ON THE EXTENSIONS OF LIE ALGEBRAS
RICHARD E. BLOCK

1. Introduction. In this paper we give some results on the extensions of
Lie algebras, with emphasis on the case of prime characteristic, although part
of the paper is also of interest at characteristic 0. An extension of a Lie algebra
L is a pair (E, 7), where E is a Lie algebra and = is a homomorphism of E
onto L. The kernel K of the extension is ker 7. The extension is called central
if K C zE (the centre of E), abelian (solvable) if K is abelian (solvable),
split if there is a homomorphism ¢ of L into E such that 7o = 1, and érivial
if K is a direct summand of E. All the Lie algebras and representations con-
sidered in the paper are assumed to be finite-dimensional.

In §2 we determine the relationship between Cartan decompositions of L
and E, partially generalizing and extending to characteristic p some results of
Chevalley (9, Chapter VI). In particular, over an infinite field we prove that
H is a Cartan subalgebra of L if and only if H = 7(C) for some Cartan
subalgebra C of E; moreover, we prove that such a C is unique up to conju-
gation if K is solvable, provided at characteristic  an additional hypothesis
is satisfied, e.g., that [E, K] is nilpotent of class less than p. This gives the
conjugacy of Cartan subalgebras of a solvable Lie algebra E at characteristic
0, a result of Chevalley (9, pp. 221-222), and the same result at characteristic
p provided, e.g., that E (the intersection of all terms of the lower central
series of E) is nilpotent of class less than p.

In § 3 we use the comparison between the Cartan decompositions of L and
E to give a quick determination of the central extensions of the simple Lie
algebras at characteristic p of classical type (in the sense of Mills and Seligman
(14) ; they are the analogues of the simple algebras over the complex numbers).
The extensions will be proved to be trivial unless L is of type 4,1 with p|x,
i.e., L = PSM (n), in which case, all other extensions may be obtained from
SM (n) (the n X n matrices of trace 0), which itself has only trivial extensions.
I obtained this result some years ago for application (where its use is crucial)
in joint work with Zassenhaus (see 7; 5) on the Lie algebras with a non-
degenerate trace form and with a quotient trace form, but gave no proof of it
there. The result was obtained independently and in another way by
R. Steinberg, whose proof is sketched in (16). The special case in which L has
non-degenerate Killing form was obtained by Campbell (8).

By the classical Levi theorem, all extensions of a semi-simple Lie algebra of
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characteristic 0 split, and, in particular, all central extensions are trivial.
Section 4 continues the work of § 3 in an attempt to find sufficient conditions
for splitting of a solvable extension of a simple algebra of classical type at
characteristic p. By the standard reduction, one can obtain such conditions
by just considering abelian extensions, and, indeed, abelian extensions for
which the induced representation adxL of L in K is irreducible. Two sufficient
conditions for the splitting of such extensions will be given, one involving the
weights of adgL and the other its Casimir operator or trace form. Each
condition is satisfied in some cases where the other is not, but the problem of
finding best possible conditions remains open.

In §5 we determine the central extensions of another important class of
simple Lie algebras of characteristic p, the Albert-Zassenhaus algebras, and
use this to answer a question about isomorphisms between these algebras.

2. Cartan subalgebras of extensions. For a representation A of a
nilpotent Lie algebra H in M we shall use the terminology primary function,
primary component, and Fitting null and one components, essentially as given
in (13, pp. 41-43). In particular, a primary function of A is a mapping
a:h — a,(\) of H into monic irreducible polynomials for which there exists an
x # 0 in M such that for every & in H there is a ¢ with o,(AR)x = 0. If the
characteristic roots of every AL are in the base field F, then one can replace
the consideration of primary functions and primary spaces by that of weights
and weight spaces. We shall say that a primary function corresponds to the
weight 0 if ¢,(\) = X for all 2 in H. If H is a subalgebra of a Lie algebra L,
then the Fitting null component of H for the decomposition of L relative to
adH is the zero-algebra of H in L, and H is a Cartan subalgebra of L if and
only if H equals its own zero-algebra in L.

