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Abstract
It is now well established that higher-order risk preferences play a crucial role in 
determining the risky choices of decision makers in a wide range of important areas 
such as economics, finance and health. While influential theories of risky choice in 
those fields can explain attitudes to second order risk, the implications of these mod-
els for higher order risk preferences is still to be developed. This paper addresses 
that gap for the Markowitz (J Political Econ, 60:151–58, 1952) (M) model of utility 
which embodies reference-dependent utility, loss aversion and was seemingly the 
first model to explain the fourfold attitude to risk. In this paper, we set out new prop-
erties of the M model for higher order preferences, such as higher-order risky choice 
reversals, that can help explain experimental evidence not readily reconcilable with 
other models of risky choice. A second contribution of the paper is to empirically 
examine the heterogeneity of preference functionals describing second as well as 
higher order risky choices using hierarchical Bayesian estimation methods. Our 
analysis of the risky choices revealed in three prominent studies provides support for 
the M model as a useful complement to other leading models of risky choice such as 
cumulative prospect theory (CPT). In addition, we set up a new experiment whose 
design is shown to have satisfactory discriminatory power between the M and CPT 
specifications, and our results based on the Bayes factor confirm the heterogeneity 
of preference functionals across decision makers, and that the CPT specification is 
more prevalent.
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1  Introduction

It is now well established that many decisions in the fields of economics, finance 
and health are dependent not only on second order risk preferences but also upon 
higher order risk attitudes such as prudence and temperance (e.g. Bleichrodt et al., 
2003; Deck & Schlesinger, 2014; Eeckhoudt & Schlesinger, 2013; Noussair et al., 
2014; Trautmann & van de Kuilen, 2018; White, 2008). Models of Expected Utility 
Theory (EUT) that have been employed in the literature of higher order risk atti-
tudes, such as mixed-risk aversion and mixed-risk loving, predict that a risk averse 
decision maker (DM) would exhibit prudence and temperance, while a risk lover 
DM would exhibit prudence and intemperance (see Deck and Schlesinger (2014), 
Eeckhoudt and Schlesinger (2006), Noussair et al. (2014)].

While there is some empirical evidence consistent with EUT models of mixed-
risk aversion and mixed-risk loving, other experimental literature has provided 
evidence on higher order risk attitudes that are difficult to reconcile with EUT. For 
instance, many experimental studies reveal that imprudent choices, which are not 
consistent with the EUT models mentioned above, constitute a non-negligible share 
of total choices. The proportion of imprudent choices reported is sometimes close 
to forty percent, as illustrated in Table 1 of the review paper by Trautmann and van 
de Kuilen (2018). Other experimental findings reported are also inconsistent with 
models of EUT. Some examples are the lack of correlation between risk aversion 
and temperance (Bleichrodt & van Bruggen, 2022), a stronger correlation between 
third and fourth order risk preferences than between second and fourth order (Maier 
& Rüger, 2012; Ebert & Wiesen, 2014), strong correlation between odd and even 
moments of risk attitudes (Maier & Rüger, 2012; Noussair et  al., 2014), and evi-
dence of a “stakes effect” on higher order risk attitudes exhibited by the DM (Deck 
& Schlesinger, 2010).

Reference-dependent models are more flexible and, in principle, capable of 
providing a framework able to accommodate this body of experimental evidence, 
as they have successfully accomplished with many other aspects of behavioural 
decision making. It is therefore surprising that, despite the relevance of reference 
dependence in explaining behaviour under risk and uncertainty, little is known 
about the predictions of those models regarding higher order risk preferences. Fur-
thermore, taking into consideration that reference-dependent models lack clarity 
about the way the reference point is formed and that a variety of reference points 
ought to be considered when eliciting risk preferences [see Baillon et  al. (2020)], 
our understanding of those models in relation to higher order risk attitudes under 
alternative reference points is even more limited. The norm in experimental research 
reported to date on lottery choices eliciting risk apportionment is that researchers 
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have endeavoured to implement their appropriate reference point by experimental 
procedure and lottery design. This reference point is then assumed in the analysis of 
the responses of the experimental subjects. For example, Maier and Rüger (2012), 
Brunette and Jacob (2019), and Bleichrodt and van Bruggen (2022) report results 
where the status quo reference point is assumed. Alternatively, Deck and Schles-
inger (2010) and Ebert and Wiesen (2014) assumed that the reference point was the 
expected value of the lottery. One of the early attempts to address the gap in the 
literature about reference dependence and higher order risk preferences can be found 
in Paya et al. (2022). They examine the behaviour with regard to third and fourth 
order risky choices of a DM using a cumulative prospect theory (CPT) specification 
under three alternative reference points. However, there are still empirical regulari-
ties and findings in experimental studies on higher order risk preferences that are not 
consistent with the predictions of the mainstream models of decision making under 
risk such as CPT and EUT. Our paper provides new insights within this literature 
and includes two contributions.

First, we provide a comprehensive analysis about the implications for higher 
order risk preferences of a reference-dependent model consistent with Markowitz’s 
(1952) hypotheses, which we will refer to as the M model. These hypotheses include 
loss aversion, reference dependence, and the fourfold attitude to risk over binary lot-
tery choices. Empirical and experimental evidence on second order lottery choices 
of decision making under risk is consistent with those hypotheses (e.g. Hershey & 
Shoemaker, 1980; Pennings & Smidts, 2000; 2003; Post & Levy, 2005; Scholten 
& Read, 2014).1 Furthermore, the analysis by Georgalos et al. (2021) suggests that 
the M model can be a valuable complement to other reference-dependent and EUT 
models to explain risky binary lottery choices. The complementarity of the M model 
is also manifested by the fact that it can parsimoniously explain certain regularities 
observed in experimental studies that are difficult to reconcile with other models, 
such as violations of the separability principle underlying prospect theory2 [espe-
cially over gains, see Bouchouicha and Vieider (2017), Chark et al. (2020), Hogarth 
and Einhorn (1990)], or a reported high proportion of risk-seeking in lottery choices 
between a risky positive payoff(s) with a 0.5 probability(ies) and the safe alterna-
tive which has the same expected value (e.g. Battalio et al., 1990; Hershey & Shoe-
maker, 1980; 1985; Maier & Rüger, 2012; Vieider et al., 2015; Weber & Chapman, 
2005). Given this potential for complementarity, Scholten and Read (2014) explore 
whether it is possible for a weighted-value model such as CPT exhibiting the four-
fold attitude to risk over outcome probabilities, to also encompass the fourfold atti-
tude to risk over outcome magnitude, as predicted by the M model. They present the 
condition needed for this to happen and suggest the use of a multiplicative model 

1  The assumption of loss aversion in the Markowitz model implies that it too, like CPT, can also offer an 
explanation of market outcomes such as the equity premium puzzle, the disposition effect and others that 
are directly derived from the assumption of loss aversion and not dependent upon probability distortion. 
It also offers an explanation of wagering at actuarially unfair odds without the necessity to assume prob-
ability distortion.
2  According to this principle, changes in preferences over outcomes ought to be reflected purely in util-
ity, while changes in preferences over probabilities ought to be reflected in probability weighting.
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that includes a decreasingly elastic value function in conjunction with a probability 
weighting function. The applicability of such specification is, however, very lim-
ited because the condition is met for a very reduced range of parameter values (see 
Appendix A).

Our analysis of the M model extends previous analyses in the literature since we 
examine for the first time its predictions over higher order risky choices from a num-
ber of alterative reference points. As noted by Baillon et al. (2020), when Markow-
itz (1952) introduced the reference-dependent utility theory, he was not explicit 
about the reference point to be used in his modeling framework, as was also the 
case for subsequent reference dependence models developed in the literature. We 
therefore examine the predictions of the M model assuming three reference points, 
namely, status quo, MaxMin, and expected value. All those three reference points 
are examined by Baillon et al. (2020), and two of those are identified as the most 
frequently employed when eliciting risk aversion under CPT, namely, status quo and 
MaxMin. The other reference point, the average payout, is incorporated in our analy-
sis because it has previously been used in prominent studies on higher order risk 
preferences (Deck & Schlesinger, 2010; Ebert & Wiesen, 2014).

We employ recently developed elicitation methods of risk preferences and show 
that the M model can explain high order risky choices as well as combinations of 
second with higher order choices not readily available from other reference-depend-
ent models. This finding is particularly interesting from the status quo reference 
point. From this reference point, we are able to demonstrate a different prediction 
of the M model to that of the representative CPT, rank dependent utility (RDU) or 
EUT DMs. In particular, the representative CPT or RDU subject will, in common 
with the mixed-risk averse model of EUT, always make a prudent or temperate lot-
tery choice whithin the gains domain. In contrast, a decision maker with M pref-
erences can make choices consistent with any third and fourth order risk attitude 
from the status quo reference point dependent upon the precise magnitude of the 
lottery payoffs. Furthermore, the M model can accommodate a reflection effect on 
third order choices, a feature that is absent in other models [see Bleichrodt and van 
Bruggen (2022)]. Finally, the M model also enjoys the unique property of ‘higher-
order reversals ’, implying that a given set of parameters predicts that the DM will 
exhibit a risk attitude for specific risks, and the reverse preference for others.3

The second contribution is that this is the first paper we are aware of that uses an 
empirical approach that allows for more than one preference functional to fit experi-
mental data on risk apportionment tasks eliciting higher order risk preferences. This 
is particularly relevant in this literature given there is no consensus about a single 
parametric specification that can accommodate the accumulated experimental evi-
dence on higher order preferences [see Trautmann and van de Kuilen (2018)]. We 
employ the datasets from three of the most prominent studies on higher order risk 
attitudes, namely, Deck and Schlesinger (2010, 2014), and Nousssair et al. (2014) 
(DS10, DS14 and NTK, respectively, hereafter). The preference functionals include 

3  We thank an anonymous reviewer for the suggestion to use the term ‘higher-order reversal’ to be 
employed in this context.
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both an M specification and a CPT specification, each under three alternative ref-
erence points (and where EUT can be nested). Our results based on hierarchical 
Bayesian estimation methods show that both preference functionals are useful to 
describe the experimental evidence as there is not a single model that dominates the 
others across the three datasets. We point out that the higher the proportion and vari-
ety of (anti) risk apportionment choices of different orders, the more helpful the M 
model is to explain risky choices, and it therefore becomes a valuable complement 
to rank dependent preference functionals to account for high order risk attitudes. 
We assess the econometric method employed here through a set of simulations, and 
show that it can satisfactorily identify an assumed model specification, and discrimi-
nate among alternative ones.

In addition to this empirical analysis, we set up a new experiment to further 
investigate heterogeneity of risky choices of different orders across subjects, and 
to discriminate between M and CPT specifications. The new insights about the M 
model we provide in this paper, together with existing analysis about higher order 
risk preferences in the CPT model (Bleichrodt & van Bruggen, 2022; Paya et  al., 
2022), reveal different predictions between the two models under the status quo ref-
erence point that are exploited in the design and analysis of the experiment to dis-
criminate between the two models. A comprehensive simulation exercise shows that 
the experimental design has satisfactory discriminatory power between M and CPT 
specifications that can be considered as ‘representative’ of those models. The results 
of the experiment confirm the presence of heterogeneity of preference functionals 
and that, based on the Bayes factor, around a third of DMs are classified as consist-
ent with the M specification and two thirds consistent with the CPT one.

The rest of the paper is structured as follows. In Sect. 2, we set out the properties 
of a parametric M model of utility. In Sect. 3, we employ the framework developed 
by DS14 to illustrate the key properties of the M model for third and fourth order 
risky choices. In Sect.  4, we discuss the econometric method and the estimation 
results employing the experimental datasets from DS10, DS14 and NTK. Section 5 
presents a new experiment on higher order risk preferences, and Sect. 6 provides a 
brief conclusion.

2 � Properties of the M model of utility

Markowitz (1952) proposed a new model of non-expected utility to resolve some 
of the counterfactual implications of the Friedman and Savage (1948) model of 
expected utility. For example, Markowitz pointed out that the Friedman-Savage 
model of expected utility implies individuals of middle income would engage in 
large symmetric bets or extend insurance even at an expected loss to themselves. 
From a reference point, Markowitz assumed that a DM exhibits a fourfold attitude to 
risk: risk seeking (risk averse) over small gains (losses) and risk averse (risk seek-
ing) over large gains (losses), and that the value functions are bounded from above 
and below. This modeling framework, which we refer to as the M model, offers an 
explanation of local-risk-seeking behaviour within a money value function without 
the counterfactual implications of assuming everywhere risk-seeking preferences. 
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This is relevant in the context of, e.g., Deck and Schlesinger (2014,  p.1914) who 
have drawn attention to the need to explain risk-loving behaviour. Everywhere risk-
seeking preferences, such as the ones defined by mixed-risk loving EUT models, 
also imply that the individual would wager all their wealth at actuarially unfair odds. 
Consequently, whist theoretically attractive, it is not clear it can characterise indi-
vidual outcomes in experimental research.

Markowitz assumed objective and subjective probabilities were equal and also 
that the representative agent exhibited loss aversion.4 Our parametric specification 
of the M model is the same as the one in Georgalos et al. (2021) and we therefore 
closely follow their setup. The value functions over gains (G) and over losses (L) are 
the following

where �, �, � and � are all positive constants, � ≤ �, and parameter � above unity 
( 𝜂 > 1 ) captures the hypotheses of the Markowitz model.5 The mathematics of the 
expo-power value function (1) reveal that for gains and losses of the same amount 
the decision maker is, when risk seeking over gains, risk averse over losses. How-
ever, when risk averse over gains, they can be either risk averse or risk seeking over 
losses of the same amount. As a consequence, the M model may or may not exhibit a 
reflection effect of second order preferences for lottery choices which have the same 
payoff structure and absolute expected return.

