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The average effect and average excess of a gene substitution are
formulated in terms of gene frequencies and inbreeding coefficient. This
clarifies their meanings and shows how each is affected by non-random
mating. The meanings of various definitions are examined, and one
commonly used definition of average effect is found to be invalid with
non-random mating. The concept of breeding value is shown to have no
useful meaning when mating is not random.

The 'average effect' of a gene substitution is fundamental to quantitative
genetics and its meaning in a random mating population is well understood.
Fisher's parallel idea of the 'average excess' is, however, less well understood.
Fisher (1930) introduced the two concepts for developing his 'Fundamental
Theorem' (see Price, 1972), which deals with the change of mean fitness resulting
from natural selection. The consequence of selection can be thought of in two
stages. Selection, due to differences of fitness between the genotypes, causes a
difference of gene frequency between the selected parents and the population to
which they belong. This difference of gene frequency is proportional to the average
excess. The gene frequency in the offspring is the same as that of the parents, and
the change of gene frequency from one generation to the next causes a change of
mean. The change of mean of any quantitative character consequent on the change
of gene frequency is proportional to the average effect. (These changes due to
selection will be stated more fully later.) The average effect and average excess
are equal to each other under random mating, so the distinction between them does
not often matter in practice. With non-random mating they differ, but it is not
easy to discover from Fisher's writings, or from current text books, how they differ
and how they are affected by departures from Hardy—Weinberg genotype
frequencies.

The average effect and average excess can each be defined or described in two
ways. Under random mating, when the average effect and average excess are equal,
they are all valid definitions of either quantity. With non-random mating,
however, one of the definitions is no longer valid for either the average effect or
the average excess, a point that does not seem to be generally known. The purpose
of this note is to demonstrate the meanings of the different definitions and to show
in a simple manner how non-random mating affects the two quantities. Those who
already understand average effect and average excess will find nothing new here;
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all that is done is to bring together and simplify algebraic relationships that can
be found in texts such as Kempthorne (1957), Crow & Kimura (1970), Edwards
(1977) orEwens (1979).

The symbols to be used here for gene frequencies, genotypic values of any
quantitative character, and genotype frequencies are shown in Table 1. The
average effect will be denoted by a and the average excess by e (in place of Fisher's
a, which is used here for genotypic values). The simplification comes from
considering a population in which departures from Hardy-Weinberg genotype
frequencies can be expressed in terms of an inbreeding coefficient, F. The average
effect and average excess were expressed in this way by Kempthorne (1957). The
gene frequencies, p and q, refer to the population as a whole, and the genotype
frequencies in the whole population are expressible in terms of p, q and F as in
Table 1 (see Falconer, 1981, p. 61). The average effect and average excess refer
also to the population as a whole, with the particular breeding structure described
by its value of F.

An average effect can be assigned to each allele of a multiallelic locus; each is
a difference from the population mean. When there are only two alleles the
difference between their average effects is called the average effect of the gene
substitution. If ax and a2 are the average effects of the alleles Ax and A2

respectively, then the average effect of the gene substitution, a, is

a = a 1 - a 2 . (1)

In the same way an average excess can be assigned to each allele or to the gene
substitution. For simplicity only a two-allele locus will be explicitly considered in
what follows, and the average effect or average excess will be expressed as that
of the gene substitution. We may, however, note the following relationships, which
will be used in a later section. Since each allelic effect is a deviation from the mean,
the mean of the allelic effects must be zero, i.e.

z = 0.

From this and (1) above it follows that

a.x = qct 1 . ( 2 )

a2 = —pa)

The same relationships hold for average excesses.
When mating is random and the genotypes are in Hardy-Weinberg proportions

the average effect and the average excess of a gene substitution are, in the notation
of Table 1, , i, s ,n\

a = e = a + d(q—p). (3)
(See Falconer, 1981, p. 106.) We can now consider how this expression is modified
when mating is non-random.

For considering the meanings of the two quantities it will be more convenient
to start with the average excess. The nature of the four definitions referred to
earlier can be briefly stated thus: (A) weighted mean of genotypic values; (B) values
transmitted in gametes; (C) regression of value on gene-dosage; (D) effect of allele
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replacement. When mating is random all four definitions are equivalent, and define
equally the average excess and the average effect. When mating is non-random,
(A) and (B) define the average excess, (C) defines the average effect, but (D), as
we shall see, defines neither.