LemMma 2.1. Let o1, ..., o, be a set of primary functions belonging to a
representation A of a nilpotent Lie algebra H over an infinite field F, and suppose
that no o ; corresponds to the weight 0. Then there exists an h in H such that, for

i= 1,...,]3,01),()\)#)\4

Proof. Suppose first that F is algebraically closed, and let ey, . . . , a; be the
weights corresponding to oy, . .., or. The hypothesis states that no «; is 0. If
the characteristic is 0, then «y, ..., a; are linear functionals on H so that

there is an % in H such that no «;(%) is 0, and the conclusion holds. If the
characteristic is a prime p, weights are not necessarily linear. However, if m is
the smallest power of p which is equal to or greater than the nilpotency class
of H, then (17, p. 96) a/™, ..., o/ are polynomial functions on H, so that
there is an % in H such that no [a;(%#)]™ is 0, and again the conclusion holds.
Now suppose that F is an arbitrary infinite field and that Q is its algebraic
closure. Under scalar extension to @, for each 7, the primary component corre-
sponding to ¢; decomposes into a direct sum of weight spaces of the repre-
sentation Aq of Hg. Let the corresponding weights be ay1, ..., ay; (I = 1,).
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Then N — a;;(h) divides o4 (N) for all £ in H. For some m, the functions
a;*(@=1,...,k;j=1,...,1) are polynomial functions on Hy. Since F is
infinite, there exists an % in H such that II; ;a;™(%) 5% 0. For such an %, no
oi(\) is A, and the lemma is proved.

COROLLARY 2.1. Over an infinite field, any Cartan subalgebra H of a Lie
algebra L 1is the zero-algebra of (the space spanned by) some element of H.

Proof. Let o1, ..., o be the primary functions of ad,H which do not
correspond to the weight 0, and let % be one of the elements whose existence
Lemma 2.1 asserts. Then it is easy to see that H is the zero-algebra of (%).

Another immediate consequence of LLemma 2.1 is the following result. This
generalizes the key lemma of (2), which Barnes proved by a different approach.

COROLLARY 2.2. Suppose that H is a Cartan subalgebra of a Lie algebra L
over an nfinite field, and that H acts diagonally in some scalar extension Lg.
Then there is an h in H such that the minimal polynomaal of ad h factors in Q into
the product of distinct linear polynomials and such that H is the zero-algebra of h
(h is regular iof H has minimal dimension).

Proof. The element % of the proof of Corollary 2.1 works again.

LeMMA 2.2. Let Lo be the zero-algebra of some element x of a Lie algebra L
over an infinite field. Then Lq contains a Cartan subalgebra of L.

Proof. The classical proof that the zero-algebra of a regular element of L is
a Cartan subalgebra (see, for example, 13, p. 59) actually shows that if L, is
not nilpotent, then there is an element y in L, such that the zero-algebra of y
is properly contained in Lo. The lemma follows by induction on the dimension
Of Lo.

TueoreM 2.1. Let (E, w) be an extension of a Lie algebra L over a field F. If
C is a Cartan subalgebra of E, then w(C) is a Cartan subalgebra of L. Conversely,
if H is a Cartan subalgebra of L and F is infinite, then there exists a Cartan
subalgebra C of L such that =(C) = H.

Proof. First, suppose that C is a Cartan subalgebra of E, and let K denote
the kernel of 7. If F is infinite, by Corollary 2.1 there is an x in C of which C
is the zero-algebra. Suppose such an x is chosen and that y in E is such that
(ad #(x))™r (y) = 0 for some m. Then (ad x)™ € K. Write (ad x)™y = z, +
21, where 2o and z; belong to the Fitting null and one components K, and K,
respectively, of the restriction of ad x to K. Since ad «x is non-singular on Kj,
there is a z,’ in K; such that z; = (ad x)™z,/. Writing ¥’ = y — 2/, we have
that (ad x)™y’ = 2z, € C. Hence, for some %, (ad x)»' =0, ¥ € C, and
n(y) = 7(y') € 7(C). Therefore, w(C) contains the zero-algebra of =(x).
Also, = (C) is nilpotent since C is, and, therefore, 7(C) is Cartan subalgebra of
L. If F is finite, let @ be an infinite extension field. Then 7 (C)e = 72(Cy) is a
Cartan subalgebra of Lg. The normalizer Ny7(C) C 7 (C)e N\ L = = (C), so
that again 7 (C) is a Cartan subalgebra of L.

