�i 	 
bui z� ��

�
X
z2Z

P�si;βi� z� � 
bui z� �: (19)

To show that ≿ is preference-based consequentialist, consider four strategies
si; s

0
i; ti; t

0
i and two beliefs βi;β

0
i with

P�si;βi� � P�s0i;β0i� and P�ti;βi� � P�t0i;β0i�:

Then, in view of (19), ui�si;βi� � ui�s0i;β0
i� and ui�ti;βi� � ui�t0i; β0i�; which

implies that

ui�si;βi� � ui�ti;βi� � ui�s0i;β0
i� � ui�t0i;β0

i�:
Hence, si≿i;βi ti if and only if s0i≿i;β0i

t0i: As such, ≿i is preference-based
consequentialist.

(b) Assume next that ≿i has an expected utility representation ui and is
preference-based consequentialist. Use the utility transformation procedure to
transform ui into a new expected utility representation vi for ≿i:We will now show
that vi is measurable with respect to �Z; z�.

Within the graph GD
i ; consider a connected component CC and the associated

spanning tree T with root s0�i chosen in the utility transformation procedure. We
prove, for every strategy si and every edge �s
�i; t
�i� in CC that
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vi�si; s
�i� � vi�si; t
�i� whenever z �si; s
�i� � z�si; t
�i�: (20)

We distinguish two cases: (1) the edge �s
�i; t
�i� is in the spanning tree T; and (2)
the edge �s
�i; t
�i� is not in the spanning tree T:

Case 1. Suppose that the edge �s
�i; t
�i� is in the spanning tree T with t
�i � p s
�i
� �

; where p s
�i
� �

is the
predecessor to s
�i in the utility transformation procedure. Take any strategy si with z�si; s
�i� � z�si; t
�i�:
Since t
�i � p s
�i

� �
we know by (11) in the utility transformation procedure that

vi ti� �s
�i�; s
�i� � vi ti� �s
�i�; t
�i�: As z ti� �s
�i�; s
�i� � z ti� �s
�i�; t
�i� and z�si; s
�i� � z�si; t
�i�; it follows by
Lemma 7.2 that vi�si; s
�i� � vi�si; t
�i�; and hence (14) holds.

Case 2. Suppose that the edge �s
�i; t
�i� is not in the spanning tree T: Let �s0�i; . . . ; sL�i� be the unique path in
T from s0�i to s
�i; where s

L
�i � s
�i: Moreover, let �sL�1

�i ; . . . ; sL�M
�i � be the unique path in T from t
�i to s0�i;

where sL�1
�i � t
�i and sL�M

�i � s0�i: Then, c :� �s0�i; . . . ; sL�i; sL�1
�i ; . . . ; sL�M

�i � is a cycle in CC.
By Lemma 7.4 we know that the graph GD

i satisfies two strategies per connected component. Hence,
there are two strategies s
i ; t



i such that for every edge �sk�i; sk�1

�i � in the cycle c either

z�s
i ; sk�i� � z�s
i ; sk�1
�i � or z�t
i ; sk�i� � z�t
i ; sk�1

�i �:
We distinguish three cases: (2.1) z�s
i ; sk�i� � z�s
i ; sk�1

�i � for all edges �sk�i; sk�1
�i � in the cycle c; (2.2)

z�t
i ; sk�i� � z�t
i ; sk�1
�i � for all edges �sk�i; sk�1

�i � in the cycle c; and (2.3) conditions (2.1) and (2.2) do not hold.

Case 2.1. Suppose that z�s
i ; sk�i� � z�s
i ; sk�1
�i � for all edges �sk�i; sk�1

�i � in the cycle c: As the edges
�s0�i; s1�i�; . . . ; �sL�1�i ; sL�i� and the edges �sL�1

�i ; sL�2
�i �; . . . ; �sL�M�1

�i ; sL�M
�i � are all in the spanning tree T; we

know from Case 1 that

vi�s
i ; s
�i� � vi�s
i ; sL�i� � vi�s
i ; sL�1�i � � . . . � vi�s
i ; s0�i�
� vi�s
i ; sL�M

�i � � vi�s
i ; sL�M�1
�i � � . . . � vi�s
i ; sL�1

�i � � vi�s
i ; t
�i�:
Hence, vi�s
i ; s
�i� � vi�s
i ; t
�i�:
Now, take an arbitrary si with z�si; s
�i� � z�si; t
�i�: As z�s
i ; s
�i� � z�s
i ; t
�i� and

vi�s
i ; s
�i� � vi�s
i ; t
�i�; it follows by Lemma 7.2 that vi�si; s
�i� � vi�si; t
�i�; and hence (20) holds.