To gain intuition about the role played by � in the determination of risk attitudes, 
it is worth noting that, with 𝜂 > 1 , the derivatives change sign as outcome magni-
tudes change. Furthermore, parameter 𝛼 > 0 implies the function exhibits, over 
gains, increasing relative risk aversion (IRRA), and that the smaller the value of � , 
the wider the range of values of G the DM exhibits risk seeking behaviour. An addi-
tional interesting property of the expo-power function is that, in this case, if 𝜂 < 1, 
the function accommodates both decreasing absolute risk aversion (DARA) and 
IRRA, which are two behavioural traits commonly found in the empirical literature 
of decision under risk [see Wakker (2010)]. Finally, within a gains domain frame-
work, the M model nests an EUT maximiser with exponential utility when � = 1 , 
and it approximates the (CRRA) power value function G� when � → 0.

The definition of loss aversion, LA, introduced by Markowitz (1952), is the ratio 
of the absolute magnitude of the utility of losses to the utility of gains for symmetric 
losses (L) and gains (G):

(1)U(G) = 1 − e−�G
�

U(L) = −�(1 − e−�L
�

),

5  This was already noted by Abdellaoui et al. (2007). There are two other functional forms that we are 
aware of that capture the Markowitz value function and give results consistent with the expo-power func-
tion suggested by Saha (1993) [see Peel (2013)].

4  Markowitz (1952, p.155) wrote: “Generally people avoid symmetric bets. This suggests that the curve 
falls faster to the left of the origin than it rises to the right. We may assume that |U(−X)| > U(X),X > 0 .” 
This definition of loss aversion is the same as the definition of loss aversion subsequently employed by 
Kahneman & Tversky (1979, p.279) and Tversky and Kahneman (1992) in their representative model of 
Prospect Theory and Cumulative Prospect Theory (CPT).
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In expression (2), we have expressed the constant parameter � = � ∗ � , � ≥ 1, , to 
note that when gains and losses of the same absolute magnitude tend to zero, the 
lower bound of loss aversion is given by �

�
 and when gains and losses of the same 

absolute magnitude are large, LA is given by �.6 Figure 1 depicts an example of the 
M model employing the expo-power function with parameter values that will be 
used later in this paper, � = 2.4, � = 1.1, � = 0.0018, � = 2.25. A crucial property of 
the Markowitz model, not shared by other models of risky choice, is that the third 
and fourth order derivatives of the value function over either gains or losses can 
change sign at least once and sometimes twice as lottery payoffs are increased, while 
the second derivative can remain either positive or negative. This seemingly unique 
property is illustrated in

Figure 2 that plots the second, third and fourth derivatives for parameter values 
employed in Fig. 1. A consequence of this property for an M DM is that the revealed 
correlation between second and higher order preferences exhibited in experimental 
research can be positive, negative or zero. Correlations between risk attitudes are 
therefore not predetermined like in other models of decision under risk. We will dis-
cuss this issue in detail in the next section.

(2)LA =
�(1 − e−�L

�

)

(1 − e−��G
�
)
.

Fig. 1   Expo-power function (1) with parameter values � = 2.4, � = 0.002, � = 0.0018, � = 2.25

6  See Georgalos et al. (2021 Appendix A) for a detailed discussion about this parametric specification. 
Because � ≥ 1, loss aversion increases as losses and gains of the same amount increase. This is a desir-
able property and was also assumed by Kahneman and Tversky (1979, p.279): “Moreover, the aversive-
ness of symmetric fair bets generally increases with the size of the stake.”
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Fig. 2   Plots of the second (top), 
third (middle), and fourth (bot-
tom) derivatives over gains of 
value function (1) with param-
eter values � = 2.4, � = 0.002
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3 � Risky choices in the M model of utility

We employ the model-free framework developed by DS14 to elicit risk attitudes of 
different orders. Their framework is based on Eeckhoudt et al. (2009) and general-
ises the method developed by Eeckhoudt and Schlesinger (2006) which was a major 
contribution in the elicitation of higher order preferences. Let us denote an individu-
al’s endowment as W,  W > 0. We will write L ≡ [x, y] to denote a lottery of equally 
likely payoffs x and y,   where both x and/or y might themselves be lotteries. The 
two pairs of random variables {X̃1, Ỹ1} and {X̃2, Ỹ2} are such that Ỹ1 has more nth-
degree risk than X̃1, and Ỹ2 has more mth-degree risk than X̃2.

7 Under these assump-
tions, lottery As = [W + X̃1 + X̃2,W + Ỹ1 + Ỹ2] has more sth-degree risk than lottery 
Bs = [W + X̃1 + Ỹ2,W + Ỹ1 + X̃2] where s = (m + n),m ≥ 1, n ≥ 1 [see Eeckhoudt 
et al. (2009)], in our case s = 2, 3, and 4. The individual’s preference is denoted with 
⪰ . “Risk apportionment of order s ” implies a preference of lottery Bs over As, that 
is, Bs ⪰ As. A DM with this preference dislikes the lotteries with more sth degree 
risk, As, and exhibits a preference for combining the relatively “good” random vari-
able X̃i with the relatively “bad” random variable Ỹi, as it happens in Bs . “Anti-risk 
apportionate of order s ” is the reverse preference, As ⪰ Bs.

We now specify the elements of the random variables included in the lottery pairs 
to elicit risk preferences. First, we consider that the random variables X̃1, X̃2, are 
fixed monetary outcomes denoted as X̃1 = X1, X̃2 = X2, and that X1 + X2 = X. k1 and 
k2 are monetary payoffs such that k1 > 0, k2 > 0. �̃1 and �̃2 are zero-mean random 
variables that are independent of each other and of any other random variable. We 
will initially assume that the zero-mean risk is binary and symmetric, as typically 
used in the experimental literature on higher order preferences, and therefore defined 
as �̃1 = [−e1, e1] and �̃2 = [−e2, e2].

We describe below the lottery pair structure for s = 2, 3, and 4,  together with an 
example from Table II of DS14.

Risk aversion: s = m + n = 2, with m = 1, n = 1. Variable Ỹ1 = X1 − k1 
and variable Ỹ2 = X2 − k2 . The lottery pair to elicit risk aversion is 
A2 = [W + X,W + X − k1 − k2] and B2 = [W + X − k2,W + X − k1]. Lottery A2 is a 
mean-preserving spread of lottery B2. For example, X1 = X2 = 10, k1 = k2 = 5, and 
therefore A2 = [20, 10] and B2 = [15, 15].

Prudence: s = m + n = 3, with m = 1, n = 2. In this case, Ỹ2 = X2 − k2 and 
Ỹ1 = X1 + �̃1. Therefore A3 = [W + X,W + X − k2 + �̃1] where the two rela-
tively “bad” outcomes are combined together (wealth reduction of k2 and zero-
mean risk �̃1 ), and B3 = [W + X − k2,W + X + �̃1] where the relatively “good” 
outcome (payment X without the loss of k2 ) is combined with the “bad” outcome 

7  If X̃ dominates Ỹ  via nth-order stochastic dominance, then Ỹ  has more nth-degree risk than X̃ . For 
n > 1 , X̃ and Ỹ  have the same first n − 1 moments [see Ekern (1980)]. Moreover, stochastic dominance 
preferences imply both risk apportionment preferences and a preference for combining the “good” with 
the “bad” lottery [see Eeckhoudt et al. (2009].
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(zero-mean risk �̃1 ). For example, X1 = 0,X2 = 10, k2 = 5, �̃1 = [−4, 4], and there-
fore A3 = [10, 5 + [−4, 4]] and B3 = [5, 10 + [−4, 4]].

Temperance: s = m + n = 4, with m = 2, n = 2. Ỹ2 = X2 + �̃2 and Ỹ1 = X1 + �̃1. 
Therefore A4 = [W + X,W + X + �̃1 + �̃2] combines the two “bad” outcomes 
together (zero-mean risks �̃1 and �̃2 ), while B4 = [W + X + �̃2,W + X + �̃1] disag-
gregates those two risks. Lottery A4 is, in this case, an outer risk increase of lot-
tery B4 . For example, X1 = X2 = 8.5, �̃1 = [−5, 5], �̃2 = [−2, 2], and therefore 
A4 = [17, 17 + [−5, 5] + [−2, 2]] and B4 = [17 + [−2, 2], 17 + [−5, 5]].

Given that elicitation of risk attitudes in reference-dependent models depends 
upon the specific reference point used by the DM,we consider in the analysis below 
three different reference points, namely, status quo, average payout, and MaxMin. 
In addition to the reference point, lottery choices made by the DM in the analysis 
of risk apportionment of order three and four depend upon model parameter values, 
stake size and lottery design. Given this complexity, the theoretical analysis below 
will use numerical analysis to examine whether lottery preferences and their asso-
ciated behavioural traits are exhibited within a range of feasible parameter values, 
and will also make use of examples and counterexamples to illustrate cases where 
certain risk attitudes are attainable for a risky choice model but not for an alternative 
one.

3.1 � Reference point 1: Status Quo

Within the DS14 framework described above, the status quo reference point cor-
responds to the level of initial wealth or endowment, W. The probabilities and out-
comes of the lottery pair to elicit risk apportionment of order 3 are the following8

Over gains, the expected utility of the two lotteries are evaluated from the status quo 
reference point and given by these two expressions:

We illustrate in Table 1 the risky choices of an M decision maker with parameter 
values similar to the ones reported by Georgalos et al. (2021) for the dataset from 
Scholten and Read (2014), namely, � = � ∗ � = 0.002, � = 2.4, � = 1.1 . This par-
ticular parameterisation is helpful because it allows us to demonstrate the unique 
property that the decision maker can, in principle, make lottery choices consist-
ent with all possible combinations of second, third and fourth order risk attitudes 
depending on the precise lottery payoffs. We start with the lotteries designed to elicit 

B3 ∶ 0.5,W + X − k2; 0.25,W + X + e1; 0.25,W + X − e1

A3 ∶ 0.5,W + X; 0.25,W + X − k2 + e1; 0.25,W + X − k2 − e1.

(3)

U(B3) = 0.5
(
1 − e−��(X−k2)

�)
+ 0.25

(
1 − e−��(X+e1)

�)
+ 0.25

(
1 − e−��(X−e1)

�)

U(A3) = 0.5
(
1 − e−��(X)

�)
+ 0.25

(
1 − e−��(X−k2+e1)

�)
+ 0.25

(
1 − e−��(X−k2−e1)

�)
.

8  In this section, lotteries B (likewise A) with payoffs x,  y and z and corresponding probabilities px, py 
and 1 − px − py are represented by B ∶ px, x;py, y;1 − px − py, z.
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risk aversion. Those lotteries denoted as RA1, RA2, RA3 and RA4 are described in 
Table  1 Panel A. For those four lotteries, the decision maker with the parameter 
values described above would make two risk seeking choices ( A ⪰ B ), and two risk 
averse choices ( B ⪰ A ). For example, lottery pair RA1 implies a choice between 
a certain 5 and a 50-50 chance of receiving either 7 or 3 and the DM chooses the 
latter.

We now turn to the lottery pairs revealing choices of order three (lottery structure 
P1, P2, P3 and P4 described in Table 1 Panel B). With these lottery payoffs, the DM 
with the parameters assumed above would make two imprudent choices ( A3 ⪰ B3 ) 
for lottery payoffs P2 and P3. In these two lotteries, the DM prefers to receive the 
zero-mean risk �̃1 = [2,−2] when payoffs 10 and 15 are experiencing the loss of 
k2 = 3 . In contrast, she prefers B3 for lottery structures P1 and P4 ( B3 ⪰ A3 ). In these 
two lotteries, the zero-mean risk �̃1 = [2,−2] is preferred when payoffs 5.5 and 25 
are not experiencing the loss of k2 = 3 , i.e., a preference for combining ‘good with 
bad’.

The fact that utility function (1) has inflection points implies there is not a one-
to-one mapping between second and higher order risk attitudes. Therefore, to deter-
mine the second order preferences consistent with the third order lottery choices 
described above, we uncover the certainty equivalent (CE) of the lottery choice, B3 

Table 1   Second-, third-, and fourth-order risky choices over gains for the SQ reference point

RA1(2)(3)(4); P1(2)(3)(4) and T1(2)(3)(4) denote four lotteries designed to elicit risk aversion, prudence 
and temperance respectively. � denotes the average payout of the lottery. In columns 9 and 10, choices 
are denoted as follows: RA (Risk Averse), RL (Risk Loving), P (Prudent), IP (Imprudent), T (Temper-
ate), IT (Intemperate). CE denotes the certainty equivalent. The assumed reference point is the status quo 
(SQ)

Utility function: Lottery B = [W + X̃1 + Ỹ2,W + X̃2 + Ỹ1], Lottery 
A = [W + X̃1 + X̃2,W + Ỹ1 + Ỹ2]

U = 1 − e−�g
� Risky choices

� = 0.002, � = 2.4 X k1 k2 �1 �2 � 2nd order

Panel A RA1 7 2 2 5 A ≻ B (RL)
Risk RA2 15 5 5 10 A ≻ B (RL)
Aversion RA3 20 5 5 15 B ≻ A (RA)

RA4 65 30 30 35 B ≻ A (RA)
Panel B 3rd order
Prudence P1 5.5 3 [2,−2] 4 B ≻ A (P) CE > 𝜇 (RL)

P2 10 3 [2,−2] 8.5 A ≻ B (IP) CE > 𝜇 (RL)
P3 15 3 [2,−2] 13.5 A ≻ B (IP) CE < 𝜇 (RA)
P4 25 3 [2,−2] 23.5 B ≻ A (P) CE < 𝜇 (RA)

Panel C 4th order
Temperance T1 7 [1,−1] [4,−4] 7 B ≻ A (T) CE > 𝜇 (RL)

T2 10.7 [1,−1] [4,−4] 7 A ≻ B (IT) CE > 𝜇 (RL)
T3 12 [1,−1] [4,−4] 12 A ≻ B (IT) CE < 𝜇 (RA)
T4 30 [1,−1] [4,−4] 30 B ≻ A (T) CE < 𝜇 (RA)
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or A3, and compare it with its expected value ( � ). By applying this method, one of 
the lotteries for which the decision maker’s choice was A3 ⪰ B3 , in this case lottery 
P2, the CE for lottery A3 is higher than the expected value of the lottery ( � = 8.5 ) 
and she therefore is locally risk loving. However, for the lottery choice in P3, the 
opposite is true, and the decision maker chooses lottery A3 but she is locally risk 
averse ( CE of the preferred lottery is lower than its expected value � = 13.5 ). The 
same analysis is applied to the two lottery structures where the individual exhib-
its prudent choices, P1 and P4. We find that, for P1, the CE of B3 is higher than 
the expected value � = 4 and therefore locally risk loving, while for P4, the CE is 
lower than 23.5 and the risky choice is risk averse. For large enough payoffs, the 
DM always makes risk averse and prudent lottery choices.