https://doi.org/10.4153/CJM-1968-145-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-145-5

1442 RICHARD E. BLOCK

Conversely, suppose that H is a Cartan subalgebra of L, and that F is
infinite. Take an % in L of which H is the zero-algebra, take an x in E such that
w(x) = h, and let E, be the zero-algebra of x in E. By Lemma 2.2, there is a
Cartan subalgebra C of E contained in E,. Hence, for every y in C there is an
m such that (ad x)™y = 0, and (ad %)"r(y) = 0, so that #(C) € H. But by
the first part of the theorem, = (C) is a Cartan subalgebra of L. It follows that
#(C) = H, and the theorem is proved.f

LemMma 2.3. If L is of characteristic p and N is a nilpotent ideal of class less
than p, then exp(ad 2) is an automorphism of L for every z in N.

Proof. Write D = ad 2. Then D? = 0, and if ¢ + j = p and x, ¥ € L, then
(xD?)(yD?) = 0, so that

p=1 _ 7yip—1 J p—1 m i m- 1 p—1 m
. x]) yD (xD") (yD™ ") D™
- Z: ,2::0 z'(m—z)! =2, () m!
Thus, in this case, we do better than the general result that exp (ad x) is an
automorphism if (ad x)[@+D721 = Q.
For any Lie algebra L, L¢ denotes the intersection of all terms of the lower
central series ot L.

THEOREM 2.2. Suppose that (E, ©) is an extension of L with solvable kernel
K, over an infinite field. Let H be o Cartan subalgebra of L, and write N =
(m=Y(H))*. In case the characteristic is p > 0 suppose, in addition, either that
N is contained in a nilpotent tdeal of class less than p or that (ad n)@+D/2l = (
for all m in N. Then a Cartan subalgebra C of E such that n(C) = H is unique
up to a conjugation of E of the form 1157 exp(ad n.), where n, € N and d is
the derived length of N.

Proof. Let C; be another Cartan subalgebra of E such that »(C;) = H
Since C and C; are also Cartan subalgebras of #—1(H), we see that, without
loss of generality, we can assume that L = H (at characteristic 0, ad #; is
nilpotent since N C [E, K] is nilpotent). The proof is by induction on d. If
N = 0, then #—1(H) is nilpotent and thus, C = C; = 7#—1(H). Now suppose
that d > 0 and that the result is true for d — 1, and use bars to denote objects
modulo N1, Then C and C; are Cartan subalgebras of E which are conjugate
by an automorphism of the given form for elements 7; (¢ =0, ..., d — 2).
With 7, in the coset 7, exp(ad #;) is an automorphism of E. Hence, it suffices

tAdded in proof. There is an overlap between the material of § 2 and results of D. W. Barnes
(On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350-355). His paper contains
another proof of Theorem 2.1. His Theorem 4 states that if L is solvable of characteristic p
and if L’ satisfies the (p — 1)st Engel condition, then all Cartan subalgebras of L are con-
jugate, but he mistakenly assumes that exp d is an automorphism if d is a derivation with
dr = 0, instead of ¢l@+D/2l = 0. He thus has only proved the result with [(p + 1)/2] — 1
instead of p — 1, and it is then a special case of Corollary 2.3 below. (The two papers were
done independently, and Barnes submitted his five weeks earlier.)
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to assume that C; = € and to find #s_;. In particular, it suffices to find a
conjugacy of the form exp(ad k), & € K, assuming that K is abelian, which
we now do. Since K is abelian, adxC induces a representation A of H in K.
Write Ky and K; for the Fitting null and one components of A. By Lemma 2.1,
there is an x in H such that K, is the Fitting null component of Ax. Take y in
C and y; in C; such that # (y) = w(y1) = x. If B is the zero-algebra of y, then
CC B, nw(B)=H,and BNK =K, = CNK. Hence, B = C, and, simi-
larly, C; is the zero-algebra of y;. By adding an element of K, to y, we may
assume that y; — v € K;. Since ad y is non-singular on K, there is a k in K,
such that [k, y] = y1 — ». Since (ad k)% = 0, (exp(ad &))y = v + [k, y] = y1.
Hence, exp(ad k)C = (i, and the theorem follows.

