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1. Introduction

The series Y % o a, is said to be summable |E,| (0 < « < 1) if

n

=, (’:) a'(1—a)s,,

v=0
where s, = ay+a;+ - - +a,, and
§)) Y lty—tyyl < 00.
n=1
Since

T, = (n) (1 —a)" " "va, = n(t,—t,-)
v=1

v

(see [2]), (1) is equivalent to

0

@) 2

n=1]n

n

< 0.

We suppose throughout that f(x) is a periodic function with period 2x,
integrable in the Lebesgue sense. Let

J(x) ~ %o 4 i (a, cos nx+ b, sin nx)
©) .
=2 Ax).

n=0
The series conjugate to (3) is

o]

“4) Y (b, cos nx—a, sin nx) =n§1Bn(x),

n=1
and the differentiated series of (3) is

oo

) Y nB,(x).

n=1

129
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We write
¢(t) = ¢.(1) = 3{f(x+1)+f(x—1)—2s},
Y1) = H{fx+0-f(x-1)}.

N. Tripathy [3] has shown the condition that ¢(¢) is of bounded variation
in (0, ) does not ensure the summability of (3) by |E,|.
In this paper we shall prove

THEOREM 1. If g(t) = ¢(¢) log 1/t is of bounded variation in 0 £t <6 < 1,
then Y 7., A,(x) is summable |E,). g(t) cannot be replaced by g,(t) = ¢(t)(log 1/t)"
Jor0 < np<1.

THEOREM 2. If
]
1
[ 108 L1dstay < o,
0 u
then Y o A(x) is summable |E,).

J. M. Whittaker [4] proved that, if ¢(¢)/t € L(0, §), then the Fourier series (3)
is summable | 4]. We shall prove

THEOREM 3. The condition ¢(t)/t" € L(0, n), where n < 2, does not ensure
that (3) is summable |E,|.

However we have
THEOREM 4. If ¢(1)/t* € L(O, 3), then (3) is summable |E,|.

For the conjugate series we have

THEOREM 5. If Y(+0) = 0 and

falog Liayo) < w

0 t
then the conjugate series (4) is summable |E,|.
Finally we shall prove the following theorem on the differentiated series.

THEOREM 6. If y(+0) = 0 and

L)
1

©) [ St < e
ol

then (5) is summable |E,|. (6) cannot be replaced by
1

™) [ Stav < oo
ol

Sforany n < 2.
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2. Proof of Theorem 1

Let
G,(u) = i (Z) a’(1—a)" v cos vu.
Then T
w = = [ oo

®) _ % (f:+ L) ()G, (1) du

2 r rr
= = (I,+1))
T
Now

G,(u) = d (i (’:) a’(1—a) sin vu)

(;;l v=1
d iuyn
©) = Im — (1—a+ae")
du

= Im {naie™(1 —a+oe™)" ™'}
— napn—l(u) Im {ieiu+ir:9(u)}
= nap"” (u) cos (u+n—10(u)),

where

p(u) = Vl —4x(1 —a) sin® g— ,

\ _ o sin u
6(u) = tan r = - .
Il—a+acosu

It is clear that p(u) < e™" (0 < u < =), where c is a positive constant. Hence

1L
n

$ U= o ([giCS )

(10) = o3 &™)

= 0(1).

E(u) = J: (log it) i 1G,,(t) dt.
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Then
= [ ot (l0g 1) "G,
= g(0)E(6)— J:E,,(u) dg(u).
Hence
(11) f Il <
n=1 R

if
W) 5B,

uniformly for 0 < 4 < 4. Let

H,(u) = J:G,,(r)dz

=v§1 (2) a’(1—a)" ™" sin vu
= p"(u) sin nb(u).