Figure  2 presented above helps to provide an intuition about the relationship 
between second and third order risky choices. The second order derivative (top 
graph) switches sign at gains equal to 10.6,  and the third derivative (middle graph) 
displays both positive and negative values within the range [0,  10.6]. We would 
therefore expect that, for lottery pairs designed to elicit prudence, with an expected 
value less than 10.6 such as P1 and P2, the agent would exhibit risk-seeking choices 
combined with either prudent or imprudent choices. On the other hand, we would 
expect risk aversion for lottery pairs with an expected value larger than 10.6 as it 
is indeed the case for P3 and P4. Given that the third derivative switches sign for 
values of gains that are higher than 10.6,   we would again expect that the second 
order preference of risk aversion can be combined with either imprudent or prudent 
choices, as it is the case with P3 and P4, respectively.

We now turn to risk apportionment of order 4, where the payoffs of the two zero-
mean independent risks can be different, e2 ≥ e1 . In this case, the probabilities and 
outcomes of the two lotteries are the following

The corresponding value functions for these two lotteries evaluated from the status 
quo reference point are

The choices that the M decision maker characterised in Table 1 Panel C (and Figs. 1 
and 2) would make in the four lotteries of order 4 (T1, T2, T3 and T4 in Table 1 
Panel C) also illustrate that temperate as well as intemperate choice can be consist-
ent with both risk loving and risk averse preferences, although for large enough pay-
offs, she always makes risk averse and temperate lottery choices.

B4 ∶ 0.25,W + X + e2; 0.25,W + X + e1; 0.25,W + X − e1; 0.25,W + X − e2

A4 ∶ 0.5,W + X; 0.125,W + X + e2 + e1; 0.125,W + X + e2 − e1; 0.125,

W + X − e2 + e1; 0.125,W + X − e2 − e1.

(4)

U(B4) = 0.25
(
1 − e

−��(X+e2)
�)

+ 0.25
(
1 − e

−��(X+e1)
�)

+ 0.25
(
1 − e

−��(X−e1)
�)

+ 0.25
(
1 − e

−��(X−e2)
�)

U(A4) = 0.5
(
1 − e

−��(X)�
)
+ 0.125

(
1 − e

−��(X+e2+e1)
�)

+ 0.125
(
1 − e

−��(X+e2−e1)
�)

+ 0.125
(
1 − e

−��(X−e2+e1)
�)

+ 0.125
(
1 − e

−��(X−e2−e1)
�)
.
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These combinations of risky choices can be intuitively understood by looking at 
the top and bottom graphs of Fig. 2. Tasks designed to elicit fourth order choices 
with an expected value less than 10.6 such as T1 and T2 will combine local risk 
loving behaviour with either risk or anti-risk apportionment of order 4. This is illus-
trated by the fact that the fourth derivative changes sign prior to 10.6. Interestingly 
enough, the fourth derivative changes sign again for values that are higher than 10.6 

Fig. 3   Plot of U(B3) − U(A3) in prudence task P3 defined in Table 1. Parameter � = 0.002

Fig. 4   Regions of risk aversion/loving (RA/RL) and prudence/imprudence (PR/IMP). Solid line: com-
binations of � and � that yield prudent neutral lottery choice in task P3 defined in Table 1. Dashed line: 
combinations of � and � that yield risk neutral lottery choice in task P3

Downloaded from https://www.cambridge.org/core. 24 Aug 2025 at 22:35:35, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


158	 K. Georgalos et al.

1 3

and therefore this parameterisation permits that a DM that makes risk averse choices 
can also make temperate or intemperate choices depending on the lottery payoffs.

The examples in Table 1 illustrate that a DM described by the M model can make 
combinations of second with third and fourth order choices not seemingly feasible in 
EUT or CPT. To illustrate that our parameters chosen above are not special, we illus-
trate in Figs. 3 and 4 that very different parameterisations of the M model specifica-
tion can also exhibit a rich set of risk preferences. In Fig. 3, the vertical axis repre-
sents the differences in utility between lotteries B and A,U(B3) − U(A3), for lottery 
P3 defined above in Table 1. We set parameter � at value 0.002, and the horizontal 
axis represents values of the other parameter of the expo-power value function, � . 
Positive values in Fig. 3 imply that the decision maker’s choice is the prudent one, 
B ⪰ A , while she exhibits the imprudent one for the cases of negative values.

Figure 4 illustrates that decision makers characterised by different combinations 
of the two parameters of the value function, � and � , can exhibit different combina-
tions of second and third order when making lottery choices in P3. In the diagram, 
individuals defined by values of � and � above the solid line exhibit risk averse and 
prudent choices. Alternatively, for parameter values between the solid and the dash 
line, the lottery choices are risk averse and imprudent. Finally, parameter values 
below the dash line imply the decision maker exhibits risk loving and imprudent 
choices.

We conclude the discussion about the status quo reference point by noting that 
the fact that a DM characterised by the M model can make choices consistent with 
any third and fourth order risk is an important result since, in the three papers we 
are aware of that assume the status quo reference point, the reported proportion 
of imprudent or intemperate choices is substantial.9 Furthermore, the M DM also 
exhibits any third or fourth order risky choices in the domain of losses, although we 
do not report the analytical work here to save spece. Therefore, the M model is in 
principle able to accommodate the reflection effect in higher order risk such as the 
one reported in Bleichrodt and van Bruggen (2022).10 This is an important property 
in discriminating between different models of risky choice.

3.2 � Reference point 2: average payout

The average payout of the lotteries has been assumed as the reference point in prom-
inent experimental studies on higher order preferences (e.g. DS10; and Ebert & 

9  For example, the well-cited paper of Maier and Rüger (2012) reports an average of 40% imprudent lot-
tery choices, whilst the average proportion of intemperate choices reported was 42%. Bleichrodt and van 
Bruggen (2022) report that, for the gains domain, the average proportion of imprudent choices was 44% 
and the average intemperate choices was 59.6%. Brunette and Jacob (2019) report, for lotteries in the 
gains domain, an average of 47.6% imprudent choices and 31.6% intemperate choices.
10  The result demonstrated in Paya et  al. (2022) that, from the status quo reference point, experimen-
tal subjects with the representative CPT preferences will make the prudent lottery choice over both the 
gains domain and the losses domain is important since CPT does not therefore accommodate a reflec-
tion effect. Bleichrodt and van Bruggen (2022) corroborate their result employing the CPT parameters of 
Tversky and Kahneman (1992). Models of EUT, either mixed-risk averse or mixed-risk loving, predict 
only lottery choices consistent with prudence.
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Wiesen, 2014). The expected value of the lottery pair to elicit risk apportionment of 
order 3, A3 and B3 , is W + X −

k2

2
. With this reference point, there are two valuations 

of the lottery pair to elicit third order choices which depend on the relative magni-
tudes of k2

2
 and e1. When e1 ≥

k2

2
 the utilities of B3 and A3 are given by

On the other hand, when e1 <
k2

2
, the utilities of the lotteries are given by

We determined the lottery choices in these two pairs of lotteries employing numer-
ous combinations of parameter values (including gain-seeking as well as loss-averse 
preferences) and payoff magnitudes. We found that the behavioral trait exhibited by 
the DM depends on the payoff structure. In particular, when payoffs were relatively 
small, the M decision maker would always make the prudent choice.11 However, for 
lotteries where k2

2
 is large relative to e1, or e1 is large relative to k2

2
, she can make the 

imprudent choice.
Regarding risky choices of order 4, the utilities of the lottery pair from the aver-

age payout reference point, which in this case is W + X, are given by

As with third order risky choices, we determined the preferred lottery employing 
numerous combinations of parameter values and payoff magnitudes. We found that 
temperate or intemperate lottery choices were possible depending on the precise lot-
tery payoffs and parameter values. For example, employing the four lottery choices 
to determine risk apportionment of order 4 in DS10, who assumed expected value as 
the reference point, we found that we only had one temperate choice which occurred 
when payoffs were small and 𝜂 > 2.4. This result is noteworthy given that DS10 
found that, for their experimental subjects, the lottery choices consistent with intem-
perate behaviour were greater than the ones consistent with temperate behaviour.

From the average payout reference point, it is necessary to compare the certainty 
equivalent of the untransformed lottery choice to the expected value of the higher 
order lottery choice, in order to determine the subject’s risk attitude. Since, as shown 

U(B3) = 0.25
(

1 − e
−��(e1+

k2

2
)�
)

− �0.25
(

1 − e
−�(e1−

k2

2
)�
)

− �0.5
(

1 − e
−�(

k2

2
)�
)

U(A3) = 0.5
(

1 − e
−��(

k2

2
)�
)

+ 0.25
(

1 − e
−��(e1−

k2

2
)�
)

− �0.25
(

1 − e
−�(e1+

k2

2
)�
)

.

U(B3) = 0.25
(

1 − e
−��(e1+

k2

2
)�
)

+ 0.25
(

1 − e
−��(

k2

2
−e1)

�
)

− �0.5
(

1 − e
−�(

k2

2
)�
)

U(A3) = 0.5
(

1 − e
−��(

k2

2
)�
)

− �0.25
(

1 − e
−�(

k2

2
−e1)

�
)

− �0.25
(

1 − e
−�(

k2

2
+e1)

�
)

.

U(B4) = 0.25
(
1 − e−��(e2)

�)
+ 0.25

(
1 − e−��(e1)

�)
− �0.25

(
1 − e−�(e2)

�)
− �0.25

(
1 − e−�(e1)

�)

U(A4) = 0.125
(
1 − e−��(e2+e1)

�)
+ 0.125

(
1 − e−��(e2−e1)

�)
− �0.125

(
1 − e−�(e2+e1)

�)

− �0.125
(
1 − e−�(e2−e1)

�)
.

11  An example is k2 = 1 and �1 = 9 that obtained the highest proportion of prudent choices in DS10 with 
an assumed average payout reference point. This result holds except for values of � very close to unity 
( 1 < 𝜂 < 1.01).
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above, the endowment W and payoff X play no role in the lottery choice from the 
expected value reference point, the preferred lottery choice is consistent with any 
value of them. Experimental evidence showing ambiguous patterns of correlation 
among risk attitudes would therefore not be at odds with the M model. In this regard, 
Ebert and Wiesen (2014) report the strongest correlation between lottery choices 
occurs for risk apportionment tasks of third and fourth order, whilst DS10 find no 
significant correlation among them.

3.3 � Reference point 3: MaxMin

Baillon et al. (2020) estimate that MaxMin is, together with the status quo, the most 
common reference point employed in their study of second order lottery choices. 
MaxMin is determined as the maximum outcome subjects can reach for sure, and it 
is therefore considered a security-based rule. There are two possible MaxMin refer-
ence points for the lottery pairs employed to elicit third order choices. First, when 
k2 ≥ e1, the reference point is W + X − k2, and the expected utility of the lottery 
pairs are

Second, when e1 > k2, the reference point becomes W + X − e1, and the expected 
utilities are the following

We determined the lottery choices in these two pairs of lotteries employing numer-
ous combinations of parameter values and different payoff magnitudes. As it was 
the case with the average payout reference point, the DM, with given parameters, 
can make prudent or imprudent choices and can also switch between the prudent or 
imprudent choices as lottery payoffs are varied. We find that the possibility to switch 
can be easily demonstrated by increasing the magnitude of either k2 relative to e1 , or 
e1 relative to k2, for given parameters of the value function.

To examine lottery choices of order four, the reference point under MaxMin is 
W + X − e2 (assuming e2 ≥ e1 ). This is without loss of generality given that it is 
innocuous to define the payoffs of either of the two zero-mean risks, e2 and e1 , as the 
larger one. The expected utility values of the lottery pair are given by

Our analysis reveals that, as it happened for third order preferences, the M DM with 
given parameters can make temperate or intemperate lottery choices and switch 

U(B3) = 0.25
(
1 − e−��(k2+e1)

�)
+ 0.25

(
1 − e−��(k2−e1)

�)

U(A3) = 0.5
(
1 − e−��(k2)

�)
+ 0.25

(
1 − e−��(e1)

�)
− �0.25

(
1 − e−�(e1)

�)
.

