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The growing amount of data produced by simulations and observations of space physics
processes encourages the use of methods rooted in machine learning for data analysis
and physical discovery. We apply a clustering method based on self-organizing maps to
fully kinetic simulations of plasmoid instability, with the aim of assessing their suitability
as a reliable analysis tool for both simulated and observed data. We obtain clusters that
map well, a posteriori, to our knowledge of the process; the clusters clearly identify the
inflow region, the inner plasmoid region, the separatrices and regions associated with
plasmoid merging. Self-organizing map-specific analysis tools, such as feature maps and
the unified distance matrix, provide us with valuable insights into both the physics at work
and specific spatial regions of interest. The method appears as a promising option for the
analysis of data, both from simulations and from observations, and could also potentially
be used to trigger the switch to different simulation models or resolution in coupled codes
for space simulations.
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1. Introduction

In recent years, space physics research based on observations and numerical
experiments has converged under several points of view. First, both spacecraft and
numerical simulations have nowadays easy access to kinetic-scale processes. Recent
missions, such as the Magnetospheric MultiScale (MMS) (Burch et al. 2016) spacecraft,
Parker Solar Probe PSP (Fox et al. 2016) and Solar Orbiter (Müller et al. 2020), routinely
sample ion and electron scales. Similarly, fully kinetic codes are employed for the study
of ion- and electron-scale processes embedded in increasingly large spatial and temporal
domains. This is the case in particular for semi-implicit particle-in-cell (PIC) (Hockney &
Eastwood 2021), codes, e.g. Markidis et al. (2010), Innocenti et al. (2017b) and Lapenta,
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Gonzalez-Herrero & Boella (2017), where advanced numerical techniques may also be
used to enable the simulation of large domains, either within the fully kinetic description,
e.g. Innocenti et al. (2013, 2015b) and Innocenti, Tenerani & Velli (2019b), or by coupling
the kinetic and fluid descriptions, e.g. Daldorff et al. (2014), Ashour-Abdalla et al. (2015)
and Lautenbach & Grauer (2018). Second, both spacecraft observations and numerical
simulations produce an increasing amount of data. As an example, MMS collects a
combined volume of ∼100 gigabits per day of particle and field data, of which only a
fraction can be transmitted to the ground due to downlink limitations (Baker et al. 2016).
At the same time, a single PIC simulation can produce ∼ tens of terabytes of output,
depending on the frequency at which field and particle information is saved. Such a
huge amount of data leads naturally to the usage of machine learning (ML, Bishop 2006;
Goodfellow, Bengio & Courville 2016)-based methods for data analysis and investigation.
A review of recent applications of ML techniques to the space physics domain is found
in Camporeale (2019). Particularly useful in this context are classification or clustering
techniques that can be used for the identification of ‘similar’ regions, either sampled or
simulated, and hence for the detection of boundary crossing. Recently, supervised ML
techniques have been used for the classification of large-scale magnetospheric regions
and detection of boundary crossing, chiefly bow-shock and magnetopause crossings, e.g.
in Argall et al. (2020), Breuillard et al. (2020), da Silva et al. (2020), Olshevsky et al.
(2021), Lalti et al. (2022) and Nguyen et al. (2022). ML techniques, either supervised, e.g.
Camporeale, Carè & Borovsky (2017) and Li et al. (2020), or unsupervised, e.g. Amaya
et al. (2020) and Roberts et al. (2020), have been used for the classification/clustering
of solar wind states. Unsupervised techniques, namely Gaussian mixture models, have
recently proven quite effective in PIC simulations, either for the identification of regions
of interest (Dupuis et al. 2020), where the particle distribution functions deviate from
Maxwellian, or to encode particle information for later resampling during simulation
restarts (Chen, Chacón & Nguyen 2021). In this paper, we will use an unsupervised
clustering technique based on self-organizing maps (SOMs, Kohonen 1982) to cluster
simulated data points obtained from a PIC simulation. The aim is to verify whether this
procedure can be used for two purposes, namely simulation pre-processing and scientific
investigation. The same procedure (with minimal variations) has already given satisfactory
results on data of rather different origin, obtained from both observations and simulations.
In Amaya et al. (2020), it has been applied to 14 years of Advanced Composition Explorer
(ACE, Stone et al. 1998) solar wind measurements. In Innocenti et al. (2021), it has
been used to cluster simulated data, and specifically data from a global magnetospheric
simulation. The code used there was the magneto-hydro-dynamic (MHD)-based code
OpenGGCM-CTIM-RCM (Raeder 2003), which targets large-scale processes originating
from the interaction of the solar wind with the magnetosphere–ionosphere–thermosphere
system. Quite satisfactorily, the clustering procedure used there was able to cluster
simulated points into regions associated, a posteriori, with the pristine solar wind, the
magnetosheath (divided into three clusters, just downstream and further away from the
bow shock), the lobes, the inner magnetosphere and boundary layers. Verification and
validation activities were conducted to ascertain the dependence of the obtained clusters
on several hyper-parameters, including the features used for the clustering, the number
of k-means clusters used for the classification of the trained weights, and SOM-related
hyper-parameters, such as the number of nodes in the SOM, the learning rate and the initial
lattice neighbourhood width (see § 2). Robustness of the proposed clustering to temporal
variation was also investigated.