Table 1

Genotype

A1A1

Value

a
d

— a

Populat ion mean : M

Gene (allele)
Gene frequency P

Frequency

P = p2(l-F)+pF
H = 2pq(l-F)

= a(P-Q) + Hd
= a(p-q) + 2pqd(l-F)
, A2

1

Definition (A): Average excess

The definition of average excess given by Fisher (1941) may be paraphrased as
follows. Divide the population into two groups, one containing all AXAX homozygotes
and half of the heterozygotes, the other containing all A2A2 homozygotes and half
the heterozygotes. Find the mean genotypic value of the individuals in each group.
The difference between these means is the average excess of the gene substitution.
This is equivalent to taking the difference between the weighted mean of
individuals carrying Ax and the weighted mean of individuals carrying A2, the
weighting being by the frequency of the allele in the genotype, i.e. 1 or §.
Symbolically, ^ P a + | / / r f Q{-a)+iHd

6 ( 4 )6 P+\H Q+\H

To reduce this expression to a meaningful form, first substitute

This, after some rearrangement, leads to

a(Pq + Qp)+\Hd(q-p)
e = pq

Now replace P, Q and H by their equivalents in terms of p, q and F from
Table 1. This yields the following equalities

and when these are substituted the average excess of the gene substitution becomes

p)(l-F). (7)
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This reduces to expression (3) when mating is random (F = 0).
The average excess of each allele separately is the deviation of each group from

the population mean: the average excess of Ax is the weighted mean of individuals
carrying Ax as a deviation from the population mean.

Definition (B): Average excess

Fisher (1941) further explains the meaning of average excess as follows (my
symbols):' Thus, if gametes bearing Aj or A2 are chosen at random, and the zygotes
to which they ultimately give rise are measured, the average for those bearing At

will exceed the average for those bearing A2 by the difference e.' This definition
applied to a random mating population is commonly used to explain the idea of
average effect, because it seems the easiest way to grasp the meaning of breeding
value, as the value transmitted in the gametes. Edwards (1982), however, referring
to my use of it (Falconer, 1981, p. 104), pointed out that it is strictly speaking
a definition of average excess, not average effect, though the distinction is
irrelevant in a random mating population. Let us verify the meaning. Uniting with
other gametes according to the mating system of the population, Ax gametes must
unite with another Ax gamete so as to produce all the AxAj zygotes, whose
frequency is P in the whole population. The chosen Ax gametes will unite with A2

gametes so as to produce half of the AXA2 zygotes. The total frequency of Ax

gametes is p. Therefore the mean of the progeny produced by gametes carrying
A i i s Pa + \Hd

P

Similarly the mean of the progeny produced by gametes carrying A2 is

Q(-

9

and the difference is the average excess of the gene substitution, e, as in expression
(4) derived from definition (A).

This definition (B) may seem to suggest that breeding values will be expressed
in terms of the average excess when mating is non-random. This, however, is not
the case, for reasons that will be given later.

Definition (C): Average effect

The average effect of a gene substitution is denned by Fisher (1941) as the linear
regression coefficient of genotypic value on the number of Ax alleles in the
genotype, i.e. 2, 1 or 0, which may be called the gene dosage. The calculation of
the regression in terms of the quantities in Table 1 may be outlined as follows. Let
y be the genotypic value and x the gene dosage, as in Table 2. Then

coVj/a. = 2aP+dH-2p[a(P-Q) + dH].

Rearrangement leads to
eovyx = 2a(Pq + Qp) + dH(q-p)
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and writing P, Q and H in terms of p, q and F from Table 1, with the help of (6),
gives

covyx = 2pq[a(l+F) + d(q-p)(l-F)],
which by (7) is

cov^ = 2pqe. (8)
The variance of x is

which reduces eventually to
(9)

ily to

A,A,
A,A,
A2A2

Means

a% = 4:P + H—4p2,

<T% = 2pq(\+F)

Table 2
Frequency y

P a
H d
Q -a

a(P-Q) + dH

X

2
1
0

2p

Dividing (8) by (9) gives the regression of y on x, byx. This, by the definition, is
the average effect, so

a = by*= TTf- (10)

Substituting for e from (7) gives the average effect of a gene substitution as

a = « + %-?) [j^|]. (11)

This reduces to expression (3) when mating is random (F = 0). We may note that
if the regression is calculated on the gene dosage of A2 rather than of A1 the result
is the same but of opposite sign.