U(B3) = 0.5
(
1 − e−��(e1−k2)

�)
+ 0.25

(
1 − e−��(2e1)

�)

U(A3) = 0.5
(
1 − e−��(e1)

�)
+ 0.25

(
1 − e−��(2e1−k2)

�)
− �0.25

(
1 − e−�(k2)

�)
.

U(B4) = 0.25
(
1 − e−��(2e2)

�)
+ 0.25

(
1 − e−��(e2+e1)

�)
+ 0.25

(
1 − e−��(e2−e1)

�)

U(A4) = 0.5
(
1 − e−��(e2)

�)
+ 0.125

(
1 − e−��(2e2+e1)

�)
+ 0.125

(
1 − e−��(2e2−e1)

�)

+ 0.125
(
1 − e−��(e1)

�)
− �0.125

(
1 − e−�(e1)

�)
.
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choices dependent upon the precise lottery payoffs. This result implies that, as it was 
the case for the previous two reference points, the property of higher-order reversal 
is still present.

3.4 � Effect of different reference points

The decision maker with given parameters of the M model can exhibit different 
fourth order risk preferences for the same lottery payoffs as the reference point is 
changed from average payout to MaxMin. To illustrate this point, we employ payoffs 
�̃2 = [7,−7], �̃1 = [3.5,−3.5] , and parameter values � = 2, � =

0.002

�
, � = 4.5 (hence, 

LA ranges from 2.25 to 4.5). Figure 5 plots the difference in utility, U(B4) − U(A4) , 
against the expo-power exponent � . From the MaxMin reference point, for 𝜂 < 3.1 
the lottery choice is temperate, while intemperate for � ≥ 3.1. However, from the 
average-payoff reference point, the lottery choice is temperate for � ∈ [2, 3.37] and 
intemperate for parameter values of the expo-power exponent outside that interval. 
Paya et al. (2022) find that the representative CPT subject will choose the prudent 
and temperate lottery choices from the MaxMin reference point. That result con-
trasts with the one for the M model and could be used to discriminate alternative 
preference functionals in future experimental research which can, by experimental 
design, implement the MaxMin reference point.

Table  2 presents a summary of the predictions about higher order risk choices 
of order 3 and 4 derived in this section for the M model of utility. We also include 
in this table the predictions for some of the main models of decision under risk and 
uncertainty, namely, EUT-mixed risk averse, EUT-mixed risk loving, and CPT under 
three alternative references points (status quo, expected value, and MaxMin). There 

Fig. 5   U(B4) − U(A4) is plotted against parameter � under reference point average payout (solid line) and 
Maxmin (dashed line)

Downloaded from https://www.cambridge.org/core. 24 Aug 2025 at 22:35:35, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


162	 K. Georgalos et al.

1 3

are other reference points that could in principle be also considered. For instance, 
Baillon et al. (2020) include in their analysis two additional deterministic reference 
points, namely, MinMax and X at Max P. However, they found they are barely used 
by DMs. We have examined risky choice behaviour assuming those two reference 
points and found they did not provide differential predictions across alternative 
model specifications/reference points (see Appendix B). Therefore, we decided to 
leave them out of the main analysis.

4 � Econometric analysis

The paper has so far shed light on the predicted risky choice of up to order four for 
the Markowitz model of utility under three alternative reference points. This section 
contains another contribution, namely, the first paper about higher order risk prefer-
ences that (i) presents estimates within a framework of heterogeneity of preference 
functionals; and (ii) it includes model estimates at the subject and group level. The 
estimation of models include M and CPT parameterisations (that can nest EUT) for 
three of the most relevant studies done on higher order preferences, namely, DS10, 
DS14 and NTK. The use of mixture models addresses the issue previously raised in 
the literature about the difficulty of finding one single preference functional that fits 
any data exactly [see Conte et al. (2011), Fehr-Duda et al. (2010), Georgalos et al. 
(2021)].

There are various ways to estimate structural decision making models ranging 
from individually estimating preference functional for each subject, to fully pooling 
the data together and estimating a representative agent model. Both approaches suf-
fer from a series of drawbacks such as over-fitting in the case of individual level esti-
mates, or failures to capture heterogeneity in preferences, in the case of pooled esti-
mations. [see Conte et al. (2011), Fehr-Duda et al. (2010), Georgalos et al. (2021), 

Table 2   Second-, third-, and fourth-order risk choices for commonly used decision theory models under 
risk and uncertainty

Column 2 specifies the reference point: status quo (SQ), average payout (AP), MaxMin. Column 3 
denotes the domain of lottery payoffs: gains (G) or losses (Ls). Columns 4 and 5 report the predicted 
risky choices of order 3 and 4, respectively: prudent (P), imprudent (IP), temperate (T), intemperate (IT)

Model Ref. Point Domain 3rd order 4th order

Expected Utility (Mixed Risk Averse) – G P T
Expected Utility (Mixed Risk Loving) – G P IT
Cumulative Prospect Theory (CPT) SQ G P T

Ls P IT
AP G/Ls P/IP T/IT
MAXMIN G/Ls P T

Markowitz (M) SQ G P/IP T/IT
Ls P/IP T/IT

AP/MAXMIN G/Ls P/IP T/IT
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Harrison and Ruström (2009)]. To mitigate these drawbacks, we adopt hierarchi-
cal Bayesian estimation techniques [see Balcombe and Fraser, (2015), Ferecatu and 
Öncüler (2016)] for some recent applications of hierarchical Bayesian models for 
choice models under risk, or Wright and Leyton-Brown (2017) for some applica-
tions in games). The key aspect of hierarchical modelling is that even though it rec-
ognises individual variation, it also assumes that there is a distribution governing 
this variation (individual parameter estimates originate from a group-level distribu-
tion). A hierarchical Bayesian model simultaneously estimates the individual level 
parameters, along with the hyper-parameters of the group level distributions. In typi-
cal hierarchical models, the estimates of the low level parameters are pulled closer 
together than they would in the absence of a higher-level distribution, leading to the 
so called shrinkage of the estimates.

We are assuming three reference points, the status quo, where all the outcomes 
are regarded as gains, the average payout of the lottery, and the MaxMin reference 
point. In the two latter cases, there are mixed gambles including both gains and 
losses. For each of the datasets, and for each of the three reference points we esti-
mate both the M and the CPT models (6 parametric specifications per dataset) using 
Bayesian modelling.

We reproduce here the utility function for the M choice model given above by the 
expo-power specifications (1):

The CRRA utility function for the CPT model is given by:

with � being the curvature of the utility function and � the loss aversion parameter. 
Following Nilsson et al. (2011) and Baillon et al. (2020), we assume the same cur-
vature parameter for gains and losses. The Tversky and Kahneman (1992) weighting 
function is assumed for the decision weights, with the following specification:12

The parameter � is assumed to be common for both gains and losses.
To account for the stochastic nature of the choices, and given that all the data-

sets include binary choices between two alternatives A and B, we assume a logistic 
choice rule of the form Luce (1959):

(5)u(x) =

{
(1 − exp(−𝛼(x − r)𝜂))∕𝛼 if x ≥ r

−𝜆(1 − exp(−𝛽(r − x)𝜂))∕𝛽 if x < r

(6)u(x) =

{
(x − r)𝛼∕𝛼 if x ≥ r

−𝜆(r − x)𝛼∕𝛼 if x < r

(7)w(p) =
p�

(p� + (1 − p)� )1∕�
.

12  We have also estimated the models assuming the one-parameter Prelec (1998) weighting function. 
This lead to a worse performance in terms of fit and we therefore only report the estimates using the 
Tversky and Kahnemann specification.
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where P(A, B) is the probability of choosing prospect A over B, EU(A) and EU(B) 
are the expected utilities for prospects A and B, for a given set of behavioural param-
eters (similarly for the CPT model) and � ≥ 0 is a precision parameter. � measures 
the sensitivity of choices on the size of the difference between the value of the two 
prospects. � = 0 implies random choice between the two prospects, larger values of 
� imply higher precision in choices, while � → ∞ implies deterministic choice.

Each subject i makes a series of N binary choices in a given dataset and the 
observed choices vector is denoted by Di = (Di1 ⋯DiN) . Every subject is character-
ised by its own parameter vector �i = (�i, �i, �i,�i) ( �i = (�i, �i, �i, �i,�i) for the M 
model) and following Nilsson et al. (2011) we assume that all the individual param-
eters are normally distributed (�i ∼ N(�b, �b)) , while for the hyper-parameters we 
assume normal priors for the mean �b and uninformative priors (uniform) for �b . We 
also follow the standard procedure and transform all the parameters to their expo-
nential form to ensure that they lie within the appropriate bounds.

The likelihood of subject’s i choices is given by:

where P(Di,n|�i) is given by Luce’s rule, for each lottery pair n, as presented above. 
Combining the likelihood of the observed choices and the probability distribution of 
all the behavioural parameters, the posterior distribution of the parameters is given 
by:

with P(D|�) being the likelihood of observed choices over all the subjects and P(�) 
the priors for all parameters in the set �.

Monte Carlo Markov Chains (MCMC) were used to estimate all the specifica-
tions. The estimation was implemented in JAGS (Plummer, 2017). The posterior 
distribution of the parameters is based on draws from two independent chains, with 
100,000 MCMC draws each, for all the specifications. Due to the high level of non-
linearity of the models, there was a burn-in period of 50,000 draws, while to reduce 
autocorrelation on the parameters, the samples were thinned by 10 (every tenth draw 
was recorded). Convergence of the chains was confirmed by computing the R̂ sta-
tistic (Gelman & Rubin, 1992). All the inference and the subsequent comparison of 
the models is based on the log Bayes Factor measure (Kass & Raftery, 1995). This 
measure is the difference between the log-marginal likelihoods of the two models. 
Bayes factors penalize models with a large number of parameters, prevent over-fit-
ting, and are a good measure of the predictive capacity of each model. The estima-
tion Tables report the point estimates for all model parameters which are obtained 
from the posterior distribution (posterior mode).

DS10 include a battery of 10 sets of lotteries, 6 designed to elicit third order 
choices and 4 to elicit fourth order. DS14 include 38 pairs of lotteries to elicit 

P(A,B) =
1

1 + exp(�[EU(B) − EU(A)])
,

P(Di|�i) =

N∏

n=1

P(Di,n|�i),

P(�|D) ∝ P(D|�) × P(�),
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higher order preferences up to the 6th degree. NTK include 15 lotteries to elicit 2nd, 
3rd and 4th order preferences, 5 for each order. In our analysis, we use the lotter-
ies intended to elicit risky choices of order 3 and 4 because it was not possible to 
use the lotteries for the 2nd order when the average payout or the MaxMin were 
assumed as reference points. Appendix C presents the stimuli of the three datasets.

4.1 � Empirical results

The first result worth noting is that there is strong evidence that decision mak-
ers’ risky choices are best described by more than one preference functional. 
Both the classification of subjects based on the Bayes Factor reported in Table  3 
and the individual estimates reported in Tables 4, 5 and 6 imply that there is not a 

Table 3   Classification of subjects

Classification of subjects based on the value of the Bayes Factor for all the specifications. M stands for 
the Markowitz model, CPT for the Cumulative Prospect Theory model. For the reference points, SQ indi-
cates the Status Quo, AP the average payout and MAXMIN the MaxMin

M/SQ M/AP M/MAXMIN* CPT/SQ CPT/AP CPT/MAXMIN TOTAL

DS10 17 24 7 5 14 8 75
0.227 0.320 0.093 0.067 0.187 0.107 1

DS14 33 49 23 16 20 9 150
0.22 0.327 0.153 0.107 0.133 0.06 1

NTK 19 17 13 15 12 33 109
0.174 0.156 0.119 0.138 0.11 0.303 1

Table 4   Estimates for the DS10 dataset

The Table reports the median individual level parameters and their standard deviation for both models 
and all three reference points using the DS10 dataset. M stands for the Markowitz model, CPT for the 
Cumulative Prospect Theory model. For the reference points, SQ indicates the Status Quo, AP the aver-
age payout and MAXMIN the MaxMin

SQ AP MAXMIN SQ AP MAXMIN

� 0.884 0.701 0.568 � 1.061 1.367 0.648
s.d. 0.005 0.082 0.090 s.d. 0.021 0.039 0.019
� 0.722 0.943 0.328 � 0.139 0.047 0.075

CPT s.d. 0.033 0.011 0.217 M s.d. 0.002 0.020 0.002
� – 2.665 0.811 � – 0.021 0.040
s.d. – 0.765 0.114 s.d. – 0.019 0.007
� 3.307 1.359 2.523 � – 3.228 1.809
s.d. 0.190 0.823 0.921 s.d. – 1.238 0.146

� 2.796 0.662 2.267
s.d. 0.240 0.0552 0.471
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reference-dependent model that dominates the other from the three reference points 
considered in this paper.