One rather fundamental question left open in Innocenti et al. (2021) was whether a
similar clustering procedure would produce equally meaningful results when applied to
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smaller-scale processes, kinetic in nature. The MHD simulations intend to reproduce
plasma behaviour at scales large enough that certain assumptions can be considered
satisfied. Among these assumptions, we list quasi-neutrality, the presence of thermal
(Maxwellian) and isotropic velocity distribution functions, the possibility of ignoring the
non-ideal terms in Ohm’s law and finite gyroradius effects (Ledvina, Ma & Kallio 2008).
These assumptions are obviously not respected in most heliospheric plasmas, especially at
the very small and fast scales sampled by recent magnetospheric and solar wind missions,
such as the above-mentioned MMS, PSP and Solar Orbiter. Hence, the need arises to verify
if the clustering procedure described in Innocenti et al. (2021) is robust to using simulation
approaches, such as PIC methods, that deliver results directly comparable to observations
(Innocenti et al. 2016). This work intends to address this question. The aim of this work is
twofold: on one hand, we intend to verify if this procedure is useful in the post-processing
of large-throughput numerical simulations. On the other hand, this analysis constitutes a
necessary first step to validate the method before applying it to spacecraft observations.
We apply the clustering procedure from Innocenti et al. (2021) to a fully kinetic PIC
simulation of the plasmoid instability. The plasmoid instability is a fast instability that
breaks down current sheets into multiple magnetic islands, which later undergo nonlinear
evolution. We refer the reader to Loureiro & Uzdensky (2015) and Pucci et al. (2020) for
a review of recent developments in plasmoid instability research both in the collisional
and collisionless regimes. The plasmoid instability results in fast, spontaneous magnetic
reconnection in plasmas and, as such, is deeply connected to the fundamental topic
of particle heating and acceleration in space and astrophysical plasmas. A number of
recent PIC simulations have focused specifically on the role of magnetic reconnection
triggered by plasmoid instability in electron heating and acceleration. Processes observed
in plasmoid instability simulations that result in particle heating and acceleration are
acceleration by the reconnection electric field (Li et al. 2017), Fermi acceleration (Guo,
Jokipii & Kota 2010) and plasmoid merging (Drake et al. 2006; Petropoulou et al. 2018).
The efficiency of these processes has been observed to vary according to the plasma beta
(Li et al. 2015) and magnetization (Guo et al. 2016). In simulations of plasmoid instability
evolution, different regions are immediately distinguishable with the naked eye: an inflow
region, separatrices, the plasmoid themselves and the plasmoid merging regions. We aim
at understanding if our unsupervised clustering method is capable of comparable region
identification.

This paper is organized as follows: in § 2 we describe SOMs and our clustering
procedure, in § 3 the simulation used. In § 4 we describe our results: preliminary data
inspection, scaling experiments, SOM training and the k-means clustering of trained SOM
nodes (§ 4). An a posteriori analysis of clustering results and physical insights obtained
from them are described in § 5. Discussions and conclusions follow. In the Appendix we
comment on the robustness to hyper-parameter choice of our clustering procedure.

2. Self-organizing maps: a summary

Self-organizing maps (Kohonen 1982; Villmann & Claussen 2006) can be viewed
as both a clustering and a dimensionality reduction procedure (Kohonen 2014). The
aim is to represent a large set of possibly high-dimensional data as a (usually)
two-dimensional (2-D) ordered lattice composed of y × x = q nodes/units/neurons, with y
and x respectively the number of rows and columns, and q the total number of nodes. Each
node i is characterized by a position in the 2-D lattice and by a weight wi ∈ R

n, where
n is the number of features associated with each data point, and hence with each weight.
Before the training, the weights are initialized randomly so as to span the parameter space
covered by the first two principal components (Shlens 2014) of the input data, to make
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training faster (Kohonen 2014). At the end of the training, the node weights will have
been modified so that the nodes (a) represent local averages of the input data that maps
to them, and (b) are topographically ordered according to their similarity relation. Nearby
nodes should be more ‘similar’ to each other than far away nodes. To define similarity a
distance metric is needed. Common choices are the Euclidean, sum of squares, Manhattan
and Tanimoto distances (Xu & Tian 2015).

The training is unsupervised, meaning that training data are not labelled. Each data point
xτ is presented to the map multiple times. On each occasion the following procedure, a mix
of competition and collaboration, is repeated:

(i) competition: the best matching unit (BMU) of the input data xτ is identified, by
selecting the node whose weight ws, among the set W of all the weights in the map,
has minimum distance (‖ · ‖) with respect to xτ

ws = arg min
wi∈W

(‖xτ − wi‖) ; (2.1)

(ii) collaboration: to obtain an ordered map, not only the BMU but also some
neighbouring nodes are tagged for update at each iteration. Such neighbours are
selected through a lattice neighbourhood function hσ (τ, i, s)

hσ (τ, i, s) = exp
(

−‖pi − ps‖2

2σ(τ)2

)
, (2.2)

where s is the BMU index and pi ∈ R
2 the position of node i in the 2-D map; σ(τ)

is the iteration(τ )-dependent lattice neighbourhood width that determines the extent
around the BMU of the update introduced by the new input;

(iii) weight update: the weights of the selected nodes are updated, to make them become
more similar to the input data. The magnitude of the correction �wi for the node i
is calculated as follows:

�wi = ε(τ )hσ (τi, i, s)(xτ − wi). (2.3)

The correction depends on the distance of the nodes from the BMU and on the
learning rate ε(τ ), which is also iteration dependent.

Both the lattice neighbourhood width and the learning rate decrease with increasing
iteration number, according to predetermined rules. The initial lattice neighbour width and
learning rate, σ(τ = 0) and η(τ = 0), are labelled σ0 and η0, respectively. The rationale
for this iteration-dependent decrease is the following: at the beginning of the training
far-reaching, large-magnitude updates of the node weights are needed, since the node
weights are very different from the input data and the topology of the data has to be
enforced on the map. After several iterations, when the map already resembles the data,
the node updates become targeted in position and smaller in magnitude. The overall
convergence of the map is, therefore, separable into two phases: first the topographic
ordering of the nodes and then the convergence of the weight values according to the
quantization error (Van Hulle 2012).

The quantization error, QE, defined as

QE = 1
m

m∑
i=1

‖xi − ws | xi‖, (2.4)

measures the average distance between each of the m entry data points xi and their BMU,
ws | xi . As such, it can be used to measure how closely the map reflects the training data
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distribution. The quantization error is expected to decrease and finally plateau during map
training.