COROLLARY 2.3. Suppose that E is a solvable Lie algebra. In case the character-
istic is p > 0, suppose, in addition, that the base field is infinite and either that
E* is nilpotent of class less than p or that (ad x)I@+D72 = O for all x in Ee.
Then all Cartan subalgebras of E are conjugate™

Proof. We can apply the theorem with K = Ee.

We note that when the extension is split, say E = S + K, it is not neces-
sarily true that a Cartan subalgebra of .S is contained in one of E, even if K
is solvable, as is shown by the example (x) + (v, 2), where [x, y]=[y, z]=2
and [x, z] = 0.

We next compare the root space (or more generally, primary space)
decompositions of L and its extension.

LemMA 2.4. Suppose that (E, w) is an extension of L with kernel K, and that
C is a Cartan subalgebra of E. If o is a primary function of ad zC with primary
space E,, and if 7(E,) #~ 0, then a,(\) = o,0y(\) for all x in Cand y in C N K,
and the function ¢': w(C) — F[\] defined by setting ¢'z@y(N) = a,(\) is a primary
function on w(C). Moreover, w(E,) = Lo+, and every primary function of ad 7 (C)
s obtained n this way.

Proof. Let ¢ be a primary function of adzC and suppose that b € E, with
7() # 0. If x € Cand y € CN K, then there is an m such that

(0:(ad )"0 = (0z4y(ad (x + 3)))"0 = 0.

(0s(ad 7 (%)))"7 (b) = (0z4y(ad 7 (x)))"x (b) = 0.

Hence

*After the paper was written, G. Seligman kindly sent me a copy of part of the typescript
of his forthcoming book on Lie algebras of characteristic . It contained a proof of the
conjugacy of the Cartan subalgebras of solvable Lie algebras E for which E« is abelian, over
arbitrary fields. The device Seligman uses to reduce the case in which the base field F is finite
to that in which F is infinite can also be used to show that our Theorem 2.2 and Corollary 2.3
remain valid when F is finite. Seligman also gives an example of a solvable E, with E¢ not
nilpotent, having non-conjugate Cartan subalgebras.
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Since 7 (b) # 0 and ¢,(\) and o,,,(\) are irreducible, it follows that o,(\) =
024y (\) and that ¢’ is a primary function of ad;x(C), with = () in L,. If 7 is
another primary function of adzC and ¢ # 7, then ¢’ # 7’. The fact that
L = 3 ,n(Ec) now implies the remaining statements of the lemma.

COROLLARY 2.4. Let L be a Lie algebra over an infinite field F, H a Cartan
subalgebra, and M an L-module. Suppose that ad h and hy have all characteristic
roots in F for all h in H. Then any 2-dimensional M-cocycle for L differs by a
coboundary from a cocycle f such that if « and B are roots, x € L, and y € Lg,
then f(x, ¥) € Mars (= 0if a + B is not a weight of M).

Proof. An element of H2(L, M) corresponds to an abelian extension (E, )
of L with kernel M. Let C be a Cartan subalgebra of E such that =(C) = H.
Any root v for H corresponds to a root, also denoted by v, for C, and = (E,) =
L,. Hence, there is a linear mapping = of L into E such that =7 = 1, and
7(L,) € E, for each root . With f the corresponding cocycle,

f(xr y) = [T(x): T(y)] - T[xy y] € En(-Hgm M = ]l[a+/3.

3. Central extensions of algebras of classical type.

LemMA 3.1. Suppose that E 1is a Lie algebra with no non-trivial central
extension, and that = is a homomorphism of E into L. Then for every central
extension (Ey, m1) of L there exists a homomorphism o of E into E; such that
n = mi0.