Table 3 reports the number and proportion of subjects that have been classified 
as either M or CPT, employing the reference points status quo, average payout and 
MaxMin, in each of the three datasets we consider in this section (DS10, DS14, 
and NTK). The classifications of the reference points based on the Bayes factor esti-
mates imply that the status quo reference point is employed by around 30% across 
all subjects in each of the three data sets, a similar proportion to that estimated by 

Table 5   Estimates for the DS14 dataset

The Table reports the median individual level parameters and their standard deviation for both models 
and all reference points using the DS14 dataset. M stands for the Markowitz model, CPT for the Cumula-
tive Prospect Theory model. For the reference points, SQ indicates the Status Quo, AP the average pay-
out and MAXMIN the MaxMin

SQ AP MAXMIN SQ AP MAXMIN

� 0.656 0.447 0.457 � 1.388 1.580 0.542
s.d. 0.039 0.038 0.013 s.d. 0.087 0.195 0.011
� 0.889 0.894 0.546 � 0.092 0.006 0.054

CPT s.d. 0.103 0.025 0.346 M s.d. 0.001 0.006 0.004
� – 1.941 1.667 � – 0.002 0.054
s.d. – 0.751 0.475 s.d. – 0.005 0.004
� 4.427 3.842 4.378 � – 0.894 1.770
s.d. 0.286 1.181 0.612 s.d. – 0.214 0.333

� 4.685 3.750 1.529
s.d. 0.028 1.304 0.477

Table 6   Estimates for the NTK dataset

The Table reports the median individual level parameters and their standard deviation for both models 
and all reference points using the NTK dataset. M stands for the Markowitz model, CPT for the Cumula-
tive Prospect Theory model. For the reference points, SQ indicates the Status Quo, AP the average pay-
out and MAXMIN the MaxMin.

SQ AP MAXMIN SQ AP MAXMIN

� 0.812 0.465 0.606 � 1.121 1.370 0.692
s.d. 0.040 0.140 0.101 s.d. 0.010 0.027 0.042
� 0.912 0.836 0.829 � 0.017 0.001 0.055

CPT s.d. 0.108 0.036 0.287 M s.d. 0.005 0.001 0.004
� – 2.693 2.044 � – 0.001 0.033
s.d. – 0.805 0.344 s.d. – 0.001 0.005
� 2.695 1.601 3.969 � – 1.250 2.479
s.d. 0.220 0.336 0.085 s.d. – 0.278 0.635

� 3.973 2.094 1.752
s.d. 0.341 0.424 0.083
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Baillon et al. (2020) for second order preferences. Since from this reference point, 
the M model also nests EUT, the significance of the Markowitz model is particularly 
noteworthy.

Tables 4, 5 and 6 present parameter estimates of the models that include both M 
and CPT preference functionals for each of the three datasets separately. The esti-
mates of the parameters of the CPT model displayed in Tables 4, 5 and 6 are similar 
to the ones obtained in the literature of risky choice. For instance, the review paper 
of Fox and Poldrack (2014) report estimates from many papers and the parameter 
values fall within the following ranges, � ∈ (0.19, 1.19), � ∈ (1, 2.63), � ∈ (0.56, 
0.96).13 These estimates imply under-weighting of the 0.5 probability as do Tversky 
and Kahneman (1992). We consider evidence about overweighting 0.5 probabili-
ties at odds with CPT assuming the representative DM is defined by the parametric 
model and range of parameter values typically reported or employed in the literature 
and because it implies a violation of subcertainty (Kahneman & Tversky, 1979). The 
parameter values of the expo-power function ( �, �, � ) obtained in the econometric 
analysis are within the range of the ones found in the literature on risky choices [e.g. 
Abdellaoui et al. (2021), Bouchouicha & Vieider (2017), Georgalos et al. (2021)].

Overall, the empirical results differ markedly between the two data sets of DS10 
and DS14 and the one of NTK. In DS10 and DS14, expected value is found to be 
the reference point employed by around half of the subjects and MaxMin by around 
a fifth of them. However, in NTK, MaxMin is the most popular reference point. Esti-
mates from the three studies also reveal that the M model of utility is consistent 
with the majority higher order choices from the average payout in the DS10 and 
DS14 data sets, whilst for the NTK dataset, the CPT specification under MaxMin 
is the preferred model. The M model does not parsimoniously fit the data from the 
MaxMin reference point since, in Tables 4, 5 and 6, the estimated exponent in the 
expo-power value function ( � ) is not greater than unity. Those estimates are consist-
ent with a model which exhibits decreasing absolute risk aversion (DARA), and, 
since 𝛼 > 0 , increasing relative risk aversion (IRRA).

There are two characteristics that may explain the differences in the agents. First, 
the proportion of prudent and temperate choices, i.e. preferences for combining 
‘good with bad’, is lower in DS10 and DS14. In particular, 61% and 76% of prudent 
choices, and 38% and 58% of temperate choices, respectively. These numbers con-
trast with the higher proportions found by NTK, 89% of prudent and 62% of tem-
perate choices. Second, the correlation coefficients between prudent and temperate 
choices in the Deck and Schlesinger studies are low ( −0.06 , and 0.067, respectively) 
and not statistically significant, while in the study by NTK the positive correlation 
coefficient is higher (0.18) and significant, albeit only at 10% level.

These features of the experimental results suggest that a parsimonious estima-
tion of the data in DS10 and DS14 probably requires a model that can more read-
ily accommodate preferences for combining both ‘good with bad’ and ‘good with 
good’ and ‘bad with bad’ outcomes, i.e., prudent and imprudent, temperate and 

13  An exception would be decision makers characterised by CPT with MaxMin reference point in the 
DS10 dataset. In this case, the loss aversion parameter is lower than unity.
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intemperate choices. Furthermore, some of the findings in DS14 are at odds with the 
mixed-risk averse/mixed-risk loving models of EUT. For instance, they report (see 
Table A.III) a higher proportion of subjects classified as risk loving and imprudent 
than as risk loving and prudent, and a higher proportion of subjects classified as 
risk-loving and temperate than as risk loving and intemperate. Moreover, the propor-
tion of experimental subjects classified as temperate and prudent or intemperate and 
prudent are less than half. The M model of utility can accommodate those possibili-
ties under any of the three reference points employed in the estimations as shown in 
the previous section. In that regard, the CPT model is more limited given that, for 
instance, under either status quo or MaxMin reference points, decision makers only 
exhibit prudent and temperate choices in the gains domain [see Paya et al. (2022)]. 
It is therefore probably not surprising that the CPT specification more successfully 
explains the experimental results in NTK relative to those in DS10 and DS14.

4.2 � Method assessment

The empirical analysis in this section aims to identify and discriminate subjects’ 
risky choices among six different specifications, that is, two decision models, with 
a third one, EUT, nested within them, and three reference points for each model. 
Given the number of alternative specifications, it is important to assess whether 
the econometric method can satisfactorily achieve its goal. We have run a series of 
simulation exercises with two purposes. First, to show whether any given specifica-
tion could be satisfactorily identified and discriminated from the different possible 
alternatives from a statistical point of view. Second, to check whether the param-
eters of an assumed model specification could be recovered once that model is esti-
mated, and also to check the parameter estimates obtained if other alternative mod-
els are estimated instead. The results of the simulations confirmed that the statistical 
method implemented in the paper is able to identify an assumed model, discriminate 
between that model and alternative model specifications, and largely recover the 
‘true’ parameter values. This exercise is described in detail in Appendix D.1.

5 � New experiment

The extant literature on higher order risk attitudes has been mainly developed with 
the objective to classify subjects as prudent and temperate, predominantly based 
on the raw count of lottery choices on risk apportionment tasks. The analyses and 
interpretation of the results in this literature face two challenges. First, the need to 
take into account the stochastic nature of decision making. Second, as it has been 
revealed in this paper, the lack of a one-to-one mapping between a given behav-
ioural trait and a risky choice model. To address these issues, we design and conduct 
a novel laboratory experiment to discriminate between the M and the CPT model 
specifications.

The new insights we provide in this paper about the M model, together with exist-
ing analyses about higher order risk preferences in the CPT model (Paya et al., 2022; 
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Bleichrodt & van Bruggen, 2022), suggest the status quo is an appropriate candidate 
for a reference point to be applied in the experiment due to the different predic-
tions on risky choices between the two models. Furthermore, this reference point is 
in principle possible to be implemented using similar procedures other researchers 
have previously employed in the literature [e.g. Maier and Rüger (2012), Bleichrodt 
and van Bruggen (2022).

To facilitate the structural estimation of the models under investigation, our 
design differs from the previous literature on higher order risk preferences in vari-
ous ways. First, to discriminate between second order risk attitudes towards outcome 
magnitudes and outcome probabilities, we include tasks that have either the same 
probability but different payoff sizes, or the same stake size but different probabili-
ties. The purpose of this is to exploit the different predictions across the two mod-
els, where the M model predicts the four-fold attitude to outcome magnitude, while 
CPT predicts the four-fold attitude to outcome probabilities. Furthermore, since we 
are interested in estimating latent risk parameters (utility curvature and probability 
weighting) the latter kind of tasks allowed us to further vary the range of probabili-
ties of the lotteries, while keeping the set of prizes fixed, in an effort to increase the 
robustness of the estimates. Second, since we are interested in estimating the coef-
ficients of both the utility curvature and the probability weighting, we have com-
plemented the typically employed 50-50 lotteries à la Eeckhoudt and Schlesinger 
(2006), with other binary lotteries that have the same first and second but different 
third central moment across several probability values. Finally, we examined, ex-
ante, the payoff magnitudes and probability values employed in the experiment by 
means of a simulation exercise.

The tasks in our experiment are presented in reduced form. This differentiates our 
experiment from the three studies examined in the previous section. Presenting the 
tasks in reduced or compound form should not have an impact on the lottery choices 
made if DMs do not violate the reduction of compound lottery (ROCL) axiom, 
while it would, if that was the case [for violations of the axiom see Harrison et al. 
(2015), Fan et al. (2019)]. This way, if an overall conclusion from both this and the 
previous section were to be drawn, it could not be attributed to a violation of ROCL.

5.1 � Experimental design

A total of 49 participants were recruited from the Lancaster Experimental Econom-
ics Lab (LExEL) subject pool. The sessions lasted 30 minutes, and the average earn-
ings were £19.4, including a show-up fee of £5 (the minimum payment was £6 and 
the maximum £55). Payments to subjects were made by automatic bank transfer. 
The experiment was computerised. Upon entering the lab, participants were ran-
domly allocated to one of the terminals and were visually isolated from other par-
ticipants. They proceeded to read the instructions of the experiment and they had the 
chance to ask clarification questions. Then, subjects were presented with a total of 
29 lottery pairs.
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The status quo was implemented following a similar method to that employed 
by other researchers [e.g. Bleichrodt and van Bruggen (2022), Brunette and Jacob 
(2019), Maier and Ruger (2012)].

The 29 tasks were grouped in to four blocks. The first block comprised 9 tasks 
which were designed to elicit second order risk preferences. Four out of these 
nine tasks were choices between a sure payoff and a 50-50 risky lottery with the 
same expected value, while the remaining five tasks were a modified version of the 

Table 7   List of choice tasks

List of choice tasks from our experiment. [x, y] indicates a lottery with chances 50:50 of getting either x 
or y. (x, p

x
;y, p

y
) indicates a lottery with chances p

x
 of getting x and p

y
 of getting y. PRUD2 stands for the 

binary prudence elicitation tasks

task type order Option B Option A % subjects 
choosing A

1 RA 2 3 [5,1] 0.204
2 RA 2 5 [7,3] 0.347
3 RA 2 10 [14,6] 0.163
4 RA 2 15 [20,10] 0.306
5 RA 2 (10,0.1;8,0.9) (19,0.1;1,0.9) 0.122
6 RA 2 (10,0.3;8,0.7) (19,0.3;1,0.7) 0.122
7 RA 2 (10,0.5;8,0.5) (19,0.5;1,0.5) 0.286
8 RA 2 (10,0.7;8,0.3) (19,0.7;1,0.3) 0.571
9 RA 2 (10,0.9;8,0.1) (19,0.9;1,0.1) 0.653
10 PRUD2 3 (15,0.2;7,0.8) (10,0.2;2,0.8) 0.020
11 PRUD2 3 (22,0.25;10,0.75) (16,0.75;4,0.25) 0.388
12 PRUD2 3 (10,0.2;5,0.8) (7,0.8;2,0.2) 0.327
13 PRUD2 3 (20,0.1;5,0.9) (11,0.5;2,0.5) 0.408
14 PRUD2 3 (12,0.25;6,0.75) (9,0.75;3,0.25) 0.347
15 PRUD2 3 (11,0.4;6,0.6) (10,0.6;5,0.4) 0.490
16 PRUD2 3 (10,0.2;5,0.8) (8,0.5;4,0.5) 0.408
17 PRUD 3 [40+[10,−10],20] [40,20+[10,−10]] 0.469
18 PRUD 3 [9+[2,−2],3] [9,3+[2,−2]] 0.286
19 PRUD 3 [10+[8,−8],9] [10,9+[8,−8]] 0.286
20 PRUD 3 [4+[1,−1],2] [4,2+[1,−1]] 0.490
21 PRUD 3 [10+[1,−1],5] [10,5+[1,−1]] 0.490
22 PRUD 3 [30+[5,−5],15] [30,15+[5,−5]] 0.449
23 TEMP 4 [15+[5,−5],15+[5,−5]] [15;15+[5;−5]+[5;−5]] 0.449
24 TEMP 4 [30+[10,−10],30+[10,−10]] [30,30+[10,−10]+[10,−10]] 0.449
25 TEMP 4 [17+[5,−5],17+[2,−2]] [17,17+[5,−5]+[2,−2]] 0.429
26 TEMP 4 [34+[10,−10],34+[4,−4]] [34,34+[10,−10]+[4,−4]] 0.408
27 TEMP 4 [3+[2,−2],3+[1,−1]] [3,3+[2,−2]+[1,−1]] 0.224
28 TEMP 4 [9+[6,−6],9+[2,−2]] [9,9+[6,−6]+[2,−2]] 0.388
29 TEMP 4 [12+[8,−8],12+[2,−2]] [12,12+[8,−8]+[2,−2]] 0.490
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Holt and Laury (2002) risk elicitation task. The second block included seven tasks 
designed to elicit third order risk preferences over a range of probability values that 
can help the estimation of a probability weighting function. The third and fourth 
blocks of tasks comprised standard lotteries of the form proposed by Eeckhoudt and 
Schlesinger (2006) to elicit third and the fourth order risk preferences, respectively. 
There were 6 tasks for third order and 7 tasks for fourth order. All the tasks are listed 
in Table 7.14

The selection of the lottery pairs included in the tasks was not arbitrary. We run a 
series of simulations to select the lotteries according to the following criteria. First, 
there was a distinct lottery choice across the two decision models for the major-
ity of the tasks considering a wide range of parameter values as representative for 
each choice model. Second, the tasks contained significant probabilistic information 
content, in the sense that they would predict choice probability in favour of a lottery 
with at least 60% (see Appendix D). Third, the tasks selected allowed the estimates 
to largely recover ‘true’ model parameters, and, finally, the tasks selected had good 
discriminatory power between the two models based on the value of the pairwise 
Bayes Factor. We detail the simulation exercise in Appendix D.2.

