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AN EXTENSION OF THE ESSENTIAL SUPREMUM CONCEPT
WITH APPLICATIONS TO
NORMAL INTEGRANDS AND MULTIFUNCTIONS

E.J. BALDER

Let (T, T, u) be a oO-finite measure space and X a Suslin
space. Let A be a class of normal integrands on T X X . We
discuss the existence of an essential supremum of A , namely, a

normal integrand I with

Z=sup{a:a€A0},

where AO is a countable subclass of A , and, for each aq € A,

a(t, *) = IL(t, *) for almost every t .

In this way we obtain an extension of the classical essential
supremum concept. The applications include a result on

measurable selectors of nonmeasurable multifunctions.

1. Countable reflection and generalized conjugation

Let X be a topological space and X' a given abstract space. Let
¢ : X x X' > (-», 49) be a given functional; it will be referred to as
the cowpling fumetional [2], (7], [13].

Given a functional f : X * [-», #°] , we define its c-conjugate

fc : X' > [-», ] and e-biconjugate fcc : X > [-», +0] as follows [2],
[71, (131
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sup [C(.’E, x')-f(x)] ’ x' € X' 5
X

(1.1) F(z")

(1.2) £(z) = sup [elx, z')-f(=)] , z€x.
x'

It follows trivially from (1.1)-{(1.2) that, for each functional
f X > [_oo, +°°] >
(1.3) f=F°.

A functional f : X » [-o, +©] is said to be ec-reflexive if
e
F=5.
We denote the class of c-reflexive functionals on X by TIS(X) ; it

plays an important role in optimization theory.

Let us say that a functional f : X + (-, +») is a {finite)
elementary c-functional if there exist x' € X' , n € R, such that

f=e(+,z") +n.

Let us also denote the functional identically equal to -» (+w) by u)l

(“’2) . The following characterization of I'c(X) is elementary [7, Satz
3.61.

LEMMA 1.1. A functional f : X » [=, =] belongs to T°(X) if and

only if it s the supremuwm of a collection of elementary c-functionals.
Proof. Sufficiency follows from (1.2). (Note that if f°(z') = +
for some =x' , then z' can be omitted from (1.2); note also that if

flx) = = for some x , then f=uw

o which is the supremum over the

empty collection. )

As for necessity, suppose f = sup [c(° N x&)ma] for some index set
(+13:}

A . Tt follows for each & € 4 that -n_2 f°(z') , by applying (1.1).

a - Q

Hence f < sup [c(', x&)-fc(x&)] < f°° vy applying (1.2). It must now be
a€d

true that f € I‘c(X) , in view of (1.3).
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It follows from the above lemma that a necessary condition for
f:X»> [, ], f#uw ,tobelong to I°(X) is that f be
c-tempered [2], that is, there exist x' € X' , n € R, such that

fzels,x') +n.
Let I‘O be a given class of functionals from X into [-®, +=] ., We
define l"0 to be countably reflected if X' contains a countable (said

more precisely, at most countable) subset {x{} such that, for each

fer,,
(1.4) f= S\i)p [c(-, x;)-fc(xi)] .

Note that this implies automatically that I‘o is contained in T°(X)

(Lemma 1.1).

LEMMA 1.2. The class T, c [, w)X s countably reflected if and

only if there exists a countable collection of elementary c-functionals on
X such that each f 1in I‘O i8 the supremum of a subset of this

collection.
Proof. First we prove sufficiency. Let {x{} C X' be as in (1.h4).
Let {r'j} be an enumeration of the rational numbers. Take an arbitrary

f € l"0 . Define MCN xN +to be the set of (Z, j) such that

c(-, x';) +I'J.5f . Ten (Z, j) € M if and only if rJ. s-fc(xé) . For

each 72 € N there exists a subsequence of {PJ.} that converges to

—fc(:rp from below. We conclude from this and (1.4) that

sup c(e, x)+r.] = F .
(i,;)w[( 7]

Necessity is demonstrated as follows. Denote the countable collection

of elementary c-functionals figuring in the statement by {c(-, x£)+ni} .

