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Abstract

We define asymptotically p-flat and innerly asymptotically p-flat sets in Banach spaces in terms of
uniform weak∗ Kadec–Klee asymptotic smoothness, and use these concepts to characterize weakly
compactly generated (Asplund) spaces that are c0(ω1)-generated or `p(ω1)-generated, where p ∈ (1,∞).
In particular, we show that every subspace of c0(ω1) is c0(ω1)-generated and every subspace of `p(ω1)

is `p(ω1)-generated for every p ∈ (1,∞). As a byproduct of the technology of projectional resolutions
of the identity we get an alternative proof of Rosenthal’s theorem on fixing c0(ω1).
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1. Introduction

In [7], it was proved that a separable Banach space (X, ‖ · ‖) is isomorphic to a
subspace of c0 if and only if it admits an equivalent norm that is C-Lipschitz weak∗

Kadec–Klee (for short, C-LKK∗) for some C ∈ (0, 1]. The norm ‖ · ‖ on X is
called C-LKK∗ if lim supn ‖x

∗
+ x∗n‖ ≥ ‖x

∗
‖ + C lim supn ‖x

∗
n‖ whenever x∗ ∈ X∗

and (x∗n ) is a weak∗-null sequence in X∗. The norm is called LKK∗ if it is C-LKK∗

for some C ∈ (0, 1]. Clearly, the supremum norm on c0 is 1-LKK∗. A norm on a
Banach space X is called weak∗ Kadec–Klee (KK∗ for short) if the dual norm ‖ · ‖
on X has the property that, for every x∗ ∈ X∗ and every weak∗-null sequence (x∗n ) in
X∗ satisfying ‖x∗ + x∗n‖→ ‖x

∗
‖, we have ‖x∗n‖→ 0. Clearly, LKK∗ implies KK∗.
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198 M. Fabian et al. [2]

In [11], the following moduli of smoothness were introduced. If (X, ‖ · ‖) is a
Banach space, x ∈ SX , Y is a linear subspace of X and τ > 0, put

ρ(τ, x, Y )= sup{‖x + y‖ − 1 : y ∈ Y, q‖y‖ ≤ τ },

then
ρ(τ, x)= inf{ρ(τ, x, Y ) | Y ⊂ X, dim(X/Y ) <∞},

and finally,
ρ(τ)= sup{ρ(τ, x) | x ∈ SX }.

It turns out that the norm ‖ · ‖ on X is LKK∗ if and only if there exists τ0 > 0 such that
ρ(τ0)= 0, and it is 1-LKK∗ if and only if ρ(1)= 0 (for details and more on the subject
see [7], where a nonseparable theory is also developed). The geometric description
provided by the use of the modulus ρ is more clear than the one given by the definition
of the C-LKK∗-norm above, and can be depicted as BX being asymptotically uniformly
flat. Accordingly, a separable Banach space X admits an equivalent LKK∗ norm, if
and only if admits an equivalent norm whose unit ball is asymptotically uniformly flat,
if and only if X isomorphic to a subspace of c0; here the latter equivalence is the deep
result from [7].

In this paper, we shall use some ideas from [7] to deal with the c0(ω1)-generation
and the `p(ω1)-generation of Banach spaces, where p ∈ (1,∞) (Theorems 5 and 7),
and to deal with operators from c0(ω1) fixing copies of c0(ω1) (Theorem 9). We
work in the context of nonseparable weakly compactly generated Banach spaces.
The restriction of the density to the first uncountable cardinal is done for the sake
of simplicity. It is plausible that our results hold with milder cardinality restrictions.

In this paper, (X, ‖ · ‖) denotes a Banach space, and BX and SX its closed unit ball
and unit sphere. If M is a bounded subset of a Banach space X , we denote by ‖ · ‖M
the seminorm in X∗ defined by

‖x∗‖M = sup{|〈x, x∗〉| : x ∈ M}, x∗ ∈ X∗. (1)

The first infinite ordinal and the first uncountable ordinal are denoted by ω0 and ω1
respectively. Sometimes, we identify the interval [0, ω1) with ω1. Throughout the
paper, we assume that∞/∞= 1 and that 1/0=∞. Other concepts used in this paper
and not defined here can be found, for example, in [3].

The following concept evolves from the definition of C-LKK∗ property considered
above. It will be used in characterizing weakly compactly generated Asplund spaces
that are generated by c0(ω1) or by `p(ω1) for p ∈ (1,∞) (see Theorem 5).

DEFINITION 1. Let (X, ‖ · ‖) be a Banach space X , let M be a nonempty subset of X ,
let p ∈ (1,∞], and put q = p/(p − 1). We say that M is ‖ · ‖-asymptotically p-flat if
it is bounded and there exists C > 0 such that, for every f ∈ X∗ and every weak∗-null
sequence ( fn) in X∗, we have

lim sup
n→∞

‖ f + fn‖
q
≥ ‖ f ‖q + C lim sup

n→∞
‖ fn‖M

q . (2)
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[3] Flat sets, `p-generating and fixing c0 in the nonseparable setting 199

We say that M is asymptotically p-flat if there exists an equivalent norm ||| · ||| on X
such that M is ||| · |||-asymptotically p-flat.