Then

1 -1 u 1 1 ~2

(13) E,u) = (log —) H,(u)—| —(log—} HJt)dr.
u o !t t

Let N be the smallest positive integer such that Nu* > 1. Then

(os ) 2= (s ) (2

© ~cnu?
+ e——)

p"(u) sin nO(u)

n=1 n=1 n=N+1 n
-1 N © —cy/n
(14) =0 ((log 1) y i) 0 (Z ¢ )
u n=1 N n=1 BN

= 0(1),
uniformly for 0 < u < 4. Now write

“ 1 1 ~2 ! 143
(15) —(\log—) H(t)dt = J,+J,,

o t t

where
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u -2
f L (log l) H,(t)dt (u < l) ,
, ot t n
J =
" 1/n -2
f 1 (log i) H (1)dt (u > i) ,
o 1 t n
0 (u < l) s
n
J) = .
f L (log i)_ZH,,(t)dt (u > l) .
tn t t n

Since sin vz = 0(vt), we have

H(1)=0 (th:I (':)) a"(1 —a)”—"v)

= 0(nt).
Hence
I -o(Z ] (o) o
1 -0(Z )
= 0(1).

It is clear that

0

™M™=
< |-

v=1

(1) =o(,).

and hence, for u > 1/n,

n

én
J)' = n(log n)'2 ( Y (’:) a'(1—a)' " sin vt) dt
1/n

v=1
( )

where 1/n < &, £ u. It follows that
(17 )

From (13), (14), (15), (16) and (17), we see that (12), and hence (11) holds. The
first part of Theorem 1 follows from (8), (10) and (11).

a1
n

= 0(1).

To prove the second part, we required the following lemma due to L. S.
Bosanquet and H. Kestleman [1].
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LEMMA 1. Suppose that f,(x) is measurable in (a, b), where b—a < oo, for

n=1,2,---. Then a necessary and sufficient condition that, for every function
h(x) summable over (a, b), the functions f,(x)h(x) should be summable over (a, b)
and
=) b
Y f h(x)f,(x)dx | < o0
n=1 a

is that ¥ ;1| f,(x)| should be essentially bounded in (a, b).
(10) is unaffected when g(z) is replaced by g,(1). Let

E"u) = f : (log it) Gyt dt.

Then
(18) 1; = 0)F0)~ | Fxwda o)
We have
EY(5) = (log —(ls—)—”H,,(é)—n f : it (log it)_"_ (1) d.
Since
300 (5 <0
= 0(1),

and (16), (17) remain valid when (log 1/7)"2 is replaced by (log 1/t)""" %,
(19) v EON o
n=1 n

It follows from Lemma 1, (18) and (19) that a necessary condition for (11) to
hold is that

(20) 5 1B

n=1 n

should be essentially bounded for 0 £ u £ 6. Now

El(u) = (log %)_"H,,(u)—n J

0

u

l (log ~1~) H,(t)dt,
t t
and from (15), (16) and (17) with (log 1/z)~2 replaced by (log 1/£)™""*,
) u -n—1
! f -l—(log l) H,(1)dt

— < ®©
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uniformly for 0 < u < 4. Since (see [3], page 24)

(1 1) 5. 1001,

u

as u — 0, (20) is not essentially bounded. This proves the second part of the
theorem.

3. Proof of Theorem 2

We shall deduce Theorem 2 from Theorem 1.

Suppose that the conditions of Theorem 2 are satisfied. Then ¢(u) is of
bounded variation in (0, 3), and hence it must tend to a limit as ¢ — 0. By altering
the value of s if necessary, we may suppose that this limit is 0. (Note that the
hypothesis of Theorem 2 is unaffected by a change of the value of s5.) Now

0] o 1 (] 1
e [1a0tn = [ 108 L 1agr+ | L ataan.
0 0 u ou
The first term on the right of (21) is finite by hypothesis. Since ¢(u) - 0 asu — 0,

6()| < fl a4

so that the second term on the right of (21) does not exceed

[ % [1apnau = fl ag(0) f‘?

= f log 2 | dé(u)]
0 u

< o,
Hence the resulit.