Proof. Let K, be the kernel of (Ey, m1). Take a linear mapping r of L into
E; such that m(r(x)) = x, x € L. Then [r(x), 7(¥)] = 7[x, y] + g1(x, ¥)
(x, y € L) for a 2-cocycle g1 € Z*(L, K;). Define g: E X E — K; by setting
g(z, w) = g1(r(2), m(w)). Then g € Z2(E, K.), where K, is a trivial module
for E. Hence, there exists an % in C'(E, K;) such that g = 6k, that is, g1(r (2),
m(w)) = hlz, w]. Set o(2) = 7(x(2)) + h(z) (z € E). Then ¢ is linear from E
into Ej,

[0(2), o(w)] = [r(n(2)) + h(2), 7(x(w)) + h(w)] =
7l (2), 7(@)] + @ilr (2), 7 ()] = olz, w] (3, w € E),
and 70 = m, and the proof is complete.

The Lie algebras of classical type over a field F of characteristic p > 3 are
the algebras satisfying the axioms of Mills and Seligman (14). The simple
algebras were shown in (14) to be the analogues of the complex simple Lie
algebras, L, that is, the algebras over F obtained by reducing modulo p the
structure constants of a Chevalley basis of L¢; in addition, if L¢ is of type
Ay—1, where p|n, one must divide the resulting algebra (a copy of SM (%, F),
the # X » matrices of trace 0) by its one-dimensional centre (the scalar
matrices) to obtain an algebra isomorphic to PSM (z, F). Algebras isomorphic
to PSM (n, F) (p|n) are said to be of type PA.
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THEOREM 3.1. Any central extension (E, w) of L is trivial if L is simple of
classical type not PA or if L = SM(n, F) (pn). If L = PSM (n, F), either the
central extension s trivial, or there is an isomorphism o of SM (n, F) into E such
that E is a direct sum of eSM (n, F) and an ideal contained in the kernel K, and
such that wo 1s the natural mapping of SM (n, F) onto PSM (n, F).

Proof. Since w(E?) = n(E), by throwing away a direct summand of E
contained in K we may assume that E is perfect. In proving an extension to be
trivial we may also assume that F is infinite. If L is simple of classical type
other than PA, take a Cartan subalgebra H of E such that = (H) is a standard
Cartan subalgebra of L. Then K C H; by Lemma 2.4, the roots of E with
respect to H correspond to those of L with respect to w(H), and for each
non-zero root @, E, is 1-dimensional, spanned, say, by e,. Write [ext_a] = .
Then H is spanned by K together with all 4,, since their images span = (H).
For any % in H,

[[eat—all] = [[eah]e-a] + [eale—ah]] = (a(h) — a(h))[ea -] = 0.

Hence, H is abelian and the elements %, span H. If B84, ..., B, is a fundamental
system of roots for L (so that dim H = r because of the type of L) and if a is
a non-zero root, then o (or —a) is a sum of a sequence of the 8;'s such that
each partial sum is also a root. Hence

lea—a] € FIL. .. [esi,e8:,) - - - €5: Jle—ps, - - - e=p; ) € (Bpy, - - ., hig,)

by the Jacobi identity. Therefore, H is r-dimensional, and K = 0.

Similarly, if L = SM(n, F), where p|n, then we lift the (# — 1)-dimensional
Cartan subalgebra of diagonal matrices of trace 0 to a Cartan subalgebra H of
E. As in the preceding case, there are n — 1 roots of L such that the corres-
ponding A’s span H, so that again K = 0.

Finally, the result for PSM (%, F) follows from that for SM (#, F) by Lemma
3.1.

One could also prove this last case by using a fundamental system with
respect to the usual Cartan subalgebra of L, and defining, as before, elements
ki, ..., hy_1 which span H, If these are dependent, then K = 0, and if they
are independent, then one has an obvious mapping of SM(#n, F) onto E which
is an isomorphism.

CoROLLARY 3.1. Suppose that L is semi-simple of characteristic not 2, 3. If
L has a representation with non-degenerate trace form, then every central extension
of L 1s trivial.