REMARK 2. (i) Nontrivial weak∗-null sequences needed in the above definition do
exist. Indeed, it is easy to check that 0 belongs to the weak∗ closure of the dual
sphere SX∗ . Thus, if X is separable or, more generally, if (BX∗, w

∗) is a Corson (even

angelic) compact space, then there exists a sequence ( fn)n∈N in SX∗ such that fn
w∗

−→ 0.
In general nonseparable Banach spaces, the existence of such a sequence is guaranteed
by the deep Josefson–Nissenzweig theorem (see, for example, [1, Ch. XII]).

(ii) A small effort yields that a bounded subset M of X is asymptotically p-flat
for some p ∈ (1,∞] if and only if there exists C > 0 with the following property:

whenever ε ∈ (0, C−q), f ∈ BX∗ , and (gn) is a sequence in SX∗ such that gn
w∗

−→ f
and ‖ f − gn‖M ≥ ε for all n ∈ N, then ‖ f ‖q ≤ 1− Cεq , where q = p/(p − 1).

(iii) Let (X, ‖ · ‖) be a Banach space. Assume that, for some p ∈ (1,∞], BX is a
‖ · ‖-asymptotically p-flat set. Then, (X, ‖ · ‖) has the KK∗ property.

(iv) It is easy to check that the unit ball in c0(0) is ‖ · ‖∞-asymptotically ∞-flat,
and that the unit ball in `p(0) is ‖ · ‖p-asymptotically p-flat for all p ∈ (1,∞), with
constant C = 1.

(v) More generally, if the usual modulus of smoothness of (X, ‖ · ‖) is of power
type p ∈ (1, 2], then BX is ‖ · ‖-asymptotically p-flat. To prove this, take such p and
put q = p/(p − 1). Then the modulus of rotundity

δ‖·‖(ε)= inf{1− ‖(x∗ + y∗)/2‖ : x∗, y∗ ∈ BX∗, ‖x
∗
− y∗‖ ≥ ε}, ε ∈ (0, 2],

of the dual norm ‖ · ‖ on X∗ is of power type q , which means that there exists
K > 0 such that δ‖·‖(ε)≥ K εq for all ε ∈ (0, 2]. This is a consequence of the
basic relationship between both moduli due to Lindenstrauss (see, for example, [3,
Lemma 9.9]). We shall verify the condition from Remark 2(ii) for M = BX . So take
ε, f and a sequence (gn) as there. For every n ∈ N we have

K‖ f − gn‖
q
≤ 1−

∥∥∥∥ f + gn

2

∥∥∥∥≤ 1−

∥∥∥∥ f + gn

2

∥∥∥∥q

.

Thus

‖ f ‖q ≤ lim inf
n→∞

∥∥∥∥ f + gn

2

∥∥∥∥q

≤ lim inf
n→∞

(1− K‖ f − gn‖
q)≤ 1− K εq .

Now, Remark 2(ii) says that BX is asymptotically p-flat.
(vi) If a set M in a Banach space (X, ‖ · ‖) is ‖ · ‖-asymptotically p-flat for some

p ∈ (1,∞], then M is also ‖ · ‖-asymptotically p′-flat for every p′ ∈ (1, p). This is a
straightforward consequence of the fact that ‖ · ‖q ≥ ‖ · ‖q ′ whenever 1≤ q < q ′.

(vii) Let M be a ‖ · ‖-compact set in X and ( fn) a weak∗-null sequence in X∗. Then,
limn→∞ ‖ fn‖M = 0. Hence, from the weak∗-lower semicontinuity of the dual norm,
we get that any norm compact set in an arbitrary Banach space is ‖ · ‖-asymptotically
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∞-flat. The same proof gives that, more generally, any limited set in any Banach
space is asymptotically∞-flat. Recall that a set M in a Banach space X is limited if
limn→∞ ‖ fn‖M = 0 whenever ( fn) is a weak∗-null sequence in X∗.

(viii) Lancien [10] proved that if K is a scattered compact space of finite height then
the unit ball of C(K ) is an asymptotically ∞-flat set, by constructing an equivalent
norm. Therefore, for instance, the space J L0 of Johnson and Lindenstrauss is an
example of a space the unit ball of which is asymptotically∞-flat, though it does not
contain any isometric copy of c0(ω1). This space is not weakly Lindelöf determined
(see, for example, [3, Theorem 12.58]).

(ix) Godefroy, Kalton, and Lancien in [7, Theorem 4.4] proved that the unit ball of
a weakly compactly generated Banach space X of density character at most ω1 is an
asymptotically∞-flat set if and only if X is isomorphic to a subspace of c0(ω1).

We say that a Banach space X is generated by a subset M of X if M is linearly
dense in it. X is said to be generated by a Banach space Y if there exists a bounded
linear operator from Y into X such that T (Y ) is dense in X .

In [4] and [5], we studied questions on generating Banach spaces by, typically,
Hilbert or superreflexive spaces via the usual moduli of uniform smoothness. Here we
continue in this direction by using, in the Asplund setting, weak∗ uniform Kadec–Klee
norms instead. This allows to get a characterization also for p > 2, where the former
approach cannot work as the usual moduli of smoothness are at most of power type 2.