The value of a genotype predicted from the linear regression is called its additive
(or genie) value. Thus the average effect of the gene substitution is the difference
of additive value between the genotypes A2A2 and AJAJ, or between AXA2 and A1A1.
The additive value of a genotype as a deviation from the population mean is the
sum of the average effects of the alleles in the genotype. For a clear graphical
explanation of the regression definition, see Edwards (1977, p. 14).

Summary of relationship between e and a

Before proceeding to the last definition it may be useful to recapitulate the
formulae showing the relationship between average excess and average effect, and
how each is affected by non-random mating.

When mating is random the average excess and average effect of a gene
substitution are equal and are given by

e = a = a + d(q—p). (3bis)
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When mating is non-random the average excess is

e = a(l+F) + d(q-p)(l-F) (Ibis)

and the average effect is

\ ^ (llbis)

Thus there is a very simple relationship between the two quantities, which is

e=oc(l+F), (12)

as shown by Kempthorne (1957, p. 347), and already seen in (10) above.
The following further points may be noted. When the population is completely

inbred (F = 1), e = 2a, which is the homozygote difference in value; and a = a,
which is half the homozygote difference. When there is no dominance (d = 0) the
average effect is unaffected by non-random mating and a. = a. The average excess,
however, is affected by non-random mating even when there is no dominance.

Definition (D)

Fisher (1941; 1958, pp. 31 and 35) explains the meaning of the average effect
of a gene substitution as the change of mean value that would result from changing
one allele into the other, as if by mutation, the gene to be changed being chosen
at random in the existing genotypes. Applied to a random mating population, this
is a valid definition of average effect (or equally of average excess), and is used
by Kempthorne (1957, p. 310), Crow & Kimura (1970, p. 117), and Falconer (1981,
p. 104). Fisher gives it as an explanation of average effect without restriction to
random mating, but he does not use it to formulate the average effect in terms
of genotype frequencies. When mating is non-random, however, it is not equivalent
to definition (C) above, as we shall now see.

There are two procedures for carrying out the imaginary replacement of one
allele by another. One gives the 'effect' of the gene substitution, and the other gives
the 'effect' of each allele separately. Neither gives the average effect defined by
(C), except under random mating or if there is no dominance.

The first procedure, which seems to be what Fisher intended, though he does
not describe the procedure precisely, is as follows. A2 alleles in the existing
genotypes are chosen at random and replaced by A1 alleles. The mean change of
value consequent on the gene replacement is the 'effect' of the gene substitution.
The meaning of the ' effect' can be worked out as follows. Table 3 sets out the

Table 3

Replacement by Aj Replacement by A2

Genotype Frequency Value New value Change New value Change

A,Aj P a a 0 d -(a-d)
A ^ H d a a-d —a — (a + d)
A2A2 Q —a d a+d —a 0
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genotype frequencies and values, and the change of value when one allele is
replaced by the other. When A2 is replaced by A1 the total frequency of such
replacements is q, the frequency of A2. The mean change of value which we shall

C a l l i > l l i S
 n Q{a+d)+\H(a-d)

q
aq + d[(q*-pq)(l-

This is not the average effect except when F = 0 or in the absence of dominance
(d = 0).

Now consider the reverse change, replacing Ax alleles by A2. The consequent
mean change of value, D2, is

_ -P{a-d)-\H(a + d)
D*~ p '

which reduces to

Da = -{a + d[(q-p)(l-F)-F\}.

Note that D2 is not equal to —Dv i.e. changing A1 into A2 gives a reduction of
mean value that is not the same as the increase resulting from changing A2 into
Ax. That this must be so can be seen by considering a completely inbred population,
when all changes are from one or other homozygote to heterozygote. If, however,
we take the weighted difference, weighting by the frequency of the allele to be
replaced, we get

qD1-pD2 = a + d(q-p),

which is the average effect of the gene substitution under random mating,
irrespective of the actual mating system.