Proof. Scalar extension preserves non-degeneracy of the trace form as well
as the property of being centreless or, equivalently (because of the form),
perfect. Over an algebraically closed field, by (7), the algebra is a direct sum
of simple algebras of classical type not PA, and the result follows from the
theorem.
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4. Sufficient conditions for extensions to split. In this section we shall
assume, when discussing roots and weights, that all relevant transformations
representing elements of a Cartan subalgebra have their characteristic roots
in the base field. Let (E, 7) be an extension of L with kernel K. If Cis a Cartan
subalgebra of E and if [C M K, K] = 0, then a representation A = adgw(C)
of #(C) in K is defined by setting A(w(x)) = adgx for all x in C. By Lemma
2.4, each root o of L (for 7 (C)) has a unique corresponding root of E (for C),
which we also denote by «, where a(n (¢)) = a(c) and 7 (E,) = L.

THEOREM 4.1. Suppose that Cis a Cartan subalgebra of E and that
[CNK,K] =0.

If no weight of adgw(C) is a root of L (for w(C)), and if [E., Eg] =0
whenever a and B are roots of L such that a + B is not « root of L, then the
extension splits.

Proof. Let S be the sum of the root spaces E, of E such that = (E,) # 0.
For each such «, the corresponding « for = (C) is not a weight of adgw (C), and
hence E, M K = 0. Therefore, the restriction of 7 to.Sis a one-to-one mapping
onto L. The final condition of the hypotheses guarantees that .S is a subalgebra.
Hence, S is the required Levi factor.

When K is abelian, which we henceforth assume, we obtain an induced
representation adgL.

COROLLARY 4.1. Suppose that H is a Cartan subalgebra of L and that the
kernel K of an extension is abelian. If no weight of adxH is a sum of two roots
(tncluding 0) of L (for H), then the extension splits.

COROLLARY 4.2. Suppose that K is abelian and L is of classical type, of
characteristic p. Let T and P be the sets of roots of L and weights of adxL,
respectively (for some Cartan subalgebra of L). If (1) 0 ¢ P and (2) = \J P con-
tains no circular string 8, 8+ a, ..., B+ (p — 1)a, where o and B are roots,
then (E, ) splits.

Proof. If o € 2 M P, consider the representation of the 3-dimensional
simple algebra generated by L, and L_, on K, + ... + K¢ _1a It follows
from properties of representations of the 3-dimensional algebra that i« € P,
1=1,...,p — 1, a contradiction. Similarly, if 8, « € 2 it can be seen that
B + a ¢ P. The result now follows from Corollary 4.1.

We now consider the case in which adgL is irreducible. For L simple of
classical type, the restricted irreducible representations were classified by
Curtis (10) by their maximal weights. For each such representation, the
irreducible representation of the corresponding simple Lie algebra over the
complex numbers with corresponding maximal weight is called the associated
representation (11). A reduction modulo $ of the associated representation
gives a representation of L having the given irreducible representation as a
constituent.
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A result like that of Corollary 4.2 may be stated in terms of conditions on
the associated representationsof the irreducible constituents of adgL (assuming
that these constituents are all restricted). Indeed, (E, ) will split if for each
of these associated representations the maximal weight: (1') is not a sum of
Sfundamental roots and (2') is not too big (with respect to p); e.g., if L is of type
A, and the maximal weight is (a1, a2) (written with respect to a given funda-
mental system), we may take for (2') the condition a; + a; < p — 1. Con-
dition (2') assures that no weight for L is associated with two distinct weights
of the associated representation, and then, that conditions (1) and (2) of
Corollary 4.2 are satisfied, (1) by (1’) and a result of Freudenthal (12).

We next consider what can be salvaged at characteristic $ from the charac-
teristic 0 proof of the Whitehead-Levi theorem. Suppose that B is a non-
degenerate invariant bilinear form on a Lie algebra L, that {#;} and {«?% are
bases of L dual with respect to B, and that A is a representation of L. We call
> A(u)A(u?) the Casimir operator of A with respect to B, and denote it by
T'(B, A). It is in fact independent of the choice of dual bases, and commutes
with all A(x). If A is absolutely irreducible, then T'(B, A) is a scalar trans-
formation which we denote by ¢(B, A)I.