Take an arbitrary f € I‘o . By supposition there exists I © N such that
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f = sup [c(', a:D*-nL] . Clearly -n; 2 fa(xi) for each 7 € I . Hence °’

1€l
f = i:? [C(', xé)'ﬂ]i] = 13:1615- [c(', xé)*fc (xé)]

= o [oCoap-rep] < 2

so by (1.3) we have f = sup I:c(-, x;\-fc[xi):l . The potential usefulness
i

of the above concepts is illustrated by the following examples.

EXAMPLE A.1. X is a metric space, its metric being denoted by d ,
X' is the product set R X X and ¢ is defined by setting, for «x € X ,

x!' = (r, 2") € X' ,

(1.5) elx, ') = ~rd(x, ") .

Tt is well known that in this case the class T°(X) consists of the

c-tempered lower semicontinuous functionals on X plus the functional wl

(ef. [8, IX.421). Although an ad hoc proof can easily be given, using
Lemma 1.1, we observe instead that the result follows immediately from [2,
Theorem 1, Lemma 1] (ef. [6, Theorem 4.2] for a somewhat weaker version of
this result . The results of [2] apply, since ¢ 1is a coupling functional
of needle type at every x € X [2]1, [12], that is, for each ' € X ,
neER, 8,€>0, there exist x' € X' , § =§ , such that, for every

y €Xx,

ely, ') <ely, ') + 0 ifr d(x, y) =26 ,

tA

ely, ') =¢ if d(xz, y) <8

EXAMPLE A.2. As Example A.l, but with X a separable metric space
(metric d ). In this case the class I‘l = T°(X) is countably reflected.
Using Lemma 1.2, an ad hoc proof could easily be given. Rather than to do
so, we observe the following [3]. Let {.'L',L} be a countable dense subset
of X , define Xé = {(n, z:t) :n, < € N} and verify that the restriction
2, of ¢ to X X Xo’ is still of needle type (c is as in (1.5)). Note
also that by the fact that {:z:i} is dense in X and the triangle
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inequality, c-temperedness and c¢.-temperedness are equivalent for

0

functionals in [, ﬁm]x . It now follows by [2, Theorem 1] that, for
each f € Fl s

e
f= sup l:co(" z')-f O(x'):l = swp [e(+, 2)-fFx")] .
x'ex! x'ex!
0 .0
EXAMPLE B.1. X is a Hausdorff locally convex space, X' is the set

of all linear continuous functionals on X , ¢ is the usual duality

between X and X' . In this classical case FQ(X) is the collection of
all proper convex lower semicontinuous functionals on X plus the

functionals w s W, (11, 6.3.41.

EXAMPLE B.2. As Example B.1l, but with X a Suslin locally convex

space. Consider the subclass F2 of FO(X) consisting of the proper

convex lower semicontinuous functionals on X whose epigraph is locally

compact and contains no straight line, plus the functionals wl, w2 . In

this case the class F2 is countably reflected, as is well known (cf.

{10]). To see this, note that there exists a countable subset of X'
which is dense in the Mackey topology T(X', X) [5, 111.32]. By [5, I.1k]

the assumptions on the epigraph of each f € F2 imply that fc is finite

and continuous at some point in X' . Hence (1.4) follows from (1.2) by
applying [5, III.33].

2. Essential suprema of sets of integrands

Let (7, T, u) be a O-finite measure space and X a Suslin space.
A functional 17 : T x X + [-o, 4o] is called integrand (on T x X ); it
is said to be measurable in case it is (T ® B(X))—measurable where B(X)

denotes the Borel subsets of X . Suppose [ denotes a class in

(=0, +w]x (for instance, the set of lower semicontinuous functionals on
X ). An integrand 1 on T x X is said to be a T[-integrand if the
functional I(t, *) on X belongs to ' for each t € T . 1In case the

class T can be verbalized, our terminology for TI-integrands will be
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verbalized similarly. Por instance, we speak of lower semicontinuous

integrands, and so on.

Let X', ¢ have the same meaning as before, but suppose in addition
that for each x’' € X' , e(*, ') is B(X)-measurable. Let FO denote a
fixed subclass of rc(x) and let A be a collection of measurable FO-

integrands on T X X . An integrand 7 on T X X is said to be the

essential supremum of A if there exists a countable subcollection AO of
A such that

(2.1) 1 =sufa:ac¢ AO}

and, for each a € A,
(2.2) a(t, *) < L(t, *} for almost every ¢t .

