
Mathematical Structures in Computer Science (2022), 32, pp. 511–541
doi:10.1017/S0960129522000317

PAPER

String diagram rewrite theory II: Rewriting with
symmetric monoidal structure
Filippo Bonchi1, Fabio Gadducci1∗ , Aleks Kissinger2, Pawel Sobocinski3 and Fabio Zanasi4

1University of Pisa, Pisa, Italy, 2University of Oxford, Oxford OX1 2JD, UK, 3Tallinn University of Technology, Tallinn,
Estonia and 4University College London, London WC1E 6BT, UK
∗Corresponding author. Email: fabio.gadducci@unipi.it

(Received 14 December 2020; revised 7 August 2022; accepted 23 August 2022; first published online 29 September 2022)

Abstract
Symmetric monoidal theories (SMTs) generalise algebraic theories in a way that make them suitable to
express resource-sensitive systems, in which variables cannot be copied or discarded at will. In SMTs, tra-
ditional tree-like terms are replaced by string diagrams, topological entities that can be intuitively thought
of as diagrams of wires and boxes. Recently, string diagrams have become increasingly popular as a graph-
ical syntax to reason about computational models across diverse fields, including programming language
semantics, circuit theory, quantum mechanics, linguistics, and control theory. In applications, it is often
convenient to implement the equations appearing in SMTs as rewriting rules. This poses the challenge of
extending the traditional theory of term rewriting, which has been developed for algebraic theories, to
string diagrams. In this paper, we develop a mathematical theory of string diagram rewriting for SMTs.
Our approach exploits the correspondence between string diagram rewriting and double pushout (DPO)
rewriting of certain graphs, introduced in the first paper of this series. Such a correspondence is only sound
when the SMT includes a Frobenius algebra structure. In the present work, we show how an analogous cor-
respondence may be established for arbitrary SMTs, once an appropriate notion of DPO rewriting (which
we call convex) is identified. As proof of concept, we use our approach to show termination of two SMTs
of interest: Frobenius semi-algebras and bialgebras.

Keywords: String diagram; symmetric monoidal category; double-pushout rewriting

1. Introduction
The study of algebraic theories and their role in modelling computing systems (Behrisch et al.
2012; Hyland and Power 2007) is a recurring theme of John Power’s research, and the subject of
some of his most influential contributions. In a series of articles (Garner and Power 2018; Lack and
Power 2009; Power 1999, 2005), he and his coauthors developed an enriched category theoretic
generalisation of Lawvere theories and explored their applications, particularly in the study of
computational effects of programming languages. Whereas monads provide a powerful theory for
principled and compositional definitions of denotational semantics, as pioneered byMoggi (1991),
algebraic theories are particularly useful (Power 2004, 2006a,b) in the development of formal and
principled approaches to operational semantics, as shown in a series of articles as part of a long
running and productive collaboration with Gordon Plotkin (Hyland et al. 2002; Plotkin and Power
2001a,b, 2002, 2003, 2004).

There have been several efforts to generalise the notion of algebraic theory in general, and that
of Lawvere theory in particular. Especially after the work of Lack (2004), the theory of PROPs (Mac
© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-
commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is used to distribute the
re-used or adapted article and the original article is properly cited. The written permission of Cambridge University Press must be obtained
prior to any commercial use.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317
https://orcid.org/0000-0003-0690-3051
mailto:fabio.gadducci@unipi.it
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129522000317&domain=pdf
https://doi.org/10.1017/S0960129522000317