THEOREM 4.2. Let (E, m) be an extension of L with abelian kernel K. Suppose,
for each irreducible constituent A of adgL, that L has a non-degenerate invariant
bilinear form B such that T'(B, A) % 0. Then (E, w) splits.

Proof. 1t is enough to consider the case in which adgL is irreducible. Since
I'(B, A) commutes with all A(x), it is non-singular. The standard character-
istic 0 proof (13, p. 90) for the case in which the usual Casimir operator (for
the Killing form) is non-singular may be seen to remain valid in the present
case.

COROLLARY 4.3. If each irreducible constituent A of adgL has non-degenerate
trace form, and, ot characteristic p, if p X dim L, then (E, ) splits.

Proof. 1{ we take B to be the trace form of A, then tr T'(B, A) = (dim L)1,
whence the result.

We remark that if F is algebraically closed, L simple, and A irreducible,
then B, = t(B, A)B, where B, denotes the trace form of A, B is the given
form, and ¢(B, A) € F, and

tr T'(B, A) = (degree A)c(B, A) = (dim L)¢(B, A).
Hence, if By s non-degenerate and p X dim L, then T'(B, A) 5% 0 and p ¥ (degree
A), and conversely. If L is of classical type and A is restricted, then ¢(B, A)
may be computed from the maximal weight of A as at characteristic 0 (13,
p. 247).

Now suppose that L is the simple 3-dimensional algebra (p > 2), with
basis e, f, &, where [e, f]1 = &, [k, e] = 2¢, [k, f] = —2f. For the trace form B
of the representation of degree 2, B(h, h) = 2 and B(e, f) = 1. Hence %, ¢, f and
h/2, f, e are dual bases of L for this form, and if an irreducible representation
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A has maximal weight « with a(k) = m, then T'(B, A) = (m(m + 2)/2)1.
It follows that an abelian extension of L with restricted irreducible adgL
splits unless adxL is the representation with degree  — 1. On the other hand,
let 7 be the irreducible L-module of degree » — 1 and let v and w be maximal
and minimal vectors of 7 and a and b scalars not both 0. Let E =L + V
(direct sum as vector spaces) and let the multiplication of basis elements be
that of the split abelian extension except that [k, e] = —[e, k] = 2¢ + aw
and [k, f] = —[f, k] = —2f + bv. This gives an extension of L which does not
split since (%) is a Cartan subalgebra but does not act diagonally.

We have seen that for L simple of type A4; there are irreducible restricted
representations for which the hypotheses of Corollary 4.1 are not satisfied but
which do have non-zero Casimir operator. For L simple of type 4. there are
restricted irreducible A for which I'(B, A) = 0 for all B but which do satisfy
the hypotheses of Corollary 4.1 (and 4.2), e.g., if A has maximal weight (2, 3)
and p = 17.

5. Central extensions of algebras of quasi-classical type. Let F be a
field of characteristic p, G a finite additive subgroup of F, f a biadditive
mapping of G X G into F, and L an algebra with a basis {#.| @ € G} indexed
by G and multiplication given by

[tay ug] = {0 — B + fla, B)}thars.
If f =0, then L is a Lie algebra called a Zassenhaus algebra (17). If f ## 0,

then L is a Lie algebra if and only if there exists an additive mapping / of G
into F such that

(5.1) fla, B) = al(B) — Blla) (o B € G);

such a Lie algebra is called an Albert algebra (1). In addition to being the only
known simple algebras of rank one (over a perfect field) other than 4, these
algebras gain importance from their role in the theory of Lie algebras of
quasi-classical type (a perfect centreless Lie algebra is said to be of quasi-
classical type if for each non-zero root p, the root spaces L, and L_, generate
the 3-dimensional simple Lie algebra). We proved in (6) that any Lie algebra
of quasi-classical type over a perfect field is a direct sum of simple algebras
which are either of classical type or Zassenhaus or Albert algebras.

Ree (15) proved the remarkable fact that all Zassenhaus algebras of the
same dimension over an algebraically closed field F are isomorphic. However,
the question of isomorphism between Albert and Zassenhaus algebras of the
same dimension over F has been open. It is known (3) that they have iso-
morphic algebras of outer derivations. We show here that no Albert algebra is
isomorphic to a Zassenhaus algebra, if p > 3, by examining their central
extensions.