Case 2.2. Suppose that z�t
i ; sk�i� � z�t
i ; sk�1
�i � for all edges �sk�i; sk�1

�i � in the cycle c: Then, it can be shown
in the same way as in Case 2.1 that (20) holds for �s
�i; t
�i�:

Case 2.3. Suppose that conditions (2.1) and (2.2) do not hold. Then, there is an edge �sk�i; sk�1
�i � in the cycle c

with z�s
i ; sk�i�≠ z�s
i ; sk�1
�i � and an edge �sm�i; sm�1

�i � with z�t
i ; sm�i�≠ z�t
i ; sm�1
�i �: Let

S��i :� sk�i in c
� 

z�s
i ; sk�1�i �≠ z s
i ; s

k
�i

� �
and z�s
i ; sk�i� � z�s
i ; sk�1

�i �g
and

S��i :� sk�i in c
� 

z�s
i ; sk�1�i � � z s
i ; s

k
�i

� �
and z�s
i ; sk�i�≠ z�s
i ; sk�1

�i �g;
where s�1�i :� sM�L�1

�i and sM�L�1
�i :� s1�i: Then, S

�
�i and S

�
�i are both non-empty, and have the same number

of nodes, say n:

Define the beliefs

β�
i :� 1

n

X
s��i2S��i

s��i
� �

and β�
i :� 1

n

X
s��i2S��i

s��i
� �

:

Hence, β�
i assigns equal probability to all opponents’ strategy combinations in

S��i; whereas β
�
i assigns equal probability to all opponents’ strategy combinations in
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S��i: We will show that

P�s
i ;β�i � � P�s
i ;β�i � and P�t
i ;β�i � � P�t
i ;β�i �: (21)

To prove this we introduce some additional notation. Fix the direction
�s0�i; . . . ; sL�i; sL�1

�i ; . . . ; sL�M
�i � of the cycle c: For every node s��i 2 S��i; let fol s

�
�i

� �
be

the first node in S��i (given this direction) that follows s��i; and let pre s��i
� �

be the last
node in S��i (given this direction) that precedes s��i:

Now, consider some node s��i 2 S��i; and let sk�i; s
k�1
�i ; . . . ; sl�i be the sequence of

nodes in c (if any) between s��i and fol s��i
� �

(given this direction). Then, by
construction,

z�s
i ; s��i� � z�s
i ; sk�i� � z�s
i ; sk�1
�i � � . . . � z�s
i ; sl�i� � z�s
i ; fol�s��i��: (22)

Similarly, let sm�i; s
m�1
�i ; . . . ; sr�i be the sequence of nodes in c (if any) between

pre s��i
� �

and s��i (given this direction). Then, by construction, z�s
i ; s�i�≠ z�s
i ; t�i�
for every edge �s�i; t�i� on the path pre

� �
s��i�; sm�i; sm�1

�i ; . . . ; sr�i; s
�
�i�; and hence

z�t
i ; s�i� � z�t
i ; t�i� for every edge �s�i; t�i� on the path
pre
� �

s��i�; sm�i; sm�1
�i ; . . . ; sr�i; s

�
�i�: As such,

z�t
i ; pre�s��i�� � z�t
i ; sm�i� � z�t
i ; sm�1
�i � � . . . � z�t
i ; sr�i� � z�t
i ; s��i�: (23)