We shall investigate the existence of such essential suprema.

1 12 are essential subrema of A. It
follows then from (2.1)-(2.2) that Zl’ 1

REMARK 2.1. Suppose 1

, are essentially equal, that is,

Zl(t’ ) = ZQ(t’ *) for almost every ¢t .

This allows us to speak about "the" essential supremum of A , although it

is more accurate to call Zl’ 12 versions of the essential supremum of A.

THEOREM 2.2. Suppose I‘0 is a countably reflected subclass of

r°(Xx) and suppose A is a collection of measurable Fo—integrands on
T x X . Then the essential supremm of A exists.

Proof. Let T denote the U-completion of T . By our suppositions
the functional (%, z) » e(x, z') - a(t, x) is (T ®B(X)]—measurable for
each a € A, z' € X' . Hence it follows from [5, III.39] and the fact
that X is Suslin, that for each a € A, =z’ € X' , the functional

ac(-, x') is T-measurable (conjugation takes place with respect to the

second variable only). Let {xé} be as in the definition of countable

reflection. For each 7 € N there exists a countable subset Ai of A

such that inf{ac(', xé) :a € Ai} is a version of the (classical)
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essential infimum [14, II.L4] of the set {ac(', xé) s a € A} of T-

measurable functionals on 7T (note that U 1is equivalent to a finite

U Ai and define 1 as in (2.1). By

measure on (T, T) ). We set AO

7
the fact that A is composed of Fo-integrands we have, for each a € A ,
t €T,
(2.3) a(t, *) = sup l:c(-, xé]—ac(t, :x:‘;]:l .

T

It follows from (2.1) that, for each 7 €N , ¢t €T ,

(2.4)  1%(¢, zf) = swp inr [e(e, ©f)-a(t, ®)] = inf aC(¢t, =)
% a€AO aEAO v

To show (2.2), let a € A be arbitrary. From the definition of essential

infimum and (2.4) it follows that, for each 7 € N ,

Zc(t, x!) < inf ac[t, z!) = Ec(t, xf) for almost every ¢t .
t ac€A, t t
i

In conjunction with (2.3) this gives

(2.5) alt, *) < sup l:c(-, xé_]—lc(t, x‘l)] for almost every ¢ .
i

Now by (2.1) and Lemma 1.1 we have that . is a T°(X)-integrand. Hence,
(2.5) implies

t, *) z2a(t, ») for almost every t ,
which is what we had to demonstrate.

REMARK 2.3, By taking X to be a singleton one readily inspects
that Theorem 2.2 is a generalization of the classical result concerning the
existence of the essential supremum for an arbitrary collection of
measurable functionals from 7T into [-=, +*] (note that the case where

X is a singleton ranks under Examples A.2, B.2).

3. Applications

In this section we shall apply the result in Theorem 2.2 to

collections of normal integrands and measurable multifunctions. Let us
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remember that a measurable lower semicontinuous integrand is also called a

normal integrand (41, [5].

PROPOSITION 3.1. Suppose X is a metrizable Suslin space and m &
a nonmeasurable integrand on T x X . Then there exists a normal integrand
1 on T x X such that

(3.1) Lt, *) =m(t, *) for almost every ¢t ,
and, for every normal integrand a on T x X,

(3.2) al(t, *) =m(t, *) for almst every t implies
alt, *) = 1l(t, *) for almost every t .

Proof. Suppose first that m is nonnegative. Define then m(¢, *)
to be the lower semicontinuous hull of m(t, ) , t € G [11, 6.2] . Then

m is a nonnegative Fl-integrand {in the sense of Example A.2). Apply

Theorem 2.2 to the nonempty class A of normal integrands a on T X X
such that

a(t, *) <m(t, *) for almost every ¢t .

The essential supremum of A exists by Theorem 2.2 and Example A.2. It
satisfies (3.1)-(3.2) by (2.1)-(2.2) and the definition of m . If m is
general, we apply the above result to the nonnegative normal integrand

exp(m) and finish by an obvious argument.

REMARK 3.2, fThe apparently new concept introduced in Proposition 3.1
will be called the normal hull of the integrand m .