4. Proof of Theorem 3

Since

(22) =2 j " ()G (u) du,

it follows from Lemma 1 that (3) is summable |E,| if and only if 4" Y 22, |G, (u)l/n,
is essentially bounded for 0 < u < =, or, from (9),

(23) u"ni p"~(u)| cos (u+n—10(x))|
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is essentially bounded for 0 < u < n. Let M = [I/u] and N = [1/u*). Then (23)
is greater than

u" iMp"' (u)] cos (u+n—10w))| = u" gMp"' Y(u) cos*(u+n—16(u))

= _ L " (w)+ 5"2 p" " (u) cos (2u +2n—16(u))

= S1+SZ'

Without loss of generality, we assume that 1 < 5 < 2. Then

S, = 0{u"p™ '(u)| max Z cos (2u+2n—10(u))l}

Msm=ZNn=
n,—cMu?
0 (u e )
sin 6(u)
= o(1).

There exists a positive constant ¢, such that p?(u) = e “* Hence, for n < 1/u?,
p"~'(u) = ¢, for some constant ¢, > 0. Therefore

_ n
c;(N—Mu .

s, >
t= 2

as u - 0+. Hence (23) is not essentially bounded.

5. Proof of Theorem 4

It follows from (22) that (3) is summable |E,| if
(24) Z IG W) < o
uniformly for 0 £ u < zn. Now the left hand side of (24) is equal to
au Y, "' (u) cos (u-+n=T6))| = O(u? ¥, e=™)
n=1 n=1
=0 (uzf e_"‘z"dy)
1
= 0(1)

uniformly for 0 < u < n. Hence (24) is satisfied.
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6. Proof of Theorem 5

Let
Fo(u) =é:1 (’:) a'(1—a)" ™"y sin vu.
Then
Tn = ;:,1 (';) o' (1—a)"""vB (x)
(25) = ;2{ fﬂ/f(u)F,,(u) du
2 ([ [)soriorn
= 2 (i x0).
We have
F,(u) = nap"™*(u) sin (u +n—10(x)).
Hence

— 0(1).

Now
%= [~y [ roa] + [ ([ ra) v

= [([ Foar) anta
so that
27) y <o
if "

3| [roa = ().

Since

[[ iy v = 500 cos ) - (8) os 0@,
we have
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o _—culy
J.5)
1 y
1/u —culy w _—culy
[ w)eo(] )
1 y 1 Y
1/u ©
=0 uf 9) +0(f e_“‘zydy)
Y 1/u
-o(,)
» .

Hence (27) holds and the theorem follows from (25), (26) and (27).

7. Proof of Theorem 6

We have
T, =v;1 (t) (1 —a)"""v*B,(x)

2 (" d

= - 2 [ w5, Gl
2 (% [\ d

=- (f0+f6) t//(u)ﬁ G,(u)du

- -2+,
T

Since

i G, (u) = —n(n—1)a?p" " *(u)sin (2u +n—20(u)) — nap" ™ '(u)sin (u +n—16(u))

- O(nze_"cuz),

1Yl
n

=0 (J:Il/t(u)l("ine'"‘“z)du)

o0

(28) - 0( Z ne—ncdz)

n=1

= 0(1).

{3
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We have
= 4060)- [ Gu)du
From (23),
(29) i 1G.(O) _ (i e_:")
= 0(1),
and
3 5= 05 o T
~oF )
“o{fie
1

-0()-

Hence

It follows from (28) and (30) that (2) holds, and hence the first part of
Theorem 6 is true.

When (6) is replaced by (7), (28) and (29) are not affected. Since, from the
proof of Theorem 3, u" ., |G,(u)l/n is not essentially bounded, there exists
a summable function a(x) such that

J:: wa(u)G,(u)du

|
Y —
n

n=1

= 0.

Let y(u) = [su"a(u)du. Then y(+0) = 0. Since

2 on_ 2 o0
1Tl 2 — Y] — — Y]]
T T

.2

’6.(w) ah/x(u)j - 2 oo - 2 1%

we have
i T
n=1 R

which proves the second part of the theorem.
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