We can then conclude that

P�s
i ;β�i � �
1
n

X
s��i2S��i

�z�s
i ; s��i�	 �
1
n

X
s��i2S��i

�z�s
i ; fol s��i
� ��	

� 1
n

X
s��i2S��i

�z�s
i ; s��i�	 � P�s
i ;β�i �: (24)

Here, the first equality follows from the definition of β�
i ; the second equality

follows from (22), the third equality follows from the fact that

S��i � fol
� �

s��i�js��i 2 S��ig;
whereas the last equality follows from the definition of β�

i :
Similarly, it follows that

P�t
i ;β�i � �
1
n

X
s��i2S��i

�z�t
i ; s��i�	 �
1
n

X
s��i2S��i

�z�t
i ; pre s��i
� ��	

� 1
n

X
s��i2S��i

�z�t
i ; s��i�	 � P�t
i ;β�i �: (25)

Here, the first equality follows from the definition of β�
i ; the second equality

follows from (23), the third equality follows from the fact that

S��i � pre
� �

s��i�js��i 2 S��ig;
whereas the last equality follows from the definition of β�i : By (24) and (25) we thus
conclude that (21) holds.
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Since (i) (21) holds, (ii) the conditional preference relation ≿i is preference-based
consequentialist with expected utility representation vi; and (iii) the two strategies
s
i ; t



i do not weakly dominate one another, we conclude on the basis of Lemma 7.1

that

vi�s
i ;β�
i � � vi�t
i ;β�

i � � vi�s
i ;β�
i � � vi�t
i ;β�

i �: (26)

By definition of the belief β�i we have that

vi�s
i ;β�
i � �

1
n

X
s��i2S��i

vi�s
i ; s��i�;

and similarly for vi�t
i ;β�i �; vi�s
i ;β�
i � and vi�t
i ;β�

i �: Substituting this into (26)
yields

1
n

X
s��i2S��i

vi�s
i ; s��i� �
1
n

X
s��i2S��i

vi�t
i ; s��i� �
1
n

X
s��i2S��i

vi�s
i ; s��i� �
1
n

X
s��i2S��i

vi�t
i ; s��i�:

Since S��i � fol
� �

s��i� j s��i 2 S��ig and S��i � pre
� �

s��i� j s��i 2 S��ig; this implies
thatX

s��i2S��i
vi�s
i ; s��i� �

X
s��i2S��i

vi�t
i ; s��i� �
X
s��i2S��i

vi�s
i ; fol�s��i�� �
X
s��i2S��i

vi�t
i ; pre�s��i��:

(27)

For every two nodes s�i; t�i on the cycle c; let �s�i; t�i	 be the ordered set of all the
nodes on the cycle (including s�i and t�i� between s�i and t�i (in the direction of the
cycle c). Recall the edge �s
�i; t
�i� on the cycle c we consider. Then, there is some
node s
��i 2 S��i such that either s
�i; t



�i 2 �s
��i ; fol s
��i

� �	 or s
�i; t
�i 2 �pre s
��i
� �

; s
��i 	:
We thus distinguish two cases: (2.3.1) s
�i; t



�i 2 �s
��i ; fol s
��i

� �	 and
(2.3.2) s
�i; t



�i 2 �pre s
��i

� �
; s
��i 	:

Case 2.3.1. Assume that s
�i; t


�i 2 �s
��i ; fol s
��i

� �	: Take some s��i 2 S��in s
��i
� �

; and let

�s��i; fol s��i
� �	 � �s��i; s1�i; . . . ; sk�i; fol s��i

� ��:
Then, by construction,

z�s
i ; s��i� � z�s
i ; s1�i� � . . . � z�s
i ; sk�i� � z�s
i ; fol�s��i��:
As all the edges in �s��i; fol�s��i�	 are in the spanning tree T; it follows by Case 1

that

vi�s
i ; s��i� � vi�s
i ; s1�i� � . . . � vi�s
i ; sk�i� � vi�s
i ; fol�s��i�� (28)

for all s��i 2 S��in s
��i
� �

:
Next, take some s��i 2 S��i; possibly equal to s
��i ; and let

�pre s��i
� �

; s��i	 � �pre s��i
� �

; s1�i; . . . ; s
l
�i; s

�
�i�:

38 Andrés Perea

https://doi.org/10.1017/S0266267125100588 Published online by Cambridge University Press

https://doi.org/10.1017/S0266267125100588


Then, by construction,

z�t
i ; pre�s��i�� � z�t
i ; s1�i� � . . . � z�t
i ; sl�i� � z�t
i ; s��i�:
As all the edges in pre

� �
s��i�; s��i	 are in the spanning tree T; it follows by Case 1

that

vi�t
i ; pre�s��i�� � vi�t
i ; s1�i� � . . . � vi�t
i ; sl�i� � vi�t
i ; s��i� (29)

for all s��i 2 S��i:
By (28) and (29) we then conclude that all terms in (27) cancel, except for

vi�s
i ; s
��i � and vi�s
i ; fol�s
��i ��; which yields

vi�s
i ; s
��i � � vi�s
i ; fol�s
��i ��: (30)

Recall that s
�i; t


�i 2 �s
��i ; fol s
��i

� �	 where t
�i follows s


�i in the direction of the

cycle. Then, every edge �s�i; t�i� in �s
��i ; s
�i	; if any, is in the spanning tree T: As
z�s
i ; s�i� � z�s
i ; t�i� for every such edge, it follows from Case 1 that
vi�s
i ; s�i� � vi�s
i ; t�i� for every edge �s�i; t�i� in �s
��i ; s
�i	; if any. As such,

vi�s
i ; s
�i� � vi�s
i ; s�

�i �: (31)

Similarly, every edge �s�i; t�i� in �t
�i; fol�s
��i �	; if any, is in the spanning tree T:
As z�s
i ; s�i� � z�s
i ; t�i� for every such edge, it follows from Case 1 that
vi�s
i ; s�i� � vi�s
i ; t�i� for every edge �s�i; t�i� in �t
�i; fol�s
��i �	; if any. As such,

vi�s
i ; t
�i� � vi�s
i ; fol�s
��i ��: (32)

By (30), (31) and (32) it follows that vi�s
i ; s
�i� � vi�s
i ; t
�i�:
Now, take some arbitrary si with z�si; s
�i� � z�si; t
�i�: As z�s
i ; s
�i� � z�s
i ; t
�i�

and vi�s
i ; s
�i� � vi�s
i ; t
�i�; it follows from Lemma 7.2 that vi�si; s
�i� � vi�si; t
�i�:
Hence, (20) holds.

Case 2.3.2. Assume that s
�i; t


�i 2 �pre s
��i

� �
; s
��i 	: Then, it can be shown in a similar fashion as in Case

2.3.1 that (20) holds.

As we have exhausted all cases, we conclude that (20) holds for every edge
�s
�i; t
�i� in the connected component CC: Moreover, by covering all connected
components CC; we conclude that (20) holds for every edge �s
�i; t
�i� in the
graph GD

i :
We finally show that the utility function vi so constructed is measurable with

respect to �Z; z�. Take strategies si; ti and opponents’ strategy combinations s�i; t�i
with z�si; s�i� � z�ti; t�i�: We will show that vi�si; s�i� � vi�ti; t�i�:

As z�si; s�i� � z�ti; t�i� �: z; strategies si; ti select all player i actions on the path
to z; and s�i; t�i select all opponents’ actions on the path to z: But then,
z�si; s�i� � z�si; t�i� and z�si; t�i� � z�ti; t�i�:

As z�si; s�i� � z�si; t�i�; it follows by Lemma 7.5 that we can choose opponents’
strategy combinations s0�i; s

1
�i; . . . ; s

M
�i such that (i) s0�i � s�i; (ii) sM�i � t�i; (iii)

sk�i; s
k�1
�i are minimally different for every k 2 f0; . . . ;M � 1g; and (iv) z�si; sk�i� �

z�si; sk�1
�i � for all k 2 f0; . . . ;M � 1g: By (20) it then follows that

vi�si; sk�i� � vi�si; sk�1
�i � for all k 2 f0; . . . ;M � 1g; which implies that vi�si; s�i� �

vi�si; t�i�:
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Moreover, as z�si; t�i� � z�ti; t�i� it follows that P�si;�t�i 	� � P�ti;�t�i	�:Moreover, it
trivially holds that P�si;�t�i	� � P�si;�t�i 	�: Since ≿i is preference-based consequentialist
we know that

si ≿ i; t�i� 	ti if and only if si ≿ i; t�i� 	si:

Clearly, si�i; t�i� 	si; and therefore si�i; t�i� 	ti: Since the utility function vi represents
≿i we must have that vi�si; t�i� � v�ti; t�i�:

Together with the insight above that vi�si; s�i� � vi�si; t�i� we conclude that
vi�si; s�i� � vi�ti; t�i�: As such, the utility function vi is measurable with respect to
�Z; z�. Altogether, we have constructed an expected utility representation vi for ≿i
that is measurable with respect to �Z; z�. Hence, ≿i is utility-based consequentialist.
This completes the proof. ▪

7.6 Proof of Theorem 4.2

Proof of Theorem 4.2. Also in this proof, we omit the phrase “relative to �Z; z�”,
since we only consider the consequence structure �Z; z�:

(a) Suppose first that ≿i is preference-based consequentialist. Take two strategies

si; ti; and consider the restricted conditional preference relation ≿fsi;tig
i : Then, ≿fsi;tig

i

is preference-based consequentialist also. As ≿fsi;tig
i only involves two strategies, it

follows from the proof of Theorem 5.1, part (b), that ≿fsi;tig
i is utility-based

consequentialist. By Theorem 4.1 we then conclude that ≿fsi;tig
i induces additive

preference intensities on consequences and respects outcome-equivalent strategies.
(b) Suppose next that �� i respects outcome-equivalent strategies, and that for

every pair of strategies si; ti the restricted conditional preference relation ��
si;tif g
i

induces additive preference intensities on consequences. Let ui be an expected utility

representation of �� i: Take a pair of strategies si; ti: As ≿fsi;tig
i induces additive

preference intensities on consequences and respects outcome-equivalent strategies,

it follows from Theorem 4.1 that ≿fsi;tig
i is utility-based consequentialist. By the

proof of Theorem 5.1, part (a), it follows that ≿fsi;tig
i is preference-based

consequentialist. Thus, ≿fsi;tig
i is preference-based consequentialist for every two

strategies si; ti:
We will now show that ≿i is preference-based consequentialist. Take four

strategies si; s
0
i; ti; t

0
i and two beliefs βi;β

0
i with P si;βi� � � P s

0
i ;β

0
i� � and P ti;βi� � � P t

0
i ;β

0
i� �:

Then, it follows from Lemma 7.6 that P si;βi� � � P si;β
0
i� � and P ti;βi� � � P ti;β

0
i� �: Since

≿fsi;tig
i is preference-based consequentialist, it follows from Lemma 7.1 that

ui si;βi� � � u ti; βi� � � ui si;β
0
i

� � � ui ti;β
0
i

� �
: (33)

Moreover, as P si;βi� � � P s
0
i ;β

0
i� � we know from Lemma 7.6 that P si;β

0
i� � � P s

0
i ;β

0
i� �:

As, trivially, P si;β
0
i� � � P s

0
i ;β

0
i� �: and ��

si;s
0
if g

i is preference-based consequentialist, it

follows that
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si≿i;β
0
i
s
0
i if and only if si≿i;β

0
i
si:

As si�i;β
0
i
si it follows that si�i;β

0
i
s
0
i; and hence ui si;β

0
i

� � � ui s
0
i;β

0
i

� �
: Similarly, it

can be shown that ui ti;β
0
i

� � � ui t
0
i ; β

0
i

� �
: Combining the latter two insights with (33)

yields ui si;βi� � � ui ti;βi� � � ui s
0
i;β

0
i

� � � ui t
0
i ;β

0
i

� �
: Hence, si≿i;βi ti if and only if

s
0
i≿i;β

0
i
t
0
i: We thus conclude that ≿i is preference-based consequentialist. This

completes the proof. ▪
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