In Definition 3 below, we strengthen the definition of asymptotically p-flat set to
what we call an innerly asymptotically p-flat set. That allows us to go beyond the
framework of Asplund spaces required in Theorem 5. We shall see below (Lemma 13)
that, under mild assumptions on the space in question, every asymptotically p-flat set
is an Asplund set. This fact will then allow us to prove Theorem 7. To be precise, we
introduce at this stage the following concept.

DEFINITION 3. Let (X, ‖ · ‖) be a Banach space X , let M be a nonempty subset of X ,
let p ∈ (1,∞], and put q = p/(p − 1). We say that M is innerly asymptotically p-flat
if it is bounded and there exists C > 0 such that,

lim sup
n→∞

‖ f + fn‖M
q
≥ ‖ f ‖M

q
+ C lim sup

n→∞
‖ fn‖M

q (3)

for every f ∈ X∗ and for every weak∗-null sequence ( fn) in X∗.

REMARK 4. (i) Notice that, in the above definition, C ∈ (0, 1]. Also, being innerly
asymptotically p-flat does not depend on a concrete equivalent norm on X . For M =
BX , the properties of being innerly asymptotically p-flat and ‖ · ‖-asymptotically p-
flat coincide.

(ii) As in Remark 2(vi), if a set is innerly asymptotically p-flat for some p ∈ (1,∞],
then it is also innerly asymptotically p′-flat for every p′ ∈ (1, p).

(iii) Again, any norm-compact, more generally, any limited subset of X is innerly
asymptotically∞-flat.
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(iv) The concept of inner asymptotic p-flatness, in contraposition with the
asymptotic p-flatness, is not inherited by subsets. Indeed, fix p ∈ (1,∞]. Let
(X, ‖ · ‖) be (c0, ‖ · ‖∞) if p =∞ and (`p, ‖ · ‖p) otherwise. It is easy to check
that BX is innerly asymptotically p-flat as well as ‖ · ‖-asymptotically p-flat. Put
N = {e1, e2, . . .}, where the ei are the canonical unit vectors in X . Thus N ⊂
BX , and so N is ‖ · ‖-asymptotically p-flat. Let f1, f2, . . . be the associated
functional coefficients in X∗. Then ‖ f1 + fn‖N = 1= ‖ f1‖N = ‖ fn‖N for all n = 2,
3, . . . . Thus (3) is violated no matter how small C ∈ (0, 1] is. It follows that N is not
innerly asymptotically p-flat.

(v) It is not difficult to check that inner asymptotic p-flatness implies asymptotic
p-flatness. To show this consider a p-flat subset M of X . Put

||| f |||q = ‖ f ‖q + ‖ f ‖M
q , f ∈ X∗.

The triangle inequality for the `q -norm yields that ||| · ||| is a norm on X∗. Clearly,
this is an equivalent and dual norm. Take any f ∈ X∗ and any weak∗-null sequence
( fn) in X∗. Choose a subsequence ( fni ) of ( fn) such that limi→∞ ‖ fni ‖M =

lim supn→∞ ‖ fn‖M , and that both limits limi→∞ ‖ f + fni ‖ and limi→∞ ‖ f + fni ‖M
exist. Then

lim sup
n→∞

||| f + fn|||
q
≥ lim

i→∞
||| f + fni |||

q

= lim
i→∞
‖ f + fni ‖

q
+ lim

i→∞
‖ f + fni ‖M

q

≥ ‖ f ‖q +

(
‖ f ‖M

q
+ C lim

i→∞
‖ fni ‖M

q
)
= ||| f |||q + C lim

i→∞
‖ fni ‖M

q

= ||| f |||q + C lim sup
n→∞

‖ fn‖M
q .

Hence M is ||| · |||-asymptotically p-flat.

As a byproduct of the technology of using projectional resolutions of the identity,
we get an alternative proof of Rosenthal’s theorem on fixing c0(ω1) (see Theorem 9).

2. The results

THEOREM 5. Let X be an Asplund space of density ω1 and let p ∈ (1,∞) be given.
Then the following assertions are equivalent.

(i) X is weakly compactly generated and is generated by an asymptotically p-flat
subset, or by an asymptotically∞-flat subset.

(ii) X is generated by `p(ω1), respectively by c0(ω1).

COROLLARY 6. For p ∈ (1,∞), every subspace of `p(ω1) is generated by `p(ω1).
Every subspace of c0(ω1) is generated by c0(ω1) (and hence is weakly compactly

generated).
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Note that the fact that subspaces of c0(0) are weakly compactly generated goes
back to [9].

A Banach space is called weakly Lindelöf determined if its dual unit ball provided
with the weak∗ topology continuously injects into a 6-product of the real line.

THEOREM 7. Let X be a general Banach space of density ω1 and let p ∈ (1,∞) be
given. Then the following assertions are equivalent.

(i) X is weakly Lindelöf determined and is generated by an innerly asymptotically
p-flat subset, or by an innerly asymptotically∞-flat subset.

(ii) X is generated by `p(ω1), respectively by c0(ω1).