The second procedure for gene replacement is as follows. Any gene is chosen at
random from the genotypes in the population, and is replaced by At. If the gene
chosen for replacement is already AL there is no consequent change of value, but
this is to be counted in the mean of all replacements. The mean change of value
is the 'effect' of the Ax allele. If the genotypes are in Hardy—Weinberg proportions
this is the average effect, ax, of the At allele (Crow & Kimura, 1970, p. 117). This
procedure differs from the first only in that the total frequency of replacements
is now 1 instead of q. Therefore the mean change consequent on replacing any gene
by Aj is

D[ = Q(a + d)+\H(a-d),
which reduces to

The reverse change, resulting from replacing any gene by A2, is
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Neither of these changes is the average effect of the allele. Note that D'x = qD1 and
Z>2 = pD2. Thus the simple difference between the two changes by the second
procedure is the same as the weighted difference by the first procedure, and gives
the average effect of the gene substitution under random mating, irrespective of
the actual mating system.

Fisher uses the imaginary replacement of one allele by another as a verbal
description to introduce the idea of average effect, and it seems to have been seen
by him as the basis for the concept. It is therefore surprising to find that it is valid
only under random mating or in the absence of dominance.

Variance

The idea of additive genetic variance is based on average effects as defined by
(C) above, and is the variance of additive values. For a locus with two alleles the
additive values of the three genotypes, as deviations from the population mean,

AjAx: 2a.1 = 2qoc

A1A2:a1 + a2 = (q-p)cc

A2A2: 2a2 = — 2pa.

With the genotype frequencies in Table 1, the additive variance arising from this
locus works out to be

VA = 2pqa2(l+F). (13)

Alternatively, the additive variance due to a locus with two alleles may be defined
as the variance removed by regression of genotypic value on gene dosage
(Kempthorne, 1957, p. 311). The variance removed can be calculated as byx covyx.
So, from (10) and (8), the additive variance is

FA = 2pqea. (14)

This is the form in which Fisher (1941, 1958) writes the additive variance (which
he calls the genetic variance). Substituting for e from (9) gives

VA = 2pqa*(l+F)

as in (13) above. The a here is, of course, the a appropriate to the value of F as
given by (11), and not the random mating value. In the absence of dominance,
however, a, = a and is unaffected by F. The variance arising from an additive locus

is therefore VA = 2pqa'(l+F).

This is the familiar expression saying that the variance due to additive genes is
(1 +F) times the variance due to those genes in a random mating population (see
Kempthorne, 1957, p. 367).

Response to selection
It was said at the beginning that the response to selection can be divided into

two stages, the change of gene frequency which is proportional to the average
excess, and the consequent change of mean value which is proportional to the
average effect. The response in these two stages can be deduced as follows.
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The change of gene frequency, Ap, can be predicted from the regression of gene
frequency on value. Let S be the selection differential, i.e. the difference of mean
value between the selected parents and the population to which they belong. Then

Ap = bpyS,

where bpy is the regression of gene frequency on value. (The subscript y, used under
definition (C) above, is retained here to mean any quantitative character.) The
covariance of value with gene dosage was found in equation (8) to be cov^ = 2pqe.
The covariance with gene frequency, i.e. 1, \ or 0, is therefore

Py (15)

as shown by Price (1972, equation 5.2). Therefore

^ S , (16)
"v

where e is the average excess of the gene substitution in respect of the character
selected.

Similarly, the change of mean value, Ay, consequent on the change of gene
frequency can be predicted from the regression of value on gene frequency. The
regression of value on gene dosage is the average effect, by definition. The
regression on gene frequency is therefore

byp = 2a.
Therefore

Ay = 2aAp. (17)

Putting together (17) and (16) gives the predicted response to selection as

^ S . (18)

Now 2pqea is the additive variance, and <ry is the phenotypic variance. So we have
R = h2S,

as shown by Kimura (1958), where h2 is the ratio of additive genetic to phenotypic
variance under the specified breeding system.

When the character, y, is fitness expressed as relative fitness, w, the selection
differential is equal to the phenotypic variance (see Falconer, 1981, p. 311).* From
(18) therefore, the response of relative fitness to natural selection becomes equal
to the additive variance, as required by Fisher's fundamental theorem. When
applied to natural selection the average excess, e, in equations (15) and (16) is the
average excess of relative fitness. If we write k for absolute fitness and w for relative
fitness, so that w = k/k and ew = ek/k, then in terms of absolute fitness

* Equation (20.1) of Falconer (1981) is true only of relative fitness, not of absolute fitness
as stated. It is easily seen that the derivation is wrong unless the total number of offspring (N)
is equal to the number of parents, so that the mean number of offspring per parent is one.
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(see Crow & Kimura, 1970, pp. 179-180), and in terms of relative fitness