PROPOSITION 3.3. Suppose X is a locally convex Suslin space and
suppose m 1is a nonmeasurable inf-compact proper convex integrand. Then
there exists a proper convex inf-compact normal integrand 1 on T x X
such that, for every proper convex inf-compact normal integrand a on
rxx,

a(t, *) =m(t, *) for almost every t implies
alt, *) = U (t, *) for almost every ¢t .

Proof. Note that m is a I‘2-integrand by Example B.2. Consider the

possibly empty class A of proper convex inf-compact normal integrands a
on T x X with

a{t, *) = m(t, ») for almost every ¢ .
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If A is empty, the result holds by taking ! to be an arbitrary proper
convex inf-compact normal integrand. If A is nonempty, the result holds
by an application of Theorem 2.2 and the observation that the supremum of a
countable subcollection in A is a proper convex inf-compact normal

integrand on T X X .

Next, we consider the essential supremum when we are dealing with
measurable selectors of nonmeasurable multifunctions. Let F be a non-
measurable multifunction from T into X . Remember that a measurable

function u : T > X is said to be a measurable selector of F if
u(t) € F(t) for almost every ¢ .
We denote the set of measurable selectors of F (possibly empty) by Sp .

The following result generalizes [1, Theorem 2.7]. See [15, III.14] for a
related result.

PROPOSITION 3.4. Suppose X <is a metrizable Suslin space and F is
a nonmeasurable multifunction from T into X . Then there exists a
countable (possibly empty) collection {uj} < S, such that, for every

u € SF >

(3.3) u(t) € cl{uj(t)} for almost every t

Proof. Denote by d a metric on X . For each u € SF we define

a (t, *) = -du(t), *) , ter.

Note that this defines a (possibly empty) class A of measurable Yl-

integrands on T x X [5, III.14]. By Theorem 2.2 there exists a countable
subcollection {uj} of Sp such that, for each u € Sp »

(3.4) au(t, o) = -dist({uj(t)}, ) for almost every ¢t ,

where dist({uj(t)}, x) = inf d(uj(t), 1ﬂ , t €T, x €X. It follows
J

from (3.4%) that, for each u € S,

dist({uj(t)}, u(t)) = 0 for almost every ¢t ,

which proves (3.3).
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REMARK 3.5. Proposition 3.4 is equivalent to saying that for the
measurable multifunction G : ¢t ++ cl{uj(t)} with closed values [9] we

have

G(t) € c1 F(t) for almost every ¢t

In [7, Theorem 2.7] an essential role is played by the assumption that T
be a countably generated O-algebra. In this respect Proposition 3.5 is
the more general result. On the other hand, the argument in [1] seems to

go through in the case where X 1is merely separable metric.

PROPOSITION 3.6. Suppose that X is a metrizable Suslin space and
that F 1is a nonmeasurable multifunction from T into X . Then there
exists a countable collection {Gj} of measurable multifunctions from T

into X with closed values such that

cl F(t) <N GJ.(t) for almost every t ,
J

and for each measurable multifunction G from T into X with closed

values

G(t) D F(t) for almost every t 1implies

G(t) o N GJ.(t) for almost every t .
J

Proof. Consider the nonempty class A consisting of the indicator

integrands 60 of the measurable closed valued multifunctions G such
that G(t) D F(t) for almost every ¢t (GG(t, x) =0 if =z € G(t) ,

GG(t,x)E«n if zfG(t), teT, x €X) .

It is easy to see that A is a class of measurable I‘l—integrands on

T x X . The result follows now directly from an application of Theorem
2.2.

PROPOSITION 3.7. Suppose that X 18 a Suslin locally convex space
and that F is a nonmeasurable multifunction from T into X . Then

there exists a cowntable collection {Gj} of measurable multifunctions
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from T into X with convex closed locally compact values not containing
a straight line such that for each measurable multifunction G from T
into X with convex closed locally compact values not containing a
straight line

G(t) D F(t) for almost every t implies
G(t) o U Gj(t) for almost every t .
J
Proof. But for the fact that the collection A which we have to
consider here may be empty, the proof is quite analogous to that of

Proposition 3.6 and will not be written out.
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