The lotteries in the experiment were presented as a pie chart that displays the 
probability of each outcome as a slice of the pie (a screenshot of the experimental 
interface is shown in Appendix E). In the instructions, the subjects were informed 
that one of their choices in the experiment would be played out for real. In an effort 
to minimise potential order effects, the tasks were presented to the participants in a 
random order, different for each participant. The location, left or right, of the option 
that satisfies lottery A or B was randomised for each subject and for each task. After 
answering all questions in the experiment, the software would randomly choose one 
of the tasks. After recovering the actual choice of the subject, in that particular task, 
the software would generate a random number to determine the winning probability, 
and therefore the payoff of the subject.

Table 8   Statistical significance against random choice

Order: Second Third (binary) Third Fourth

H0 for mean and median test 4.500 3.000 3.000 3.500
Observed mean A choices 2.770 2.368 2.469 3.285
Standard error 0.051 0.054 0.058 0.065
Observed median of A choices 2.000 2.000 2.000 3.000
Wilcoxon p-value 0.000 0.012 0.022 0.011
t-test p-value 0.003 0.011 0.028 0.009

14  For Task 10, there was a mistake in the entry datafile of the experimental interface. Lottery A was 
showing as (10,0.2_2,0.8) instead of (10,0.8_2,0.2), leading to a stochastically dominated lottery. All 
subjects but one identified the dominance and chose lottery B. We therefore retain the data from this lot-
tery for the remaining of the analysis.
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5.2 � Results

Table 7 presents the description of the tasks as well as the proportion of DMs that 
chose the A lottery. This proportion varies substantially within tasks of the same 
order, with differences of around 20%. Although it is typically assumed that a sto-
chastic element in the DMs’ underlying preferences may drive choices of opposite 
risk attitude, it is also possible that it is actually the DMs’ preferences that imply 
such choices. This ‘higher-order reversal’ can be accommodated by the M model of 
utility, as shown above in Sect. 3, but not by alternative model specifications such as 
CPT or EUT under the status quo reference point.

We follow Deck & Schlesinger (2014, 2018) and test whether the data are gener-
ated from random behaviour. Table 8 reports the observed mean and median of A 
choices, the mean and median if choice is generated by a random process, and the 
p-values of the Wilcoxon and the t-test of random choice. The results suggest that 
behaviour is statistically different from random behaviour for all the three orders of 
risky preferences.

We now proceed to the classification of experimental subjects as averse, neutral 
or seeker to risks of order 2, 3 and 4, based on the number of A lottery choices 
made.15 Table 9 presents the results. Following the classification system of DS14, 
a subject with 3 or more A choices on second-order tasks is considered risk loving, 
while those with 1 or 0 A choices, are considered to be risk averse. Similarly a sub-
ject is classified as prudent (temperate) when she makes 4 (2) or less A choices, and 
imprudent (intemperate) when she makes 8 (5) or more A choices. This exercise is 

Table 9   Frequency table of 
higher order preferences

The Table reports the cross-order risk preferences. R stands for risk 
aversion, P for prudence and T for temperance. A stands for averse, 
N for neutral and S for seeking. We do not include the five Holt and 
Laury tasks, as well as task 10, since in these tasks, the means differ 
between the two options

T
A

T
N

T
S

P
A

0.245 0.184 0.041
P
N

0.143 0.184 0.041
P
S

0.041 0.082 0.041
P
A

P
N

P
S

R
A

0.327 0.245 0.143
R
N

0.082 0.041 0.000
R
S

0.061 0.082 0.020
T
A

T
N

T
S

R
A

0.306 0.306 0.102
R
N

0.061 0.041 0.020
R
S

0.061 0.102 0.000

15  The results in this table and in Table 8 do not include the five Holt and Laury tasks, nor task 10, since 
in these tasks, the means differ between the two options.
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to contrast our results within the EUT mixed risk averse/mixed risk loving paradigm 
given that this way of classifying subjects as either averse or seeker to risk of differ-
ent orders does not conform with the M model, or with the CPT model for risks of 
order two, given the DM could switch her preference depending on the task at hand.

Some results are at odds with the EUT paradigm. First, subjects classified as risk 
averse and temperate are less than half than the total number of temperate subjects. 
Second, the number of subjects classified as prudent is around half than those clas-
sified as both risk averse and risk seeking, when, according to the mixed risk averse/
risk loving model, all of them should be prudent. Third, we find more risk seekers 
that are classified as temperate than as intemperate, when according to this theory, 
risk seekers are intemperate. Fourth, out of the subjects classified as intemperate, 
the number of either prudent neutral or imprudent is larger than those that are pru-
dent. Finally, the number of risk averse subjects that are prudent is less than those 
that are either neutral or imprudent. Overall, we find several results that are at odds 
with the predictions of the combining good with bad or good with good model. In 
this regard, our results are in line with those found in Bleichrodt and van Bruggen 
(2022).

The model estimation procedure is the same as the one implemented in Sect. 4. 
Table 10 presents the median individual M and CPT model parameter estimates and 
their standard deviation. The CPT parameter values of � and � do not differ much 
from those estimated in the previous section for the other three studies, and are 
within the range of values found in the literature [see Fox and Poldrack (2014)].16 
To further understand the rich heterogeneity of preferences generated by the M 
model, it is worth noting that the number of A lottery choices varies depending on 
the parameter value. For instance, out of the 29 tasks, the number of A lotteries 
chosen by the DM would increase from 8 to 17 when, relative to the median values, 

Table 10   Parameter estimates

The Table reports the median individual level parameters and their 
standard deviation for both models. M stands for the Markowitz 
model, CPT for the Cumulative Prospect Theory model. Standard 
deviations in brackets

Parameter Estimate Parameter Estimate

� 0.870 � 1.159
s.d. 0.427 s.d. 0.270
� 0.545 � 0.087

CPT s.d. 0.239 M s.d. 0.028
� 2.135 � 2.436
s.d. 1.274 s.d. 1.549

16  We also estimated the CPT specification using the Abdellaoui et al. (2007) one-parameter expo-power 
as an alternative functional for the value function. Nevertheless, this value function performed worse 
compared to the power function. In fact, when CPT with power utility is compared against CPT with a 
one-parameter expo-power, the former performs better for 37/49 (75.5%) of the subjects from our experi-
ment.

Downloaded from https://www.cambridge.org/core. 24 Aug 2025 at 22:35:35, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


174	 K. Georgalos et al.

1 3

� is one standard deviation below the median and � is one standard deviation above 
the median. However, the number of A lottery choices under the CPT specification 
would not vary. In terms of classifying the subjects to one of the two decision mod-
els, we find that, based on the value of the Bayes Factor, 16 out of 49 (32.7%) sub-
jects are classified as Markowitz, and 33 out of 49 (67.3%) are classified as CPT 
with a CRRA utility function. The statistical validity of the method applied here 
is examined in Appendix D.2, and the results provide reassurance about the prop-
erties of the method to identify, discriminate and estimate the two different model 
specifications.

6 � Conclusions

It is now widely accepted that higher order preferences play a significant role in 
the analysis of issues such as health, precautionary savings, asset pricing, bargain-
ing, contests and auctions. However, although there is abundant evidence within the 
behavioural literature suggesting that preferences are reference dependent, little is 
known about the predictions of reference-dependent theories on higher order risk 
attitudes. The knowledge gap is even wider if the specification of the reference point 
within a given reference-dependent model is also to be considered. We provide two 
contributions that attempt to address that gap.

First, we employ recently developed elicitation methods of higher order risk atti-
tudes to determine the higher order lottery choices of a decision maker consistent 
with Markowitz’s (1952) hypotheses, which we refer to as the M model. This model 
of utility embodied the concepts of reference-dependent utility, loss aversion and 
the fourfold attitude to risk over outcome magnitude. Previous studies show that the 
implications of the M model of utility for second order risky choices imply that the 
model can be a proper complement to better known models of risky choice such 
as CPT, RDU or EUT. Our analysis about higher order risky choices provides fur-
ther support to that argument. We demonstrate that decision makers characterised 
by the M model can exhibit either prudent or imprudent, temperate or intemperate 
lottery choices dependent upon the chosen reference point (status quo, expected 
payout or MaxMin) and the different magnitudes of lottery payoffs. A seemingly 
unique characteristic of the M model is that of ‘higher order reversal.’ In discrimi-
nating between different models of risky choice, an important finding is that, from 
the status quo reference point, the M decision maker can make imprudent or intem-
perate lottery choices in the gains domain. This property differs from the repre-
sentative CPT, RDU or the standard mixed-risk averse EUT, subject who will only 
make prudent or temperate lottery choices. This is relevant given the high propor-
tion of imprudent and intemperate lottery choices reported in experimental research 
employing the status quo reference point. This is also the case when the MaxMin 
is the reference point. Furthermore, we also demonstrate that the M decision maker 
can exhibit combinations of risky choices not seemingly possible in other behav-
ioural models.

The second contribution includes the estimation of parametric models that allow 
for heterogeneity of preference functionals and reference points to fit experimental 
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data designed to elicit higher order risk preferences. In a first analysis, we employ 
datasets from three of the most prominent studies in this field, and estimate two 
choice models, the M and the CPT model (where EUT is also nested), and three 
alternative reference points for each of them. Our results based on hierarchical 
Bayesian estimation methods favoured heterogeneity of preference functionals and 
reference points. An extensive simulation exercise shows that this method can satis-
factorily identify an assumed model specification, and discriminate among alterna-
tive ones. In a second analysis, we set out a new experiment to discriminate between 
M, CPT and EUT preference functionals. We implement the experiment under the 
status quo reference point because, following from the insights in this paper, is the 
reference point that provides the cleanest test among competing models. Further-
more, the tasks used in the experiment have been selected following a series of 
simulation exercises that confirm the discriminatory power among alternative model 
specifications. The results of this new experiment confirm that both models are help-
ful to describe risky choices across the subject pool. Overall, these two empirical 
analyses suggest, first, that the M model is not a replacement, but a complement to 
alternative, more typically employed, model specifications of decision under risk; 
and, second, that a one-model-fits-all approach might prove insufficient to accom-
modate heterogeneity of risky choices.

Appendix A: The fourfold pattern to risk over outcome magnitude 
and probabilities

Cumulative prospect theory accommodates the fourfold pattern to risk over out-
come probabilities, that is, as the probability increases from low to high, risk prefer-
ences change from risk seeking to risk aversion over gains, while those preferences 
change from risk aversion to risk seeking over losses. This is because, as Scholten 
and Read (2014) point out, prospect theory retained some of the notions introduced 
by Markowitz (1952) such as reference dependence and loss aversion, but intro-
duced new ones such as probability weighting and a singly inflected value func-
tion. Scholten and Read provide an insightful account about the possible reasons the 
fourfold pattern to risk over outcome magnitude was not addressed by Kahnemann 
and Tversky. Furthermore, Scholten and Read (2014) contribute to this literature by 
showing that it is in principle possible for a CPT specification to account for both 
fourfold patterns. This is the case for a value function v(.) and a weighting probabil-
ity function w(.) that meet the following condition for the case of a lottery that pays 
x with probability p and nothing otherwise ( m > 1):

Therefore, a necessary condition is that the value function has to be decreasingly 
elastic. Although this theoretical insight is certainly appealing, it faces practical lim-
itations. The reason is that, even within decreasingly elastic value functions, 

(a1)
v(mx)

v
(

1

p
mx

) > w(p) >
v(x)

v
(

1

p
x
) .
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inequalities (a1) are only met for a limited number of cases. We illustrate this point 
in Fig.  6. Following Scholten and Read, we use a normalised logarithmic value 

function, v(x) = 1

a
(log (1 + ax)), and the Tversky and Kahnemann probability 

weighting functions w(p) = p�

(p�+(1−p)� )1∕�
 . We use the following range of parameter 

values consistent with the literature: � ∈ [0.01, 0.1], � ∈ [0.50, 0.95] . We use a pay-

off value x = 25 and p ∈ [0.01, 0.35] , such that lowest expected payout is 0.25 as in 
Scholten and Read experimental data. The red shaded areas are the ones for which 
(a1) is met. Similar result is obtained for different values of m. As payoff value x is 
increased, the number of instances for which conditions (a1) are met decreases sub-
stantially. Actually, the largest value of x where (a1) holds is x = 40 (shown in blue 
in Fig. 6).

Appendix B: Two additional reference points: MinMax and X at Max P

In addition to the reference points considered in Sect. 3 of this paper, Baillon et al. 
(2020) examined two additional deterministic reference points: MinMax and X at 
Max P. The use of these two reference points in the literature is scarce. We are not 
aware of any study on higher order risk preferences, either theoretical or empirical, 
that employ these two reference points. Nevertheless, we present below the analyti-
cal derivations of the valuation of lottery pairs to elicit third and fourth order risky 
choices assuming these two reference points under two different model specifica-
tions, the M model and a CPT model.