Breeding values
When mating is random the breeding value of a genotype is denned as the sum

of the average effects of the two alleles in the genotype, which is the additive value
as noted above. The usefulness of the concept is that the expected phenotypic value
of the progeny is the mean of the breeding values of the two parents. This leads
to the practical definition, which allows the breeding value of an individual to be
measured: the breeding value of an individual is twice the deviation of its progeny
from the population mean when the individual's mates are chosen at random, the
mates then having an expected breeding value of zero. When mating is non-random
it is tempting to think that the definition should say that the mates are to be chosen
according to the breeding structure of the population. This, however, is not a useful
definition for the following reason. Because of the correlation in respect of gene
dosage between the individual and its mates, the expected breeding value of the
mates is now not zero. In consequence, part of the deviation of the progeny is
attributable to the mates and not to the individual whose breeding value is to be
defined. From this it follows that if the breeding values of two mated individuals
were defined in this way, the expected value of their progeny would not be the
mean of their breeding values. The concept of breeding value therefore does not
have any useful meaning when mating is non-random.

Furthermore, if we did want to calculate the expected value of the progeny,
which would be needed for deducing the covariance of offspring with parents, we
could not do so from a knowledge of F alone. To do so we would need to know
the frequencies of the different mating types, and this needs more information
about the breeding structure than is contained in the inbreeding coefficient. As an
example we may consider a breeding structure in which a proportion of individuals
inbreed, e.g. by selfing or sib-mating, while the remainder mate at random. Li
(1976, p. 243) gives the mating-type frequencies in such a population when it is
in equilibrium, with constant genotype frequencies. The expected values of the
progenies of the three genotypes then work out to be as follows. In these
expressions m is the correlation between mates in respect of gene dosage and is
equal to 217(1+ F).

A^-.qail+m) + d[q{l-m) - 2pq(l - F)] = q[a + m{a-dp(l-F)}]
A.A.: \a(q-p) (1 + m) +\d[l-^pq(l-F)]
A2A2: -pa(l+m) +d[p(l-m)-2pq(l-F)] =-

The progeny of the two homozygotes can be expressed somewhat more concisely,
as shown on the right. I t is clear that these cumbersome expressions are not simple
functions of either the average effect or the average excess.

Uses of average excess

In conclusion we may ask: how useful is the concept of average excess ? We have
seen its use in deriving the change of gene frequency resulting from selection (15)
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from the covariance of value with gene frequency or gene dosage (8). And it
provides a concise way of expressing the additive genetic variance when mating
is non-random (14). When mating is random the distinction between average excess
and average effect is not needed because the two have the same value, which is
customarily referred to as the average effect. Fisher, as noted at the beginning,
used the two quantities to derive his Fundamental Theorem. However, Price (1972,
p. 138) says of the Fundamental Theorem that ' the derivation can be accomplished
far more simply if we work entirely with regression coefficients and covariances
without using Fisher's special "average excess" and "average effect" variables'.

I am indebted to Professors J. W. James, M. J. Wade and A. Robertson for much helpful
advice.

REFERENCES

CROW, J. F. & KIMURA, M. (1970). An Introduction to Population Genetics Theory. New York:
Harper & Row.

EDWARDS, A. W. F. (1977). Foundations of Mathematical Genetics. Cambridge: Cambridge
University Press.

EDWARDS, A. W..F. (1982). Book review. Biometrics 38, 1128-1129.
EWENS, W. J. (1979). Mathematical Population Genetics. Berlin: Springer.
FALCONER, D. S. (1981). Introduction to Quantitative Genetics. 2nd edn. London: Longman.
FISHER, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press.
FISHER, R. A. (1941). Average excess and average effect of a gene substitution. Annals of

Eugenics 11, 53-63.
FISHER, R. A. (1958). The Genetical Theory of Natural Selection. 2nd edn. New York: Dover.
KEMPTHORNE, 0. (1957). An Introduction to Genetic Statistics. New York: Wiley.
KIMURA, M. (1958). On the change of population fitness by natural selection. Heredity 12,

145-167.
Li, C. C. (1976). First Course in Population Genetics. Pacific Grove, California: Boxwood Press.
PRICE, G. R. (1972). Fisher's 'fundamental theorem ' made clear. Annals of Human Genetics 36,

129-140.

https://doi.org/10.1017/S0016672300022825 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300022825