REMARK 8. (i) As a consequence of Theorems 5 and 7, we get that, if a weakly
compactly generated Asplund space is generated by an asymptotically p-flat set, then
it is generated by a (usually different) innerly asymptotically p-flat set; see also
Remark 4(iv).

(ii) In connection with the first statement in Corollary 6, we note that a
subspace of a Hilbert generated space may not be Hilbert generated, see Rosenthal’s
counterexample [13].

(iii) Given any p ∈ (1,∞), then every subspace of an `p(0)-generated space is
a subspace of a Hilbert generated space. Indeed, find a linear bounded operator
T : `p(0)→ X , with dense range. Then T ∗ continuously injects (BX∗, w

∗) into a
multiple of (the uniform Eberlein compact space) (B`q , w), and hence (BX∗, w

∗) itself
is a uniform Eberlein compact space. Thus C((BX∗, w

∗)) is Hilbert generated [3,
Theorem 12.17], and hence every subspace of X is a subspace of the Hilbert generated
space C((BX∗, w

∗)). Of course, if p > 2, there is a simpler argument based on the
inequality ‖ · ‖p ≤ ‖ · ‖2.

The last result goes back to Rosenthal [12, Remark 1 after Theorem 3.4], [8, Ch. 7].

THEOREM 9. Assume that a Banach space X of density ω1 admits a linear bounded
operator T : c0(0)→ X with dense range. Then there exists an uncountable subset
00 of 0 such that T restricted to c0(00) is an isomorphism.

Putting together Theorems 7 and 9, we immediately get the following result.

COROLLARY 10. If a weakly compactly generated Banach space of density ω1 is
generated by an innerly asymptotically∞-flat set, then it contains an isomorphic copy
of c0(ω1).

3. Proofs

A nonempty subset M of a Banach space X is called Asplund if it is bounded and
the pseudometric space (X∗, ‖ · ‖N ) is separable for every countable subset N of M
(see, for example, [2, Definition 1.4.1]). The concept of a projectional resolution of
the identity (PRI, for short) can be found, for instance, in [2, Definition 6.1.5]. Our
arguments will be based on the following proposition.
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PROPOSITION 11. Let (Z , ‖ · ‖) be a weakly Lindelöf determined (in particular
weakly compactly generated) Banach space, let M and N be convex symmetric and
closed subsets of BZ , and assume that N is moreover an Asplund set. Finally, let 0 be a
subset of Z that countably supports Z∗, that is, the set {γ ∈ 0 | 〈γ, z∗〉 6= 0} is at most
countable for every z∗ ∈ Z∗. Then there exists a PRI (Pα | ω0 ≤ α ≤ ω1) on (Z , ‖ · ‖)
such that Pα(M)⊂ M, Pα(N )⊂ N for every α ∈ [ω0, ω1], and ‖P∗α z∗ − P∗λ ‖N → 0
as α ↑ λ for every z∗ ∈ Z∗ and for every limit ordinal λ ∈ (ω0, ω1].

A more general statement, with a proof, can be found in [6, Proposition 15].

PROOF OF THEOREM 5. Assume that (i) holds. Let ‖ · ‖ be an equivalent norm on
X and let M be a linearly dense and ‖ · ‖-asymptotically p-flat subset of X . Put
q = p/(p − 1). Simple gymnastics with M yields a new set—call it again M—
which is symmetric, convex, closed, still ‖ · ‖-asymptotically p-flat, and such that
M ⊂ B(X,‖·‖). Since X is weakly compactly generated, Proposition 11 applied for
M = M, N = BX and 0 = ∅ yields a PRI (Pα | ω0 ≤ α ≤ ω1) on (X, ‖ · ‖) such that
(P∗α | ω0 ≤ α ≤ ω1) is a PRI on the dual space (X, ‖ · ‖)∗, and moreover Pα(M)⊂ M
for every α ∈ [ω0, ω1]; recall that Pω0 ≡ 0. We note that

⋃
ω0≤α<ω1

P∗α X∗ = X∗.
Indeed, given f ∈ X∗, we have ‖P∗α f − f ‖→ 0 as α ↑ ω1. We can find then an
increasing sequence (αn) in [ω0, ω1) such that ‖P∗αn

f − f ‖→ 0 whenever n→∞.
It follows that, putting α = sup{αn | n ∈ N} (< ω1), then f ∈ P∗α X∗. The set M is
‖ · ‖-asymptotically p-flat; let C be the positive constant in (2) for this set M .

CLAIM 1. For every f ∈ X∗, f 6= 0, every ε > 0, and every α ∈ [ω0, ω1), there is
γ f,ε,α ∈ (α, ω1) such that

‖ f + g‖q ≥ (1− ε)‖ f ‖q + C‖g‖M
q whenever g ∈ Ker P∗γ f,ε,α

and ‖g‖<
1
ε
.