Fig. 6   Combination of parameters for which the inequality holds v(mx)

v

(
1

p
mx

) > w(p) >
v(x)

v

(
1

p
x

)
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B.1 MinMax

B.1.1 Third order risky choice

We recall the probabilities and outcomes of the lottery pair of order 3 are the 
following

There are two possible reference points for this lottery pair. First, when k2 ≥ e1, the 
MinMax reference point is W + X.

For the M model of utility defined in (1), the expected utility of the lottery pair is

For the CPT model, we assume a specification with a power value function, parame-
ter � ∈ [0, 1], loss aversion parameter �, and an inverse-S-shaped probability weight-
ing function, w(p), where w+(p) and w−(p) are the probability weighting functions 
for gains and losses, respectively. In this case, the subjective expected values, V(∙) , 
are the following

Second, when e1 > k2, the MinMax reference point becomes W + X − k2 + e1.

For the M model, the expected utility of the lottery pair is

For the CPT model, the subjective expected values are the following

Our analysis reveals that the M DM can exhibit in both cases either prudent or 
imprudent choices, depending on the value of the model parameters and pay-
off sizes, although the imprudent choice is present for a wider range of parameter 
values. However, we find that the CPT DM chooses B3 , except if the loss aversion 
parameter � exceeds extreme values such as 6.

B3 ∶ 0.5,W + X − k2; 0.25,W + X + e1; 0.25,W + X − e1

A3 ∶ 0.5,W + X; 0.25,W + X − k2 + e1; 0.25,W + X − k2 − e1.

U(B3) = − �0.5
(
1 − e−�(k2)

�)
+ 0.25

(
1 − e−��(e1)

�)
− �0.25

(
1 − e−�(e1)

�)

U(A3) = − �0.25
(
1 − e−�(k2−e1)

�)
− �0.25

(
1 − e−�(k2+e1)

�)
.

V(B3) =w
+(0.25)

(
e1
)�

− �w−(0.5)
(
k2
)�

− �(w−(0.75) − w−(0.5))(e1)
�

V(A3) = − �w−(0.25)
(
k2 − e1

)�
− �(w−(0.5) − w−(0.25))(k2 + e1)

� .

U(B3) = − �0.5
(
1 − e−�(e1)

�)
+ 0.25

(
1 − e−��(k2)

�)
− �0.25

(
1 − e−�(2e1−k2)

�)

U(A3) = − �0.5
(
1 − e−�(e1−k2)

�)
− �0.25

(
1 − e−�(2e1)

�)
.

V(B3) =w
+(0.25)

(
k2
)�

− �w−(0.25)
(
2e1 − k2

)�
− �(w−(0.75) − w−(0.25))(e1)

�

V(A3) = − �w−(0.25)
(
2e1

)�
− �(w−(0.75) − w−(0.25))(e1 − k2)

� .
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B.1.2 Fourth order risky choice

The payoffs of the two zero-mean independent risks can be different, e2 > e1. In this 
case, we recall the probabilities and outcomes of the two lotteries are the following

The MinMax reference point is W + X + e2.

For the M model, the expected utility values of the lottery pair are given by

For the CPT model, the value of the prospects are given by

Our analysis reveals that the M DM can exhibit either temperate or intemperate 
choices, depending on the value of the model parameters and payoff sizes, although 
the intemperate choice is present for a wider range of parameter values. However, 
we find that the CPT DM makes the temperate choice.

Overall, taking into consideration both third and fourth order risky choices, we 
find that the predictions of the two models under this reference point are similar to 
the case of MaxMin.

B.2 X at Max P

B.2.1 Third order risky choice

In the third order lottery pairs, there is one payoff in each lottery with equal prob-
ability of 0.5. Following Baillon et  al. (2020), we take as the reference point the 
payoff of the A lottery. Therefore, the reference point is W + X.

There are two cases. First, when k2 ≥ e1, the value of the lottery pair is the same 
as in the case under MinMax examine above.

Second, when e1 > k2, for the M model, the expected utility of the lottery pair is

B4 ∶ 0.25,W + X + e2; 0.25,W + X + e1; 0.25,W + X − e1; 0.25,W + X − e2

A4 ∶ 0.5,W + X; 0.125,W + X + e2 + e1; 0.125,W + X + e2 − e1;

0.125,W + X − e2 + e1; 0.125,W + X − e2 − e1.

U(B4) = − �0.25
(
1 − e−�(e2−e1)

�)
− �0.25

(
1 − e−�(e2+e1)

�)
− �0.25

(
1 − e−�(2e2)

�)

U(A4) = − �0.5
(
1 − e−�(e2)

�)
+ 0.125

(
1 − e−��(e1)

�)
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(
1 − e−�(e1)

�)
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(
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�)
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(
1 − e−�(2e2+e1)

�)
.
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For the CPT model, the subjective expected values are the following

B.2.2 Fourth order risky choice

The reference point under X at max P is W + X. Therefore, the implications for 
both models are the same as under the reference point average payout described in 
Section 3.2.

Appendix C: Stimuli

Appendix D: Simulations

In this appendix, we describe two extensive Monte Carlo simulation exercises and 
report their results. The scope of the simulations is two-fold. First, we want to con-
firm that the statistical method employed in the paper is able to identify the different 
model specifications as well as to discriminate among them. Second, we want to 
confirm that the tasks selected in the new experiment are useful to empirically esti-
mate and classify subjects across the alternative choice models.

D.1 Simulation 1: Assessment of the econometric method

The objective of the first simulation exercise is to explore whether the statistical 
method employed here can successfully identify and discriminate among the differ-
ent model specifications using the experimental designs analysed in this paper, and 
the model selection method we are using to classify subjects, i,e, calculation of the 
Bayes Factor based on the Marginal Log-Likelihood. The Bayes factor is known to 
balance the quality of the fit versus the model complexity, and it therefore, rewards 
highly predictive models and penalises models with “wasted” parameter space.

We define a specification as the combination of a decision model and a refer-
ence point. We have 2 decision models (M and CPT) and three reference points (SQ, 
AP and MaxMin), giving a total of 6 specifications. Depending on the value of the 
parameters of some of those specifications, EUT is nested within them. The simula-
tion follows a number of steps. For each of the six specifications, and for a given 
set of choice tasks, we assume a set of behavioural parameters and we generate an 
artificial dataset consisting of the choices of 100 subjects. We subsequently run a 
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(
1 − e−��(e1)

�)
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(
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Table 11   List of choice tasks from Deck and Schlesinger (2010)

List of choice tasks from Deck and Schlesinger (2010). [x, y] indicates a lottery with chances 50:50 of 
getting either x or y. The first column refers to the corresponding name of the task from the data source. 
Choice of option B indicates risk aversion, prudence and temperance for the 2nd, 3rd and 4th order respec-
tively

Task Order Option B Option A

1 3 [30, 30 + 25 + [25,−25] [30 + 25, 30 + [25,−25]

2 4 [15 + [5,−5], 5 + [5,−5]] [15, 15 + [5,−5] + [5,−5]]

3 3 [12.5, 12.5 + 9 + [5,−5] [12.5 + 9, 12.5 + [5,−5]

4 4 [15 + [9,−9], 15 + [1,−1]] [15, 15 + [9,−9] + [1,−1]]

5 3 [12.5,+12.5 + 1 + [5,−5] [12.5 + 1,+12.5 + [5,−5]

6 4 [55 + [25,−25], 55 + [25,−25]] [55, 55 + [25,−25] + [25,−25]]

7 3 [10.5,+10.5 + 9 + [1,−1] [10.5 + 9,+10.5 + [1,−1]

8 4 [55 + [5,−5], 55 + [45,−45]] [55, 55 + [5,−5] + [45,−45]]

9 3 [12.5,+12.5 + 5 + [5,−5] [12.5 + 5,+12.5 + [5,−5]

10 3 [14.5,+14.5 + 1 + [9,−9] [14.5 + 1,+14.5 + [9,−9]

Table 12   List of choice tasks from Deck and Schlesinger (2014)

List of choice tasks from Deck and Schlesinger (2014). [x, y] indicates a lottery with chances 50:50 of 
getting either x or y. The first column refers to the corresponding name of the task from the data source. 
Choice of option B indicates risk aversion, prudence and temperance for the 2nd, 3rd and 4th order respec-
tively

Task Order Option B Option A

4 2 [5 + 5, 10] [5, 10 + 5]

5 2 [2 + 8, 4] [2, 4 + 8]

6 2 [10 + 5, 15] [10, 15 + 5]

7 2 [2 + 3, 4] [2, 4 + 3]

8 2 [20 + 30, 40] [20, 40 + 30]

9 2 7 [4, 10]
10 2 10 [1, 19]
11 3 [5, 10 + [−2, 2]] [5 + [−2, 2], 10]

13 3 [5, 10 + [−4, 4]] [5 + [−4, 4], 10]

14 3 [2, 4 + [1,−1]] [2 + [1,−1], 4]

15 3 [20, 40 + [10,−10]] [20 + [10,−10], 40]

16 3 [8, 10 + [2,−2]] [8 + [2,−2], 10]

17 3 [12, 14 + [1,−1]] [12 + [1,−1], 14]

18 4 [[10, 24] + [14, 20], [14, 20] + [10, 24]] [[14, 20] + [14, 20], [10, 24] + [10, 24]]

19 4 [[5, 12] + [7, 10], [7, 10] + [5, 12]] [[7, 10] + [7, 10], [5, 12] + [5, 12]]

21 4 [[5, 12] + [1, 16], [1, 16] + [5, 12]] [[1, 16] + [1, 16], [5, 12] + [5, 12]]

22 4 [14 + 12B, 24 + 12A] [14 + 12A, 24 + 12B]

23 4 [7 + 11B, 12 + 11A] [7 + 11A, 12 + 11B]

24 4 [1 + 11B, 18 + 11A] [1 + 11A, 18 + 11B]
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Table 13   List of choice tasks from Noussair et al. (2014)

List of choice tasks from Noussair et al. (2014). [x, y] indicates a lottery with chances 50:50 of getting 
either x or y. The first column refers to the corresponding name of the task from the data source. Choice 
of option B indicates risk aversion, prudence and temperance for the 2nd, 3rd and 4th order respectively

Task Order Option B Option A

Riskav 1 2 20 [65, 5]
Riskav 2 2 25 [65, 5]
Riskav 3 2 30 [65, 5]
Riskav 4 2 35 [65, 5]
Riskav 5 2 40 [65, 5]
Prud 1 3 [90 + [20,−20], 60] [90, 60 + [20,−20]]

Prud 2 3 [90 + [10,−10], 60] [90, 60 + [10,−10]]

Prud 3 3 [90 + [40,−40], 60] [90, 60 + [40,−40]]

Prud 4 3 [135 + [30,−30], 90] [135, 90 + [30,−30]]

Prud 5 3 [65 + [20,−20], 35] [65, 35 + [20,−20]]

Temp 1 4 [90 + [30,−30], 90 + [30,−30]] [90, 90 + [30,−30] + [30,−30]]

Temp 2 4 [90 + [30,−30], 90 + [10,−10]] [90, 90 + [30,−30] + [10,−10]]

Temp 3 4 [90 + [30,−30], 90 + [50,−50]] [90, 90 + [30,−30] + [50,−50]]

Temp 4 4 [30 + [10,−10], 30 + [10,−10]] [30, 30 + [10,−10] + [10,−10]]

Temp 5 4 [70 + [30,−30], 70 + [30,−30]] [70, 70 + [30,−30] + [30,−30]]

Table 14   Simulation parameters

The Table reports the true values of the simulation parameters. M stands for the Markowitz model, CPT 
for the Cumulative Prospect Theory model. For the reference points, SQ indicates the Status Quo, AP the 
average payout and MAXMIN the MAXMIN

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

� 0.050 0.050 0.050 – – –
� – 0.040 0.040 – – –

M � 1.200 1.200 1.200 – – –
� – 1.500 1.500 – – –
� 5.000 5.000 5.000 – – –
� – – – 0.750 0.750 0.750

CPT � – – – 0.650 0.650 0.650
� – – – – 1.500 1.500
� – – – 5.000 5.000 5.000
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cross-estimation exercise where all the specifications are used to estimate that data-
set. For each iteration, we check whether it is possible to identify the data generating 
specification and recover the behavioural parameters that generated the simulated 
dataset. We repeat this process 100 times. For the set of behavioural parameters, we 
used values that fall within a range that can be considered as representative for the 
utility curvature, the probability weighting and the precision (noise) (see Abdellaoui 
et al. (2021), Noussair et al. (2014), Scholten and Read (2014)]. We have repeated 
the simulation exercise for various levels of noise and the results reported below 
remain qualitatively identical. Here we report the results of a medium value of the 
parameter � that is usually observed empirically (Tables 11, 12 and 13).