The SOMs are at the core of the clustering procedure we use in this work, which has
already been used (with minimal variation) and described in Amaya et al. (2020) and
Innocenti et al. (2021). We briefly describe the method here for the reader’s convenience:

(i) preliminary data inspection and data pre-processing: we describe in § 4 our
experiments with different data scalers;

(ii) SOM training, as described above;
(iii) k-means clustering (Lloyd 1982) of the trained SOM nodes. After SOM training,

the data points are clustered in q clusters, with q the number of SOM nodes; q
is typically too high for meaningful results inspections. Hence, we further cluster
the trained SOM nodes into a lower number of k-means clusters. The number
of clusters is determined through an unsupervised procedure, the Kneedle cluster
number determination (Satopaa et al. 2011);

(iv) clustering of the simulated data points, based on the k-means cluster of their BMU.
At this stage, we can inspect our clustering results and use the result of the clustering
to obtain physical insights on our data, see §§ 4 and 5.

In Amaya et al. (2020) and Innocenti et al. (2021) the serial SOM implementation
from Vettigli (2018) was used. Here, due to the large volume of data points to cluster,
we move to the parallel SOM implementation using CUDA (NVIDIA, Vingelmann &
Fitzek 2020) and C++ by Mistri (2018). The algorithm is the same as in the serial
implementation, but the distance calculations between the data samples and the neuron
weights are parallelized. The parallel implementation allows us to choose, for the training
phase, between online and batch learning. In the online version of the algorithm, the data
samples are each processed according to the scheme described above. In this case, the
updates of the weights are determined by the impact of the individual samples. The batch
algorithm, on the other hand, finds the BMU for each sample and then sums up all data
samples mapping to one node at the beginning of a training cycle to form node sums. Then,
during training, a neighbourhood set for each of the nodes is found and all the nodes sums
are summed up to a neighbourhood sum, which is divided by the total number of samples
contributing, to form a neighbourhood mean. In the end, the weights are updated in one
operation over all nodes of the SOM, where the values of the weights are replaced by those
neighbourhood means (Kohonen 2014). The batch algorithm does not need a learning rate.
We chose here the online training algorithm. In table 1 we compare the average run time
per epoch, in seconds, of the serial and parallel SOM implementations, as a function of
the number of samples m. One epoch corresponds to presenting all the samples to the map
once. In the last column we record the ratio of the execution times of the parallel and
serial implementations as a function of the number of samples. We observe that using
the parallel implementation becomes increasingly convenient with increasing sample
number.

3. Simulation description

Self-organizing maps are used to cluster results of a 2-D kinetic simulation of plasmoid
instability. The simulation was carried out with the semi-implicit PIC code ECsim
(Lapenta 2017; Lapenta et al. 2017; Gonzalez-Herrero, Boella & Lapenta 2018). In
the PIC algorithm, a statistical approach is adopted and plasmas are described using
computational particles or macroparticles representative of several real plasma particles.
These computational particles interact via the electromagnetic fields that they themselves
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Implementation m average runtime/epoch in s speedup factor

serial 2264 0.785
parallel 0.314 2.4
serial 5660 2.476
parallel 0.798 3.1
serial 11 320 2.986
parallel 1.603 3.7
serial 22 641 14.625
parallel 3.240 4.5
serial 226 419 356.094
parallel 36.302 9.8
serial 1 132 096 3597.720
parallel 176.865 20.3

TABLE 1. Comparison of the execution times of the parallel CUDA/C++ implementation
CUDA-SOM (Mistri 2018) and the serial Python implementation miniSom (Vettigli 2018), both
trained for 5 epochs with different sample sizes m. The data points are extracted from the upper
current sheet of the simulation described in § 3. The SOM parameters used for the training are
initial learning rate η0 = 0.5 and initial neighbourhood radius σ0 = 0.2 × max(x, y).

produce. The fields are computed on a fixed grid by solving Maxwell’s equations. ECsim
implements a semi-implicit algorithm, which makes the code stable and accurate over
different spatial and temporal resolutions. As a consequence, the code resolution can be
tuned to the physics of interest, rather than to the smallest scales of the problem (Micera
et al. 2020). In the simulation, two oppositely directed force-free current sheets are used
as initial condition. The sheets sustain a magnetic field B = Bx( y)x̂ + Bz( y)ẑ with

Bx( y) = B0,x

[
−1 + tanh

(
y − 0.25Ly

δ

)
+ tanh

(
−y − 0.75Ly

δ

)]
, (3.1)

and

Bz( y) = B0,x

√
sech2

(
y − 0.25Ly

δ

)
+ sech2

(
y − 0.75Ly

δ

)
+ B2

g. (3.2)

Here, Ly is the transverse size of the simulation box, δ = di is the current sheet
half-thickness, di = c/ωpi is the ion inertial length, ωpi = √

4π e2n0i/mi the plasma
frequency for ions of density n0i and mass mi, e is the elementary charge and Bg the
magnitude of the guide field. While the upper current sheet is unperturbed and the tearing
instability is seeded from numerical noise, the magnetic field of the lower current sheet
was perturbed with a long wave perturbation (Birn et al. 2001) to trigger the instability
on faster time scales. The simulation box is filled with a plasma composed of electrons
and ions with mass ratio mi/me = 25, where me is the electron mass, having uniform
density n0i = n0e = n0 and temperature T0i = T0e = T0. Electrons are initialized with a
drift velocity ve = ve,x( y)x̂ + ve,z( y)ẑ, such that ∇ × B = 4πJ e/c is satisfied, with J e the
electron current density. In our simulation, we set vA = 0.2c, ωpe/Ωce = 1, βe = βi = 0.02
and Bg = 0.03B0,x. Here, vA = B0,x/(4πn0mi) is the Alfvén velocity, ωpe = √

4π e2n0/me
is the electron plasma frequency, Ωce = eB0,x/(mec) is the electron cyclotron frequency,
βe,i = 8πn0T0/B2