PROOF. Fix any f ∈ X∗, f 6= 0, ε > 0, and α ∈ [ω0, ω1). Assume that the claim does
not hold for this triple. Find then g1 ∈ Ker P∗α+1 so that ‖g1‖< 1/ε and ‖ f + g1‖

q <

(1− ε)‖ f ‖q + C‖g1‖M
q . Further, find α1 ∈ (α + 1, ω1) such that g1 ∈ P∗α1

X∗. Find
then g2 ∈ Ker P∗α1

so that ‖g2‖< 1/ε and ‖ f + g2‖
q < (1− ε)‖ f ‖q + C‖g2‖M

q .
Find α2 ∈ (α1, ω1) so that g2 ∈ P∗α2

X∗ . . . . Find gn+1 ∈ Ker P∗αn
so that ‖gn+1‖< 1/ε

and ‖ f + gn+1‖
q < (1− ε)‖ f ‖q + C‖gn+1‖M

q . Find then αn+1 ∈ (αn, ω1) so that
gn+1 ∈ P∗αn+1

X∗ . . . . Thus we get an infinite sequence g1, g2, . . . in X∗ and an
increasing sequence α1 < α2 < · · ·< ω1. The sequence (gn) is weak∗-null. Indeed,
put λ= limn→∞ αn; we still have λ < ω1. Fix any x ∈ X . Then for every n ∈ N we
get

|〈x, gn+1〉| = |〈x, P∗λ (gn+1)〉| = |〈Pλx, gn+1〉|

= |〈Pλx − Pαn x, gn+1〉| ≤
1
ε
‖Pλx − Pαn x‖. (4)
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Hence 〈x, gn〉 → 0 as n→∞. Therefore, by (2), we have

lim sup
n→∞

‖ f + gn‖
q
≥ ‖ f ‖q + C lim sup

n→∞
‖gn‖M

q(
>(1− ε)‖ f ‖q + C lim sup

n→∞
‖gn‖M

q
≥ lim sup

n→∞
‖ f + gn‖

q
)
,

which contradicts the assumption. This completes the proof of Claim 1.

CLAIM 2. For every α ∈ [ω0, ω1) there exists βα ∈ (α, ω1) such that

‖ f + g‖q ≥ ‖ f ‖q + C‖g‖M
q whenever f ∈ P∗α X∗ and g ∈ Ker P∗βα .

PROOF. Fix any α ∈ [ω0, ω1). Let S be a countable dense subset in the (separable)
subspace P∗α X∗. Using Claim 1, put then βα = sup{γ f,1/n,α | f ∈ S, n ∈ N}. It is
easy to check that this ordinal works.

CLAIM 3. For every α ∈ [ω0, ω1) there exists τα ∈ (α, ω1) such that

‖ f + g‖q ≥ ‖ f ‖q + C‖g‖M
q whenever f ∈ P∗τα X∗ and g ∈ Ker P∗τα .

PROOF. Fix any α ∈ [ω0, ω1). We shall construct ordinals α1 < α2 < · · ·< ω1 as
follows. Put α1 = α. Let n ∈ N and assume that αn was already found. Using
Claim 2, define αn+1 = βαn (>αn). Doing so for every n ∈ N, we put τα =
supn∈N (= limn→∞αn); then τα > α and still τα < ω1. It remains to show that
this τα works. So, take any f ∈ P∗τα X∗ and any g ∈ Ker P∗τα . Fix any n ∈ N.
Then P∗αn

f ∈ P∗αn
X∗ and P∗βαn

g = P∗αn+1
g = P∗τα (P

∗
αn+1

g)= P∗αn+1
(P∗ταg)= 0. Hence,

Claim 2 yields ‖P∗αn
f + g‖q ≥ ‖P∗αn

f ‖q + C‖g‖M
q . This holds for every n ∈ N and

we know that ‖P∗αn
f − f ‖→ 0 as n→∞. Therefore ‖ f + g‖q ≥ ‖ f ‖q + C‖g‖M

q .

CLAIM 4. There exists an increasing long sequence (δα)ω0≤α≤ω1 in [ω0, ω1], with
δω0 = ω0 and δω1 = ω1, and such that for every α ∈ [ω0, ω1) we have

‖ f + g‖q ≥ ‖ f ‖q + C‖g‖M
q whenever f ∈ P∗δα X∗ and g ∈ Ker P∗δα . (5)

PROOF. Fix any α ∈ (ω0, ω1) and assume that we have already constructed ordinals
δβ for all β ∈ [ω0, α). If α has a predecessor, say α − 1, then, using Claim 3, put
δα = τδα−1 . If α is a limit ordinal, put simply δα = limβ↑α δβ .

CLAIM 5. There exists a linear, bounded, injective and weak∗-to-weak∗ continuous
operator from X∗ into `q(N× [ω0, ω1)).