The values of the parameters for all the specifications are listed in Table 14. Fol-
lowing the assumptions of the Hierarchical Bayesian modeling, for each iteration of 
the simulation, the parameters of the individual subjects are drawn from a Normal 
distribution centered around the true parameter values. Finally, for the set of choice 
tasks we are using the lotteries from DS10. The reason behind this choice is that, 
from all the experimental data we analyse and report in this study, the experimental 

Table 15   Log-Marginal likelihoods

The Table reports the mean aggregate Log-Marginal Likelihood for all the 36 possible combinations 
between true and assumed models based on 100 simulations. The row specification is the true data gen-
erating process ,while the column specification is the estimated one. M stands for the Markowitz model, 
CPT for the Cumulative Prospect Theory model. For the reference points, SQ indicates the Status Quo, 
AP the average payout and MAXMIN the MAXMIN

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

M/SQ 1128.58 1144.20 1141.75 1133.49 1137.59 1140.95
M/AP 1073.87 944.37 1121.19 1227.78 989.25 1006.08
M/MAXMIN 1254.54 1082.97 1061.93 1261.80 1269.86 1280.56
CPT/SQ 897.99 900.45 893.32 868.38 874.84 875.59
CPT/AP 1231.10 1152.59 1196.50 1114.32 1091.59 1112.84
CPT/MAXMIN 748.36 750.62 721.12 707.06 709.45 692.17

Table 16   Classification based on Bayes Factor

The Table reports frequency with which each row model is classified better than each column model, 
based on the value of the Bayes Factor. The row specification is the true data generating process ,while 
the column specification is the estimated one. M stands for the Markowitz model, CPT for the Cumula-
tive Prospect Theory model. For the reference points, SQ indicates the Status Quo, AP the average pay-
out and MAXMIN the MAXMIN

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

M/SQ 0 100 100 93 100 100
M/AP 100 0 100 100 100 100
M/MAXMIN 100 100 0 100 100 100
CPT/SQ 100 100 100 0 100 100
CPT/AP 100 100 100 93 0 88
CPT/MAXMIN 100 100 100 94 100 0
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design of DS10 is the less informative one as far as our objective to estimate para-
metric models is concerned. In particular, DS10 includes only 10 pairwise choices 
(6 tasks for third order and 4 tasks for fourth order risk preferences) and therefore, it 
is expected to be the most challenging dataset in terms of identification and estima-
tion of the models.

Table 15 reports the mean aggregate absolute value of the Log-Marginal Likeli-
hood for all the 36 cross-specification combinations. The specifications across the 
rows represent the true DGP, while the specifications across the columns represent 
the estimated ones. For instance, in the first row, the DGP is M/SQ and the entry in 
each cell of that row is the average value of the marginal likelihood when the cor-
responding column model is the estimated one. Across the diagonal is when the true 
and the estimated models coincide. Hence, if identification is feasible, one would 
expect the entry on the diagonal to be the smallest number for each of the rows (here 
a lower value of the likelihood indicates a better fit of the model). This pattern is 
confirmed in Table 15. In every row, the diagonal element is always the minimum, 
confirming that, on average, the true DGP is identified. This evidence suggests that 
the different specifications are not observationally indistinguishable.

Table 16 reports the pairwise comparison of specifications based on the value of 
the Bayes Factor. Again, the specification in the rows represent the true DGP, and 
the ones in the columns the estimated one. For example, in the first row, where M/

Table 17   Estimates when M/SQ is the true DGP

The row specification is the true data generating process ,while the column specification is the estimated 
one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For the refer-
ence points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

� 0.041 0.000 0.098 – – –
s.d. 0.019 0.000 0.006 – – –
� – 0.098 0.005 – – –
s.d. – 0.012 0.006 – – –

M � 1.193 1.945 1.507 – – –
s.d. 0.211 0.129 0.358 – – –
� – 0.44 1.147 – – –
s.d. – 0.574 0.251 – – –
� 7.886 1.945 1.507 – – –
s.d. 7.996 0.129 0.358 – – –
� – – – 0.811 1.938 1.918
s.d. – – – 0.076 0.092 0.188

CPT � – – – 0.989 1.288 1.054
s.d. – – – 0.102 0.199 0.06
� – – – – 0.248 2.353
s.d. – – – – 0.308 1.175
� – – – 22.954 0.137 0.06
s.d. – – – 3.572 0.044 0.044
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SQ is the the DGP, the number of times the M/SQ was classified as the best model 
when each of the other specifications was assumed, is reported. As expected, the 
diagonal element is always 0 as the Bayes Factor is 1. Then, for instance, when M/
SQ is compared to M/AP, the former was identified as the best model for each of the 
simulations, while when M/SQ was compared to CTP/SQ, the model was classified 
best in 93% of the simulations. Overall, it appears that, on average, the true DGP can 
be identified with confidence.

Finally, we examine whether the value of the parameters can be successfully 
recovered. Tables 17, 18, 19, 20, 21 and 22 report the median estimates from this 
cross-estimation exercise. Following the standard practice, we have constrained the 
upper bounds of the parameters. For the M model, we have set the upper bound of � 
to 0.1, of � to 2 and � to 5. For the CPT model, we have set the upper bound of � and 
� to 2, and � to 5. For example, Table 17 reports the estimates when the true DGP 
is M/SQ and each of the six model specifications has been employed to estimate the 
dataset. The results of this table show that the recovered values are quite close to 
the true ones (0.041 for parameter � compared to the true value of 0.05, and 1.193 
for the � parameter compared to the true value of 1.200). However, when a different 
model specification is estimated, we obtain parameter estimates that differ substan-
tially from the true ones. For example, � = 0.000 and � = 1.945 in the case of M/AP, 
and � = 0.098 , almost twice the true value, and � = 1.507 in the case of M/MaxMin. 

Table 18   Estimates when M/AP is the true DGP

The row specification is the true data generating process ,while the column specification is the estimated 
one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For the refer-
ence points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

� 0.000 0.052 0.005 – – –
s.d. 0.000 0.037 0.001 – – –
� – 0.030 0.048 – – –
s.d. – 0.018 0.031 – – –

M � 2.000 1.240 1.127 – – –
s.d. 0.000 0.201 0.277 – – –
� – 1.716 0.900 – – –
s.d. – 0.857 0.412 – – –
� 0.179 1.240 1.127 – – –
s.d. 0.021 0.201 0.277 – – –
� – – – 1.126 1.515 0.998
s.d. – – – 0.018 0.126 0.068
� – – – 2.000 1.612 0.921
s.d. – – – 0.000 0.132 0.052

CPT � – – – – 2.877 0.717
s.d. – – – – 0.265 0.279
� – – – 0.402 0.421 15.198
s.d. – – – 0.056 0.134 5.142
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Similarly, when CPT is estimated, we obtain large estimates for both the probabil-
ity weighting function and the utility curvature, with 𝛾 > 1 implying over-weighting 
of all probabilities, or 𝛼 > 1 implying risk seeking behaviour. A similar pattern is 
observed for the remaining 5 cases.

D.2 Simulation 2: Tasks in the new experiment

The objective of the second simulation is to assist with the selection of choice tasks 
to use in our experiment. The selection of the experimental tasks is based on four 
criteria. First, we selected lottery pairs that generated different choices across the 
two decision models for the majority of a wide range of model parameter values. 
Second, we include in the experiment choice tasks with a significant probabilistic 
information content. That is, for increased levels of noise in the stochastic compo-
nent of choice, and for a given set of parameters, we kept those tasks that would pre-
dict choice probability in favour of a lottery of at least 60%. Third, the lottery pairs 
selected need to provide enough information to satisfactorily recover the parameters 
of the DGP. Fourth, the choice tasks selected should have discriminatory power 
between the two models based on the value of the pairwise Bayes Factor.

Table 19   Estimates when M/MAXMIN is the true DGP

The row specification is the true data generating process ,while the column specification is the estimated 
one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For the refer-
ence points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

� 0.001 0.026 0.042 – – –
s.d. 0.000 0.003 0.015 – – –
� – 0.001 0.025 – – –
s.d. – 0.000 0.022 – – –

M � 2.000 2.000 1.141 – – –
s.d. 0.000 0.000 0.102 – – –
� – 0.266 1.322 – – –
s.d. – 0.031 0.240 – – –
� 0.022 2.000 1.141 – – –
s.d. 0.001 0.000 0.102 – – –
� – – – 1.277 1.845 1.016
s.d. – – – 0.064 0.023 0.127

CPT � – – – 1.337 2.000 0.994
s.d. – – – 0.489 0.000 0.106
� – – – – 1.466 0.899
s.d. – – – – 0.110 0.613
� – – – 3.860 0.102 13.475

– – – 2.827 0.020 7.582
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This simulation is focused on the SQ reference point because is the one we 
endeavoured to implement through experimental procedure as described in Sect. 5. 
Like we did in simulation 1, we simulate data from an either M or CPT specification, 
and estimate those datasets with the two possible specifications. Table 23 reports the 
mean aggregate absolute value of the Log-Marginal Likelihood for all the 4 cross-
specification combinations. The specifications across the rows represent the true 
data generating specification, while the specifications across the columns represent 
the estimated ones. If the method correctly identifies the model, the diagonal ele-
ment should be the lowest in each row, which is the case in our simulation. In addi-
tion, we find that the true DGP specification is identified 100% of the times based on 
the value of the Bayes Factor. Finally, Tables 24 and 25 report the parameters that 
have been recovered in the estimations of the simulations. The estimates are close 

Table 20   Estimates when CPT/SQ is the true DGP

The row specification is the true data generating process ,while the column specification is the estimated 
one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For the refer-
ence points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

� 0.018 0.001 0.090 – – –
s.d. 0.001 0.003 0.030 – – –
� – 0.041 0.023 – – –
s.d. – 0.045 0.015 – – –

M � 2.000 1.758 1.009 – – –
s.d. 0.005 0.214 0.031 – – –
� – 0.238 3.273 – – –
s.d. – 0.226 1.306 – – –
� 0.812 1.758 1.009 – – –
s.d. 0.065 0.214 0.031 – – –
� – – – 0.819 1.120 0.970
s.d. – – – 0.192 0.159 0.067

CPT � – – – 0.659 0.598 0.546
s.d. – – – 0.166 0.235 0.299
� – – – – 1.357 1.867
s.d. – – – – 1.088 0.512
� – – – 5.186 17.322 5.222

– – – 5.265 34.880 6.240
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to the true values when the DGP coincides with the assumed specification. When 
the true DGP is M/SQ, the parameter in the CPT value function is close to unity, 
suggesting linear utility and probability distortion. When the true DGP is CPT/SQ, 
parameter � in the expo-power function is unity which would suggest an EUT model 
with exponential utility rather than the M model of utility.

Table 21   Estimates when CPT/AP is the true DGP

The row specification is the true data generating process ,while the column specification is the estimated 
one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For the refer-
ence points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

� 0.011 0.043 0.032 – – –
s.d. 0.000 0.045 0.003 – – –
� – 0.001 0.000 – – –
s.d. – 0.002 0.000 – – –

M � 1.092 1.539 1.062 – – –
s.d. 0.007 0.300 0.022 – – –
� – 2.937 1.128 – – –
s.d. – 1.659 0.015 – – –
� 14.356 1.539 1.062 – – –
s.d. 0.243 0.300 0.022 – – –
� – – – 1.219 0.724 0.991
s.d. – – – 0.084 0.154 0.063

CPT � – – – 0.943 0.596 0.755
s.d. – – – 0.049 0.203 0.313
� – – – – 1.366 0.846
s.d. – – – – 0.850 0.104
� – – – 4.805 8.684 10.476

– – – 2.675 17.958 5.949
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Table 22   Estimates when CPT/MAXMIN is the true DGP

The row specification is the true data generating process ,while the column specification is the estimated 
one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For the refer-
ence points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

� 0.020 0.000 0.100 – – –
s.d. 0.001 0.000 0.000 – – –
� – 0.011 0.033 – – –
s.d. – 0.022 0.015 – – –

M � 2.000 1.460 1.000 – – –
s.d. 0.000 0.258 0.000 – – –
� – 0.617 1.824 – – –
s.d. – 0.245 0.669 – – –
� 1.242 1.460 1.000 – – –
s.d. 0.110 0.258 0.000 – – –
� – – – 0.845 1.217 0.800
s.d. – – – 0.065 0.108 0.088

CPT � – – – 0.788 0.619 0.631
s.d. – – – 0.050 0.086 0.249
� – – – – 2.825 1.449
s.d. – – – – 0.623 0.128
� – – – 9.837 1.719 5.625

– – – 4.366 2.094 4.083

Table 23   Log-Marginal 
likelihood

The Table reports the mean aggregate Log-Marginal Likelihood for 
all the four possible combinations between true and assumed models 
based on 100 simulations. The row model is the true data generat-
ing process ,while the column model is the assumed model. M/SQ 
stands for the Markowitz model with Status Quo reference point, 
CPT for the Cumulative Prospect Theory model with Status Quo ref-
erence point

M/SQ CPT/SQ

M/SQ 1487.205 3662.528
CPT/SQ 1392.478 1260.302

Table 24   Estimates when M/SQ 
is the true DGP

The row specifications represent the true data generating process 
and the column ones the assumed specification. M/SQ stands for 
the Markowitz model with Status Quo reference point, CPT for the 
Cumulative Prospect Theory model with Status Quo reference point

Parameter M/SQ Parameter CPT/SQ

� 0.049 � 0.989
s.d. 0.004 s.d. 0.010
� 1.161 � 0.645
s.d. 0.041 s.d. 0.025
� 3.915 � 4.954
s.d. 0.839 s.d. 0.527
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Appendix E Screenshot

See Fig. 7. 

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10683-​022-​09784-5.
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which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 

Table 25   Estimates when CPT/
SQ is the true DGP

The row specifications represent the true data generating process 
and the column ones the assumed specification. M/SQ stands for 
the Markowitz model with Status Quo reference point, CPT for the 
Cumulative Prospect Theory model with Status Quo reference point

Parameter M/SQ Parameter CPT/SQ

� 0.093 � – 0.753
s.d. 0.003 s.d. – 0.032
� 1.001 � – 0.658
s.d. 0.003 s.d. – 0.020
� 9.227 � – 3.168
s.d. 0.036 s.d. – 0.360

Fig. 7   Screenshot of the experimental interface
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