0,x is the ratio between electron/ion pressure and magnetic pressure and c
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is the speed of light in vacuum. These dimensionless parameters are similar to those used
in Li et al. (2017) and correspond to plasma conditions typical of the solar corona and the
accretion disk corona. We used a simulation box with longitudinal and transverse sizes
Lx = Ly = 200di, discretized with 2128 × 2128 cells to resolve c/ωpe twice. To model the
plasma dynamics accurately, 64 particles per cell per species were employed. Particles
were pushed for more than 7000 iterations with a temporal time step of 0.16Ω−1

ci , with
Ωc,i ion cyclotron frequency. Periodic boundary conditions for fields and particles were
adopted. We performed a detailed convergence study to ensure that the chosen numerical
parameters do not affect the physics under investigation. Figure 1 displays the out-of-plane
magnetic field component (Bz, a), one diagonal (pxx,e, b) and one non-diagonal, (pxz,e,
c), electron pressure term, and the out-of-plane electron current (Jz,e, d) at Ωcit = 320.
Field lines are superimposed on each panel. At this time the tearing instability is in
its nonlinear phase in both current sheets. In the upper current sheet, we observed the
formation of small magnetic islands that grew with time and merged to produce the shown
configuration. In the lower current sheet, where a perturbation was originally present,
single X point reconnection developed initially. Later, plasmoids formed in the current
sheet and plasmoid merging was also observed. Signatures associated with plasmoid
merging are described e.g. in Cazzola et al. (2015, 2016). At the location of the X points
(x/di � 70 and 170 in the upper current sheet and x/di � 80 in the lower current sheet),
the out-of-plane magnetic field component Bz shows the typical quadrupolar structure
associated with collisionless Hall reconnection. The xx component of the electron pressure
tensor is low at the X points and high at the periphery of magnetic islands, as noted for the
electron temperature in Lu et al. (2019). A similar behaviour is observed for the xz pressure
tensor component, which is higher in absolute value at the border of magnetic islands
with respect to other regions. It is interesting to notice that pxz,e changes polarity within a
magnetic island. The role of the pressure tensor off-diagonal components in causing fast
reconnection in collisionless plasmas has been studied in a number of previous works, e.g.
Hesse & Winske (1998) and Ricci et al. (2004).

4. Clustering results

The data points we cluster are from the upper current sheet of the simulation described
in § 3, at time Ωcit = 320. As is standard practice in clustering procedures based on
distance, the data are scaled to prevent the features with larger magnitude from dominating
the clustering (Angelis & Stamelos 2000). Scaling the data is the transformation of the
feature values according to a defined rule. This is necessary to assure that all features have
the same (or rather a proportional) degree of influence in the evaluation (Huang, Li &
Xie 2015). If the feature values range for one feature in the tens and for another in the
thousands, a ML algorithm will always be influenced more by the feature ranging in the
thousands, if scaling is not used. We tested three different scalers from the scikit-learn
library (Pedregosa et al. 2011): the so-called MinMax, Standard and Robust scalers. The
first scales each feature in the dataset to a fixed interval, here [0, 1], the second to zero
mean and unit variance. The third removes the median and scales the data according
to a quantile range, here the interquartile range between the first and third quartiles. In
figure 2 we depict the violin plots for the distributions of an outlier-poor feature, By, and
an outlier-rich one, Jz,e, after scaling them with the three scalers; we can observe that
the data range after scaling changes dramatically for the outlier-rich feature. Since Jz,e is
strongly associated with reconnection X-points, we can expect that the choice of scaler
will have an effect on clustering results.
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(a) (b)

(c) (d )

FIGURE 1. Out-of-plane magnetic field component (Bz, a), one diagonal (pxx,e, b) and one
non-diagonal, (pxz,e, c), electron pressure term, and the out-of-plane electron current (Jz,e, d)
at Ωcit = 320. Magnetic field lines are superimposed in black. Electromagnetic fields, pressure
components and currents are in units of micωpi/e, n0mic2 and en0c, respectively.

For each set of scaled data, we proceed to train a SOM. The number q of nodes of each
map has been determined using the following rule of thumb (Kohonen 2014):

q ≈ 5 × √
m, (4.1)

where q is approximated to an integer and m is the number of samples. The ratio of the side
lengths x, y of the map is set to match the ratio of the largest two principal components
(Shlens 2014) of the training data. We notice that, since the principal component analysis
is performed on scaled data, the number of rows and columns in the map may differ in the
different cases. The initial neighbourhood radius is then chosen to cover 20 % of the larger
side length of the map

σ0 = 0.2 × max (x, y). (4.2)

For the MinMax and the Standard scalers this resulted in x = y = 82 and σ0 = 16 and for
the Robust scaler in x = 93, y = 71 and σ0 = 19.
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 2. Violin plots of the distribution, after scaling, of an outlier-poor (By) and an
outlier-rich (Jz, e) feature. The MinMax, Standard and Robust scalers are used.

The initial learning rate was kept constant at η0 = 0.5 and the weights were initialized
using random samples from the training data. The maps shown in figure 3 have all been
trained for five epochs. We remark that, with this relatively low number of epochs, the map
cannot be expected to have converged, as is often the case with SOMs. However, the results
that we obtain are remarkably stable to all parameters, including the number of epochs, as
shown in the Appendix. There, we study how varying the SOM hyper-parameters and the
seed for the random initialization of the weights influences clustering results. In table 2
we report all hyper-parameters used for SOM training.

In figures 3 and 4 we show the clustering results obtained with the three scalers. The
trained SOM nodes have been further clustered with k-means into larger-scale regions, as
described in § 2. The optimal k-means cluster number, k = 5, has been selected with the
Kneedle cluster number determination (Satopaa et al. 2011).