PROOF. For each α ∈ [ω0, ω1) find a countable dense set {vα1 , v
α
2 , . . .} in 1

2 (Pδα+1 −

Pδα )(M)(⊂M). Define T : X∗→ RN×[ω0,ω1) by

T f (i, α)= 2−i f (vαi ), (i, α) ∈ N× [ω0, ω1), f ∈ X∗.
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Clearly, T is linear and weak∗-to-pointwise continuous. T is injective because
(Pδα | α ∈ [ω0, ω1]) is clearly a PRI on X . We shall show that the range of T is a subset
of the Banach space `q(N× [ω0, ω1)) and that T is actually a bounded linear operator
from X∗ to the latter space. Denote by Y the linear span of the set

⋃
ω0≤α<ω1

(P∗δα+1
−

P∗δα )X
∗. Take any f ∈ Y . Then we can write f in the form f = f1 + f2 + · · · + fk ,

where f j ∈ (P∗δα j+1
− P∗δα j

)X∗, j = 1, . . . , k, and α1 < α2 < · · ·< αk . Observing

that δα1 < δα2 < · · ·< δαk , we use (5) repeatedly, and thus we get

‖ f ‖q =

∥∥∥∥ k∑
j=1

f j

∥∥∥∥q

≥

∥∥∥∥k−1∑
j=1

f j

∥∥∥∥q

+ C‖ fk‖M
q

≥

∥∥∥∥k−2∑
j=1

f j

∥∥∥∥q

+ C‖ fk−1‖M
q
+ C‖ fk‖

q
M ≥ · · · ≥ ‖ f1‖

q
+ C

k∑
j=2

‖ f j‖
q
M

≥ min{1, C}
∞∑

i=1

2−iq
k∑

j=1

‖ f j‖M
q
≥min{1, C}

∞∑
i=1

2−iq
k∑

j=1

| f j (v
α j
i )|

q

= min{1, C}
∞∑

i=1

∑
α∈[ω0,ω1)

2−iq
| f (vαi )|

q
=min{1, C}‖T f ‖q

q . (6)

Therefore T f ∈ `q(N× [ω0, ω1)) for all f ∈ Y , and T (Y )⊂ `q(N× [ω0, ω1)).

Now, it follows easily from the properties of the P∗α that Y is norm-dense in X∗.
Notice that the restricted mapping T �Y is a bounded linear operator from Y into
`q(N× [ω0, ω1)), so it has a bounded linear extension T̃ to X∗, with values in
`q(N× [ω0, ω1)), and with the same norm. Since T : X∗→ RN×[ω0,ω1) is pointwise
continuous, we easily get that T = T̃ . Consequently T (X∗)⊂ `q(N× [ω0, ω1)).

Let u be an element of `p(N× [ω0, ω1)) (or of c0(N× [ω0, ω1))). In order to
prove the weak∗ continuity of the functional u ◦ T : X∗→ R defined by u ◦ T (x∗)=
〈u, T x∗〉, x∗ ∈ X∗, it suffices, by the Banach–Dieudonné theorem, to check the weak∗

continuity of u ◦ T restricted to BX∗ . But, on the (bounded) set T BX∗ , the topology
of pointwise convergence coincides with the weak∗ topology. Hence the weak∗-to-
pointwise continuity of T gives that u ◦ T is weak∗ continuous. It then follows that T
is weak∗-to-weak∗ continuous and Claim 5 is thus proved.

Finally, from the above, we can conclude that the adjoint operator T ∗ goes from
`p(N× [ω0, ω1)) (or c0(N× [ω0, ω1)) into X . And since, T is injective, T ∗(`p(N×
[ω0, ω1)) (or T ∗(c0(N× [ω0, ω1)))) is dense in X and we have completed our proof
of the first half of Theorem 5, namely that (i) implies (ii).

Assume that (ii) holds. The space `p(0), with 1< p <∞, is reflexive, and c0(0)

is weakly compactly generated (it is enough to consider the set of the canonical unit
vectors). The rest follows from the corresponding implication of Theorem 7 (proved
below) and from Remark 4(v).
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PROOF OF COROLLARY 6. Let p ∈ (1,∞]. Let (X, ‖ · ‖) be a subspace of `p(ω1) (or
c0(ω1)). Put q = p/(p − 1). Let Q : `q(ω1)→ X∗ be the canonical quotient mapping.
The unit ball B`p(ω1) is a ‖ · ‖p-asymptotically p-flat set (with constant C = 1). We
shall prove that BX is a ‖ · ‖-asymptotically p-flat set in X . To this end take x∗ ∈ X∗

and a weak∗-null sequence (x∗n ) in X∗. Select first a subsequence (x∗nk
) of (x∗n ) such

that ‖x∗nk
‖→ lim supn→∞ ‖x

∗
n‖ as k→∞. Let (l∗k ) be a sequence in `q(ω1) such that

Ql∗k = x∗ + x∗nk
and ‖l∗k ‖ = ‖x

∗
+ x∗nk

‖ for all k ∈ N. Further, the countability of the
supports allows us to select a subsequence (l∗k j

) of (l∗k ) that is weak∗-convergent to
some l∗ ∈ `q(ω1). Obviously, Ql∗ = x∗. Then

lim sup
n→∞

‖x∗ + x∗n‖
q
≥ lim sup

j→∞
‖x∗ + x∗nk j

‖
q

= lim sup
j→∞

‖l∗k j
‖

q
= lim sup

j→∞
‖l∗ + (l∗k j

− l∗)‖q = ‖l∗‖q + lim sup
j→∞

‖l∗k j
− l∗‖q

≥ ‖x∗‖q + lim sup
j→∞

‖x∗nk j
‖

q
= ‖x∗‖q + lim sup

n→∞
‖x∗n‖

q .