THEOREM 5.1. If p > 3 and L is a Zassenhaus algebra over F, then H?(L, F)
1s 1-dimensional, while if L 1s an Albert algebra over F, then H?(L, F) = 0.
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Proof. If L is a Zassenhaus or Albert algebra over F, then each Fu, is a root
space for the Cartan subalgebra Fu,. Let g be a 2-cocycle on L with respect to
the trivial module F. By Corollary 2.4, we may assume that g(#a, us) = 0

unless @« = —B # 0. For a € G, write g(#s, 4_o) = ¢o. Then the condition
8¢ (Uay up, uy) = 0 is automatically satisfied unless @« + 8 + v = 0, in which
case,

(6.2) fa =B+ fla, B)}cass + {—a — 28 — f(a, B)ca
+ {2a + 8 — fla, B)}cs = 0.

If f = 0 and if ¢, = ¢® — « for each a, then (5.2) is satisfied, as is shown by a
straightforward computation. Hence, in the Zassenhaus case, the 2-cochain %
with kB(#e, #o) = a3 —a and k(t,, us) = 0if a +8#0 (o, BE G), is a
cocycle. This cocycle is not a coboundary, since, if 64 = k, then 64 (¢, %_g)
= 2ah(uy) = o® — & for all a, a contradiction. Returning to the original
cocycle g, for a given non-zero ¢ we may assume that ¢, = 0 by subtracting
oh from g, where % is the 1-cochain with & (u¢) = c./2a, h(ug) = 0 (8 = 0).
Then by (5.2), (¢ — l)aciine = (¢ + 2)acyu, and by induction, ¢, =
(1/6) (¢ + 1)i(t — 1)coa.

By multiplying each basis element of L by a—! we may assume that « = 1.
Then, if f = 0, we subtract (cs/6)%k from g to obtain a cocycle with ¢, = 0
for all . It is sufficient to show that all ¢z vanish for this cocycle. If 8 is not
of the form e, then application of (5.2) to the pairs 8, 2a; 8 + o, @; and 8,
yields

Corne = B+ 4“05' Corn = B + 3a Core = (B + 32) (B + 2a) co.
B =2 - B e B(B — )

Equating the expressions for ¢g.s. and expanding, we obtain 12a%; = 0, and
cg = 0. This completes the proof for the Zassenhaus case.

Next, suppose that f % 0, and take «, 8 such that f(a, 8) # 0, where, as
before, we may suppose that ¢, = 0. We claim that ¢ = 0. Applying (5.2)
successively to the pairs 8 + 4o, @ ¢ = 0,1, ..., p — 2) we obtain

DT A+ (p — B)a+ f(B, @)} ... {B— a+ f(B )}

_B=2a+iBa)
B+a+fBa)

84 da + f(B,a) £0 (i = —1,0,...,p — 3).Butif 8 + ia + f(8,a) = 0,
then (5.2) for 8 + (¢ + 1), a yields csiirne = 0, and hence gy = ... =
cg = 0. We apply (5.2) for 8, —a and obtain

B+ a—fB a)csa={B — 20 — f(B, a)}cs.

Thus, we have two equations for ¢s_, and cz. The determinant of the coefficients
is 6af (3, a) # 0, and therefore ¢z = 0. Suppose that v € G and vy # 0. If
l(a) = 0, then, by (5.1), if I(y) # 0, then f(ea, v) % 0, and hence ¢, = 0,

Cp
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while if I(y) = 0, then f(8,v) # 0 and again ¢, = 0. Hence, we may assume
that /(@) # 0and by symmetry, also that [(8) # 0. By (5.1), a/8 = I(a)/1(8);
if f(a, v) = 0, then v/a = I(v)/l(a) and v/B # I(y)/I(8) so that f(8, v) # 0.

Hence, in every case, ¢, = 0, that is, g = 0, and the proof is complete.

COROLLARY 5.1. No Albert algebra with p > 3 is isomorphic to a Zassenhaus
algebra.
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