In figure 3, first column, we see the trained SOM nodes obtained with the three
different scalers (MinMaxScaler, StandardScaler and RobustScaler, (a,c,e), respectively)
and coloured according to the k-means cluster they are clustered into. In the second column
(b,d,f ), we depict the unified distance matrices (UDMs) associated with the three cases. In
the UDM representation each neuron is coloured according to its normalized distance with
respect to its nearest neighbour (Kohonen 2014); ‘darker’ neurons are less similar to their
neighbour than ‘lighter’ neurons. We can observe a similar pattern in the three UDMs: a
wide, light area composed of similar neurons is mapped to the same k-means cluster, the 0,
blue cluster. A darker area is present in one of the map corners, not necessarily the same
one in the three plots because, in SOMs, the information of interest is not the absolute
position but the relative position with respect to the neighbouring nodes. This darker area
maps to further four clusters. Even darker areas may be present within clusters or at the
boundary between clusters, see e.g. the dark area in figure 3(f ), at the intersection between
cluster 3, red, 0, blue and 2, green.
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Parameter Value
learningmode online ‘o’
nRows x 82 (MinMax- and StandardScaler), 93 (RobustScaler)
nColumns y 82 (MinMax- and StandardScaler), 71 (RobustScaler)
initial learning rate η0 0.5
final learning rate ηf 0
initial neighbourhood radius σ0 0.2 × max (x, y)
distance function Euclidean ‘e’
neighbourhood function Gaussian ‘g’
initialization random input vectors ‘c’
lattice hexagonal
toroidal off
randomize on
exponential decay of η and σ both ‘b’
normalizedistance off

TABLE 2. The CUDA-SOM hyperparameters used in SOM training.

In figure 4 we depict the simulated data points at time Ωcit = 320, see figure 1 in § 3,
coloured according to the k-means cluster they map to, for the three different scalers. We
can now map the neurons from figure 3 to the physical regions in figure 4.

In all three cases, the blue cluster from figure 3 maps to the plasma outside of the
plasmoid region. We can call this region, slightly oversimplifying, the inflow region. The
plasmoid region is clustered differently in the three cases; we have here a proof of the
importance of pre-processing activities (in this case, the choice of scaler) in clustering
results. With MinMaxScaler, figure 4(a), the outer plasmoid region neighbouring the
inflow region is divided into two clusters, cluster 3, red and 4, purple. The inner plasmoid
region, readily identifiable ‘by eye’ in the plots of § 3, is mapped to cluster 2, green.
Intermediate plasmoid regions are mapped to cluster 1, orange. With StandardScaler, (b) in
figure 4, the outer plasmoid region is assigned to a single cluster, cluster 3, red. The inner
plasmoid region is again mapped to cluster 2, green. The remaining plasmoid regions are
clustered into two clusters, cluster 1, orange, and 4, purple. The blue and green clusters
obtained with the RobustScaler are very similar to those obtained with MinMaxScaler
and StandardScaler. ‘Walking’ in figure 4(c), from the inflow region towards the inner
plasmoid region we encounter cluster 3, red, 1, orange and 4, purple. Incidentally, we
notice that we can similarly walk from cluster 0 to 3, 1, 4 and finally 2 also in the map
depicted in figure 3(e), a confirmation that neighbourhood in the SOM derives from feature
similarity.

When confronted with different clustering results, we have to identify criteria that allow
us to prefer one clustering method over another. This is usually quite a daunting task for
unsupervised methods, where the ‘ground truth’ is not known. Luckily, here, as already in
Innocenti et al. (2021), we are in a rather fortunate situation; we are clustering simulated
data, hence we have complete information about all features as a function of space and
time. Furthermore, we have previous knowledge of the process we are analysing. Hence,
we can determine that the clustering obtained with the RobustScaler is the most useful
for our purposes, because it separates regions where we can expect different physical
processes to take place.

It is instructive to speculate on the reasons why regions that we may want to see
clustered together, based on the physics that occur there, are assigned to different clusters.
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 3. Trained SOM nodes coloured according to their k-means clusters (a,c,e) and UDM
maps (b,d,f ) for the data scaled with MinMaxScaler (a,b), StandardScaler (c,d), RobustScaler
(e,f ). Cluster boundaries are drawn in black in (b,d,f ).
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(a)

(b)

(c)

FIGURE 4. Upper current sheet simulated data at Ωcit = 320, coloured according to the
k-means cluster the BMU of each point is clustered into. Data scaled with MinMaxScaler,
StandardScaler and RobustScaler are depicted in (a), (b) and (c) respectively.
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This is the case, for example, for cluster 3, red and 4, purple, in figure 4(a), depicting
data scaled with MinMaxScaler. Analysing the feature values of the points in the two
clusters, we realize that the main difference between the two sets of points is the sign
of the y component of the magnetic field. Most other features, including features that we
consider of particular relevance in plasmoid instability/magnetic reconnection simulations
(non-diagonal pressure terms, out-of-plane electron current . . .) present quite similar
values in the two clusters. Looking at By and Jz,e after scaling with MinMaxScaler in
figure 2(a,d), we realize that the differences in the outlier-poor By for the two clusters
are at the two extremes of the value range, here 0 and 1, while the similarities in the
outlier-rich Jz,e are compressed towards 0.5; the differences in the former ‘weigh’ more
in the clustering than the similarities in the latter. With RobustScaler, instead, By spans
∼[−6; 6], while Jz,e varies in the range ∼[−25; 42]; the By values become significantly
less relevant in the clustering than the Jz,e values, and, according to the results of figure 4,
are not capable anymore of driving the formation of cluster 3 vs cluster 4.

We consider this quite a significant demonstration of the importance of accurate
pre-processing before clustering activities; data should be inspected before and after
scaling to assess if scaling has preserved important characteristics of the data we may
want to rely upon during clustering (e.g. outliers). Furthermore, the results of clustering
activities when using different scalers should be compared.

5. The a posteriori analysis of clustering results

In § 4 we identified the results obtained using the RobustScaler as the most useful for
our purposes, since the points clustered together are the ones where we can expect similar
processes to occur. This determination is made on the base of our previous knowledge of
plasmoid instability evolution.