We obtained that BX is ‖ · ‖-asymptotically p-flat. It is enough now to apply
Theorem 5. 2

REMARK 12. The proof of Corollary 6 shows that, for p ∈ (1,∞], if X is a subspace
of a Banach space Z such that BZ is asymptotically p-flat and BZ∗ is weak∗

sequentially compact, then BX is also asymptotically p-flat. As a byproduct, we get,
from Theorem 5, that if Z is moreover WLD, then X is `p(ω1)-generated. Let us recall
that the class of Banach spaces whose dual unit ball is weak∗ sequentially compact is
quite large. Weakly Lindelöf-determined spaces as well as weak Asplund spaces, even
Gateaux differentiability spaces, are such (see [2, Theorem 2.1.2]).

The following intermediate result will be used in the proof of Theorem 7.

LEMMA 13. Let X be a Banach space such that BX∗ is weak∗-sequentially compact.
Then, for all p ∈ (1,∞], every asymptotically p-flat subset M of X is an Asplund set.

PROOF. Let N be a countable subset of M . Then, spanQ(N ), the set of all linear
rational combinations of elements in N , is also countable. Let Y = span(N ). Let
Q : X∗→ Y ∗ be the canonical quotient mapping. Given y ∈ spanQ(N ), find φ(y)=
y∗ ∈ SY ∗ such that 〈y, y∗〉 = ‖y‖. The separation theorem gives

0Q[φ(spanQ(N ))]
w∗

= BY ∗,

where 0Q[·] denotes the absolutely rational-convex hull. We shall prove that the
(countable) set 0Q[φ(spanQ(N ))] is ‖ · ‖N -dense in X∗. This will conclude the proof.

To this end, choose any x∗ ∈ X∗. If x∗ ∈ Y⊥, we can find, as ‖ · ‖-close
(in particular, as ‖ · ‖N -close) to x as we wish, an element which is not in Y⊥.
Thus, we may assume, without loss of generality, that x∗ 6∈ Y⊥ and that, for the
moment being, ‖Qx∗‖ = 1. Let y∗ = Qx∗ (∈SY ∗). Since Y is separable, we can
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find a sequence (y∗n ) in 0Q[φ(spanQ(N ))] such that y∗n
w∗

−→ y∗ as n→∞. For each
element z∗ ∈ 0Q[φ(spanQ(N ))], choose a single element ψ(z∗) in BX∗ such that
Q(ψ(z∗))= z∗. Let x∗n = ψ(y

∗
n ) for all n ∈ N. By the assumption, the sequence (x∗n )

has a subsequence, denoted again by (x∗n ), such that x∗n
w∗

−→ x∗0 . Then we have

lim sup
n→∞

‖x∗n‖
q
≥ ‖x∗0‖

q
+ C lim sup

n→∞
‖x∗0 − x∗n‖

q
M .

Obviously, Qx∗n = y∗n (
w∗

−→ y∗). Hence Qx∗0 = y∗, and so ‖x∗0‖ = 1. It follows that
lim supn ‖x

∗
n‖

q
= 1 and we get ‖x∗n − x∗0‖M → 0. In particular, ‖ψ(y∗n )− x∗0‖N → 0.

This proves the assertion for an element x∗ ∈ X∗ such that ‖Qx∗‖ = 1, since the
sequence (x∗n ) is in the countable set ψ(0Q[φ(spanQ(N ))]). A homogeneity argument
involving rational multiples of arbitrary elements in X∗ concludes the proof. 2

PROOF OF THEOREM 7. Assume that (i) holds. We shall follow almost word for
word the proof of the corresponding implication of Theorem 5 (already proved),
with the following changes. By Lemma 13, M is an Asplund set. Then we apply
Proposition 11 with N = M and 0 = ∅ and get a PRI (Pα | α ∈ [ω0, ω1]) on (X, ‖ · ‖)
such that Pα(M)⊂ M for every α ∈ [ω0, ω1], and ‖P∗λ f − P∗α f ‖M → 0 as α ↑ λ
whenever f ∈ X∗ and λ ∈ (ω0, ω1] is a limit ordinal. From this we get that still⋃
ω0≤α<ω1

P∗α X∗ = X∗.
Claims 1, 2, 3, and 4 now read as follows.

CLAIM 1′. For every f ∈ X∗, f 6= 0, every ε > 0, and every α ∈ [ω0, ω1), there is
γ f,ε,α ∈ (α, ω1) such that

‖ f + g‖M
q
≥ (1− ε)‖ f ‖M

q
+ C‖g‖M

q whenever g ∈ Ker P∗γ f,ε,α
and ‖g‖<

1
ε
.

CLAIM 2′. For every α ∈ [ω0, ω1) there exists βα ∈ (α, ω1) such that

‖ f + g‖M
q
≥ ‖ f ‖M

q
+ C‖g‖M

q whenever f ∈ P∗α X∗ and g ∈ Ker P∗βα .

CLAIM 3′. For every α ∈ [ω0, ω1) there exists τα ∈ (α, ω1) such that

‖ f + g‖q ≥ ‖ f ‖q + C‖g‖M
q whenever f ∈ P∗τα X∗ and g ∈ Ker P∗τα .