Now, we intend to examine these specific results in more detail.
First, we focus on the UDM depicted in figure 3(f ). The area associated with the inflow

region, cluster 0, blue in figure 4(c), is lighter in colour with respect to the other two cases,
showing minimal differences between the nodes. We observe that a darker UDM region
encloses a ‘walled in’ area in the lower right corner of the map associated with cluster 2,
green. The nodes there are quite similar to each other, as seen from their light colour. They
are, however, very different from the ones in the inflow region and also quite different
from the other nodes mapping to plasmoids, as seen from the dark colour of the nodes at
the boundary between clusters. Comparing figures 3(f ) and 4(c), we see that the ‘walled
in’ region in the UDM maps to the inner plasmoid region. The features in this regions are,
in fact, quite distinct with respect to the neighbouring points, as confirmed by violin plot
analysis of the data clustered in each cluster and by figure 9 below. Moving from cluster
2 in figure 4 towards the inflow region, cluster 0, blue, we encounter cluster 4, purple,
1, orange, and finally cluster 3, red, at the boundary between the inflow region and the
plasmoid. We can broadly identify cluster 3, red, as the ‘separatrix’ cluster.

In figure 5 we depict the variation across the map of Bz, pxx,e, pxz,e, Jz,e. The boundaries
between the k-means clusters are depicted as black lines. The feature values have been
scaled back to the normalized values obtained as simulation results. Before going into a
detailed analysis of figure 5, we notice several sub-structures in the clusters depicted. This
is especially the case for cluster 4, at the right edge of the map. It is therefore no surprise
that cluster 4 breaks into 2 and 3 clusters mapping the larger-scale sub-structures with
k = 6 and k = 7, respectively.

We compare figure 5 with figures 3 and 4 to highlight important characteristics of
the different simulated regions. We observe that high-magnitude, positive values of Bz
(figure 5a), are concentrated in the inner plasmoid region, cluster 2, green. Lower, positive
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(a) (b)

(c) (d )

FIGURE 5. The Bz (a), pxx,e (b), pxz,e (c) and Jz,e (d) values associated with the trained SOM
nodes, for data points scaled with the RobustScaler. Cluster boundaries are drawn in black.

values are associated with cluster 4, purple. Most negative Bz values are found in clusters
1, orange and 3, red. In the latter, both positive and negative Bz values are found, most
probably associated with the quadrupolar structure in the out-of-plane magnetic field
associated with collisionless reconnection. In figure 5(b,c), we depict pxx,e and pxz,e.
We notice in (b) low pxx,e values in the inflow region, and higher pressure values in
correspondence with the plasmoids. We further observe that pxx,e exhibits rather high
values in the upper right corner of the map, associated with negative values of pxz,e (c)
and rather high positive value of the out-of-plane electron current, Jz,e, depicted in (d);
this interesting region deserves further consideration. We highlight in figure 6 some of
these nodes. The nodes themselves are depicted in black in figure 6(a), and the associated
points are depicted in the same colour in the 2-D simulated plane in (b). We observe that
these nodes correspond to very specific regions in cluster 4 characterized by signatures
associated with plasmoid merging.

Going back to figure 5, we see that some of the nodes below the region just analysed are
characterized both by large positive values of pxx,e and high, negative values of Jz,e. Again,
in figure 7, we highlight these nodes in (a) and check which data points they correspond
to in (b). Also in these cases, we obtain specific regions in cluster 4, purple, strongly
associated with plasmoid merging. We can therefore reaffirm that cluster 4, purple, is the
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(a)

(b)

FIGURE 6. Identification in the simulated plane of regions of interest in the feature maps; the
colour black is used to highlight nodes of interest in (a) and associated points in the simulation
in (b).

one more directly associated with plasmoid merging, and that specific nodes in the SOMs
map to rather localized regions in space where merging-specific signatures are particularly
strong.

The variability of Jz,e over the map (figure 5d) is extremely interesting to examine.
First of all, we notice that Jz,e in the feature map varies over values which seem quite
different from those observed in figure 4. This may occur in SOM, and it has already been
commented upon e.g. in Innocenti et al. (2021); the feature value associated with a node
may be quite different from those of the data points associated with it, especially, as in this
case, for outlier-rich features. We can identify in (d) specific patterns; for example, positive
and negative values of Jz,e are associated with the plasmoid merging regions examined in
figures 6 and 7. A further pattern of interest in the Jz,e feature map is the high-value region
at the intersection between clusters 3, 2 and 1. Figure 8 shows that also these nodes map to
a rather small region in space, namely smaller-scale plasmoids developing at the X-line, a
feature commonly observed in PIC simulations e.g. in Innocenti et al. (2015a), Innocenti
et al. (2017a) and Li et al. (2017).

In figure 9 we depict the position of data points as a function of the electron parallel
plasma beta β‖,e, x axis, and of the electron perpendicular to parallel temperature ratio,
T⊥,e/T‖,e, y axis. In (a) we depict all points at initialization, in (b–f ) the points associated
with clusters 0, 1, 2, 3 and 4, respectively, at time Ωcit = 320. The solid, dashed and
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(a)

(b)

FIGURE 7. Identification in the simulated plane of regions of interest in the feature maps: the
colour black is used to highlight nodes of interest in (a) and associated points in the simulation
in (b).

dotted lines in the T⊥,e/T‖,e < 1 semiquadrant are the isocontours of growth rates γ /Ωce =
0.001, 0.1, 0.2 of the resonant electron firehose instability from Gary & Nishimura (2003).
The solid and dotted lines in the T⊥,e/T‖,e > 1 semiquadrant are the isocontours of growth
rates γ /Ωce = 0.01, 0.1 for the whistler temperature anisotropy instability (Gary & Wang
1996). The colours depict the number of points per pixel. This visualization is quite
common for both electrons and ions in both the solar wind (e.g. Štverák et al. 2008;
Innocenti et al. 2019a; Micera et al. 2021) and magnetospheric (e.g. Alexandrova et al.
2020) environment. When plotting electron quantities, we can quickly identify firehose-
(bottom right corner) or whistler- (upper right corner) unstable plasma parcels. The area in
between the two families of isocontour lines is stable to both instabilities. In this case, we
can use this visualization to quickly appreciate the differences between the plots associated
with the different clusters. In all panels the simulated data points sit in the stability region
bounded by the stability thresholds. At initialization, (a), the data points are well into the
stable region. In (b) we see that the majority of data points in cluster 0, inflow cluster,
still sit quite close to initialization values at Ωcit = 320, as expected from regions of space
barely influenced by the development of the plasmoid instability. A small number of points
(darker colour points) have moved to larger parallel beta, still within the stable region. In
all the clusters associated with plasmoids the majority of points (lighter colour points)
have moved to larger parallel electron beta with respect to initialization, due to the larger
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(a)