CLAIM 4′. There exists an increasing long sequence (δα)ω0≤α≤ω1 in [ω0, ω1], with
δω0 = ω0 and δω1 = ω1, and such that for every α ∈ [ω0, ω1) we have

‖ f + g‖M
q
≥ ‖ f ‖M

q
+ C‖g‖M

q whenever f ∈ P∗δα X∗ and g ∈ Ker P∗δα .

The proofs of Claims 1′, 2′, 3′ and 4′ follow the proofs of Claims 1, 2, 3, and 4 with
the change that the norm ‖ · ‖ in X should be everywhere replaced by the seminorm
‖ · ‖M . Moreover, in the proof of Claim 2′, we use the fact that once M is an Asplund
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set then the P∗α X∗, ω0 ≤ α < ω1, are separable spaces in the metric coming from the
seminorm ‖ · ‖M .

A corresponding Claim 5′ (a duplicate of Claim 5) should be stated. To prove it, we
mimic the proof of that one profiting from the inequality ‖ · ‖M ≤ ‖ · ‖ and from the
fact that the properties of the P∗α guarantee that Y is dense in X∗ in the metric coming
from ‖ · ‖M .

The rest of the proof that (i) implies (ii) is the same as in the proof of Theorem 5.
Assume that (ii) holds. Take p ∈ (1,∞). Assume there exists a bounded linear

operator S : `p(ω1)→ X , with dense range. Put q = p/(p − 1) and M = S(B`p(ω1)).
Then S∗ : X∗→ `q(ω1) is an injection, and hence the space X is weakly Lindelöf
determined. Let f ∈ X∗ and consider a weak∗-null sequence ( fn) in X∗. Then

S∗ fn
w∗

−→ 0, and hence

lim sup
n→∞

‖ f + fn‖M
q
= lim sup

n→∞
sup{|〈x, f + fn〉|

q
: x ∈ S(B`p(ω1))}

= lim sup
n→∞

sup{|〈u, S∗ f + S∗ fn〉|
q
: u ∈ B`p(ω1)}

= lim sup
n→∞

‖S∗ f + S∗ fn‖q
q
≥ ‖S∗ f ‖q

q
+ lim sup

n→∞
‖S∗ fn‖q

q

= ‖ f ‖M
q
+ lim sup

n→∞
‖ fn‖M

q
;

here ‖ · ‖q means the canonical norm on `q . This shows that the set M is innerly
asymptotically p-flat.

The case of inner asymptotical∞-flatness can be dealt with analogously. 2

PROOF OF THEOREM 9. Let eγ , γ ∈ 0, denote the canonical unit vectors in c0(0).
Put 01 = {γ ∈ 0 | T eγ 6= 0}. Clearly, 01 is uncountable. We observe that the set
{T eγ | γ ∈ 01} countably supports all of X∗. Then we apply Proposition 11 with
M = N = {0} and 0 = 01 to get a PRI (Pα | ω0 ≤ α ≤ ω1) on (X, ‖ · ‖) such that
Pα(T eγ ) ∈ {0, T eγ } for every α ∈ (ω0, ω1) and every γ ∈ 01. Put

A = {α ∈ [ω0, ω1) : Pα(T eγ )= 0 and Pα+1(T eγ )= T eγ for some γ ∈ 01}.

For every α ∈ A then pick one γα ∈ 01 such that Pα(T eγα )= 0 and Pα+1(T eγα )=
T eγα . Let 02 = {γα | α ∈ A}. This set is uncountable, for otherwise T (c0(01)) would
be separable. A simple ‘countability’ argument yields another uncountable subset 00
of 02 and 1> 0 such that ‖T eγ ‖>1 for every γ ∈ 00.

Take any a ∈ c0(00). Let {δ1, δ2, . . .} be an infinite countable subset of 00
containing the support of a. For i ∈ N let ai be the δi -th coordinate of a. Then
‖
∑n

i=1ai eδi − a‖→ 0 as n→∞. For every i ∈ N find αi ∈ [ω0, ω1) such that
Pαi+1(T eδi )= T eδi and Pαi (T eδi )= 0. Observe that αi 6= α j whenever i, j ∈ N are
distinct. Then the ‘orthogonality’ of the projections Pαi+1 − Pαi , i ∈ N, yields that
for every fixed n, j ∈ N, with n > j , we have∥∥∥∥ n∑

i=1

ai T eδi

∥∥∥∥≥ 1
2

∥∥∥∥(Pα j+1 − Pα j )

( n∑
i=1

ai T eδi

)∥∥∥∥= 1
2
‖a j T eδ j ‖

(
≥

1
2
|a j |1

)
.

https://doi.org/10.1017/S1446788709000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000068


[13] Flat sets, `p-generating and fixing c0 in the nonseparable setting 209

Hence

‖T a‖ = lim
n→∞

∥∥∥∥T

( n∑
i=1

ai eδi

)∥∥∥∥= lim
n→∞

∥∥∥∥ n∑
i=1

ai T eδi

∥∥∥∥
≥
1

2
max{|a j |, j ∈ N} =

1

2
max{|aγ | : γ ∈ 00} =

1

2
‖a‖.

This proves that T is an isomorphism from c0(00) into X . 2
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