(b)

FIGURE 8. Identification in the simulated plane of regions of interest in the feature maps; the
colour black is used to highlight nodes of interest in (a) and associated points in the simulation
in (b).

electron pressure within the plasmoids with respect to the inflow region (see figure 3).
Comparing (c–f ), we notice immediately the difference between (d) (cluster 2, green, inner
plasmoid region) and the others. In the inner plasmoid region the spread of the points
around the core of the distribution is quite small with respect to the other clusters, and
all points are quite far from instability thresholds. ‘Walking’ from the plasmoid interior
towards the inflow region, and crossing from cluster 2, green, (d), to cluster 4, purple, (f ),
to cluster 1, orange, (c), and finally to cluster 3, red, (e), we notice that the data distribution
progressively moves towards higher electron parallel beta, still within the stable region. At
the separatrix cluster, (e), the data points have spread into the narrow stable region at high
parallel beta.

6. Discussion and conclusion

In this paper, we have applied an unsupervised clustering method based on SOMs to
data points obtained from a fully kinetic simulation of plasmoid instability. The clustering
method and the simulation used for the clustering experiment are described in §§ 2 and
3. Pre-processing activities and clustering results obtained with three different types
of data scaling are described in § 4. We remark on the fundamental role of scalers in
determining clustering results. Our dataset includes outlier-poor and outlier-rich features,
with the latter being particularly critical in the identification of magnetic reconnection
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 9. Data point distribution in the β‖,e vs T⊥,e/T‖,e plane. (a) All upper current sheet
simulated points at initialization. (b–f ) Points associated with clusters 0, 1, 2, 3 and 4 at
Ωcit = 320. The colours highlight the number of points per pixel. The isocontours of growth
rates γ /Ωce = 0.001, 0.1, 0.2 for the resonant electron firehose instability and of growth rates
γ /Ωce = 0.01, 0.1 for the whistler temperature anisotropy instability are depicted in the upper
and lower semiquadrants.
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regions. In this situation, a scaler designed to be robust to the presence of outliers, such as
RobustScaler, delivers results that match better with our a priori knowledge of the process
under investigation. The data scaled with RobustScaler are clustered in an unsupervised
fashion into clusters that we identify, a posteriori, as an inflow cluster (cluster 0, blue in
figure 4c), an inner plasmoid cluster (cluster 2, green), a separatrix cluster (cluster 3, red), a
plasmoid merging cluster (cluster 4, purple) and a further cluster for regions intermediate
between the separatrices and the area where plasmoid merging signatures are stronger
(cluster 1, orange).

In § 5 we further examine our classification results in light of the analysis tools that
SOMs provide us with, mainly feature maps, figure 5, and the UDM, figure 3. We recover
from this analysis valuable information on the physical processes occurring in each cluster.
In our case, where we are already acquainted with the dataset under investigation and with
the physical results of interest, this a posteriori analysis results in an analysis procedure
where information is made readily available in an easy-to-grasp 2-D representation, thus
simplifying further investigation. Furthermore, we see the potential of using feature and
UDM maps as a tool for scientific discovery when applied to datasets encoding unknown
processes. We consider of particular interest the analysis of UDM patterns illustrated in
figures 6 to 8; we show that darker patterns in the UDM (meaning, nodes ‘significantly’
different from their neighbours) map to small-scale regions of interest, such as regions
in the 2-D simulated plane where plasmoid merging signatures are particularly strong,
or where smaller-scale plasmoids develop in the current sheet in between larger-scale
plasmoids. Also here, we see the double potential of the method, as a fast tool for
identifying already known regions of interest in a potentially very large dataset, and as
a tool of scientific discovery when applied to an unknown dataset.

This work is a follow up of previous activities, where a similar clustering method
had been applied to MHD simulations. We verify here that this clustering technique
delivers excellent and insightful results also with fully kinetic simulations, when it is fed
data (moments separated by species, parallel and perpendicular pressure terms, electric
field ‘including’ non-ideal processes, . . .) comparable, in temporal and spatial resolution
and in the nature of the processes of interest, to observed data from solar wind and
magnetospheric missions.

Spacecraft observations are thus a natural field of future applicability for this
method. Additionally, we envision a role of this and similar clustering methods in
model development. An open issue in multi-physics and coupled methods (e.g. the
above-mentioned Daldorff et al. 2014; Ashour-Abdalla et al. 2015; Innocenti et al. 2015b;
Lautenbach & Grauer 2018) is how to decide when to switch between numerical methods
(e.g. MHD to PIC, or 10-moment method to Vlasov) or between lower and higher
resolution. This choice is often made somehow empirically, e.g. based on the expected
location in space of target processes, or on thresholds of specific quantities. We envision
the possibility of using SOMs trained on reference simulations to decide where to perform
this switch; specific SOM nodes or specific clusters of SOM nodes could be associated
with a certain model or resolution. We remark that, while training a SOM is (moderately)
time consuming, BMU evaluation is in fact fast enough to be embedded into a run-time
code without significant performance degradation. Preliminary and yet unpublished tests
confirm that SOMs are robust to being deployed in simulations performed with a different
physical model with respect to the one of training.
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Appendix. Robustness tests

In this Section we illustrate several tests run with the objective of assessing the
robustness of our clustering procedure. First, we want to understand how dependent our
clustering results are on the SOM hyper-parameters, see § 2. In table 3 we list several
SOM training experiments, run using as input the upper current sheet data scaled with
RobustScaler. We change the number of epochs, the initial learning rate η0, the initial
neighbourhood width σ0 (calculated as a difference percentage of the largest map side), the
random seed used for random weight initialization and the number of SOM nodes q. We
then list, in the last column, the percentage of points classified in the same k-means cluster
as with a 5 epoch-long training, η0 = 0.5, σ0 = 0.2 × max(x, y), random initialization
seed. The k-means clustering is done afresh on the newly trained map. Since the cluster
number in k-means is assigned arbitrarily, clusters which are assigned the same number
in different clustering experiments do not necessarily correspond to similar regions of
simulated space. For this reason, before calculating R, we reassign cluster numbers, so
that the clusters compared during the R calculation indeed match to similar regions of
physical space in the simulations.

In calculating the matching factor R we exclude the cluster mapping to the inflow
region (cluster 0, blue), which stays essentially constant notwithstanding the SOM
hyper-parameters, since we are primarily interested in clusters mapping to the plasmoid
region. Without excluding the inflow cluster, the matching factors increase significantly in
all cases, simply due to the amount of data points falling into the inflow region.
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epochs η0 σ0/% max(x, y) random init seed q Matching factor R/%

5 0.3 20 42 71 × 93 93.55
5 0.5 20 42 71 × 93 100
5 0.7 20 42 71 × 93 92.67
5 1 20 42 71 × 93 91.99
5 0.5 10 42 71 × 93 85.78
5 0.5 20 42 71 × 93 100
5 0.5 40 42 71 × 93 91.75
5 0.5 60 42 71 × 93 87.78
5 0.5 20 42 71 × 93 100
5 0.5 20 0 71 × 93 93.6
5 0.5 20 1 71 × 93 94.47
5 0.5 20 42 64 × 83 91.48
5 0.5 20 42 71 × 93 100
5 0.5 20 42 78 × 102 93.23
5 0.5 20 42 85 × 110 93.58
5 0.5 20 42 91 × 118 93.99
5 0.5 20 42 101 × 132 94.47
3 0.5 20 42 71 × 93 92.13
4 0.5 20 42 71 × 93 91.16
5 0.5 20 42 71 × 93 100
6 0.5 20 42 71 × 93 89.77
7 0.5 20 42 71 × 93 88.4

TABLE 3. Percentage R of samples classified in the same k-means cluster as with a map trained
for five epochs, initial learning rate η0 = 0.5, initial neighbourhood radius σ0 = 0.2 × max(x, y),
random initialization seed 42 and number of nodes q = 71 × 93 when the number of epochs,
η0, σ0, random initialization seed and q are varied. In all cases, the scaler used is RobustScaler.
The inflow cluster, cluster 0, is excluded in the calculation of the matching factor, since we are
primarily interested in clusters mapping to the plasmoid region.

We notice that the matching factors are very high for all cases in table 3; our
classification procedure is significantly stable to the choice of SOM hyper-parameters.
The high matching factors can be explained noticing that map nodes may individually
change with different hyper-parameters, but not so much as to give rise to significantly
different k-means clustering results. The parameter that gives rise to the most significant
differences is the initial neighbourhood radius. In deciding which initial neighbourhood
radius to use in the body of the manuscript, we followed the rule of thumb prescription
from Kohonen (2014). We see here that, with smaller neighbourhood radius and training
on the same number of epochs, the map may have more difficulties reflecting the true
structure and topology of the data.

It is interesting to identify which points in the simulation change clusters ‘more easily’.
In figure 10 we plot the clustered points obtained from the SOM trained with the
hyper-parameters listed in red and blue in table 3 compared with the reference SOM
in (a). We notice that the regions of space which are more affected by the choice of
hyper-parameters are those associated with cluster 1, orange and cluster 4, purple, i.e. the
intermediate cluster region. This is not a surprise; the two clusters are the most similar and
in fact tend to merge when the cluster number is reduced from k = 5 to k = 4. Cluster 2,
inner plasmoid region, and cluster 3, separatrix cluster, are instead significantly different
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(a)

(b)

(c)

FIGURE 10. Clustering of the upper current sheet simulated data, with the SOM used as a
reference in table 3 in (a) and the SOMs trained with the hyper-parameters listed in the lines
coloured in blue and red in (b,c).
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(a)

(b)

FIGURE 11. Out-of-plane electron current, Jz,e, (a), and clustering of the upper current sheet
data points, (b), at Ωcit = 160. The SOM used for the clustering has been trained at Ωcet = 320.

from the intermediate plasmoid region. The individual matching factors for each cluster in
the case with the lowest matching factor R = 85.78 % are: orange(1): 86.45 %, green(2):
99.4 %, red(3): 91.79 %, purple (4): 64.37 %. We see that results for clusters 0, 3, 2 (the
clusters that physics tell us should be clearly distinct) are stable with all hyper-parameters,
even in the worst case scenario, as we expect from the physics of the problem. From
this point of view, the fact that a small subset of simulated points tends to be assigned,
in different clustering experiments, to either one of the two most similar clusters is not
considered a cause for concern.

We also want to check the robustness of our clustering procedure to temporal variation
in the simulation. To do this, data samples from an earlier time in the simulation, Ωcit =
160, were classified using the map and k-means centroids described in §§ 4 and 5, trained
on the data from the time step Ωcit = 320 scaled with RobustScaler. The BMUs of the
data samples from the time step Ωcit = 160 were found in that trained map and coloured
according to the k-means clusters visible in figure 3(e). The out-of-plane electron current
and the resulting classification are shown in figure 11(a,b).

We immediately notice that, at Ωcit = 160, the simulation is at a quite different stage.
More, smaller plasmoids are present, since the merging process is just at the beginning.
This is reflected in the clustering results.
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In figure 11(b), we observe that the inflow and plasmoid region are very well separated.
Inside the plasmoid, the inner plasmoid region (cluster 2, green) occupied a larger
percentage of the plasmoid area with respect to later times. The clusters associated with
plasmoid merging, cluster 4, purple, and cluster 1, orange, have shrunk accordingly,
possibly due to a combination of two factors; smaller plasmoid size (the plasmoid size
increases after coalescing) and the fact that plasmoid merging is just at the beginning.
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