512 F. Bonchi et al.

Lane 1965) – a particularly simple family of symmetric strict monoidal categories – has been
advanced as a categorical tool for the study of algebraic theories, and PROPs have been applied
in several parts of computer science (Baez and Erbele 2015; Bonchi et al. 2017b,d, 2019; Coecke
and Duncan 2011; Coecke and Kissinger 2017; Ghica et al. 2017; Jacobs et al. 2019; Sadrzadeh
et al. 2013; Zanasi 2015). The notion of algebraic theory here is that of symmetric monoidal the-
ory (SMT), with the essential difference being that the underlying assumption of Cartesianity is
discarded. Indeed, PROPs generalise Lawvere theories, since the latter are nothing but Cartesian
PROPs. The correspondence is well-behaved enough to extend to presentations of theories: indeed,
it has been since long understood (Fox 1976) that any presentation of a Lawvere theory can be
seen as a presentation of a SMT (Bonchi et al. 2018b). PROPs are more general and can be used to
capture partial and relational theories (Bonchi et al. 2017c; Corradini and Gadducci 2002; Liberti
et al. 2021; Zanasi 2016). Overall, it appears that symmetric monoidal structure is the axiomatic
baseline for many pertinent examples.

One of the driving motivations for the development of rewriting theory has been the desire to
implement aspects of algebraic theories. For example, the word problem for a (presentation of an)
algebraic theory is decidable if one can orient the equations l= r, obtaining rewriting rules l→ r,
and prove confluence and termination of the resulting rewriting system. In this way, one obtains
normal forms. To decide whether two terms are judged equal by such an algebraic theory, it
suffices to rewrite both until no more redexes are found, then compare the results: they are equal
precisely when they rewrite to the same normal form. However, classical rewriting theory has been
developed for ordinary terms, which are intimately connected with classical algebraic theories.

The big question driving the theoretical contributions of this paper is ‘how does one implement
algebraic theories captured by PROPs?’. If we take rewriting as an answer, then the rewriting has
to be done up-to the axioms of symmetric strict monoidal categories.

Traditional terms enjoy a pleasantly simple structure: their syntactic decomposition may be
represented as trees. Analogously, the structure of terms of symmetric monoidal categories may
be represented as a particular family of string diagrams. However, there is an underlying prob-
lem: trees are combinatorial objects that are elements of a classical, inductive data type, with
well-understood and efficient algorithms that are exploited for rewriting. On the other hand,
string diagrams have traditionally been considered as topological entities (Joyal and Street 1991).
Our first task is therefore to understand string diagrams as combinatorial objects. In the pre-
quel (Bonchi et al. 2022) to this paper, we showed a close connection between string diagrams
over a signature � and the category of discrete cospans of hypergraphs with �-typed edges.
Nevertheless, the correspondence is not an isomorphism: for isomorphic cospans to be equated
as string diagrams, they must be considered up to an underlying special Frobenius structure.
While examples of such theories abound, here we consider mere symmetric monoidal struc-
ture. In Theorem 25, we characterise those cospans that arise via this correspondence, and in
Proposition 27 we extend this characterisation to the multi-coloured case. The cospans of interest
are those whose underlying hypergraph is acyclic and satisfies an additional technical condition
that we refer to as monogamy. Checking both is algorithmically simple enough.

Having identified a satisfactory combinatorial representation leads us to the actual mechanism
of rewriting, which is an adaptation of the DPO approach (Corradini et al. 1997). The first modi-
fication of classical DPO is forced on us by the fact that we are rewriting cospans of hypergraphs,
hence the rewriting has to be done in a way that respects the interfaces. Similar approaches have
been considered previously in the literature on graph rewriting, though, the most notable exam-
ple being Ehrig and König (2004). Second, and more seriously, the general mechanism of DPO
rewriting is not sound for mere symmetric monoidal structure. The reason for this has already
been highlighted in the previous paragraph: the correspondence between string diagrams and
cospans of hypergraphs works when string diagrams are considered modulo the axioms of sym-
metric monoidal categories as well as those of the Frobenius structure. Given that we do not want

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 513

to assume the presence of Frobenius, we must suitably restrict the DPO mechanism. We intro-
duce two technical modifications: first, legal pushout complements are restricted to a variant we
call boundary complements in order to preserve monogamy and acyclicity of the resulting cospan,
and second, matches have to be restricted to convex matches, which have a topologically intuitive
explanation. We call the resulting variant convex DPO rewriting and show that it is a sound and
complete mechanism for rewriting modulo symmetric monoidal structure in Theorem 35.

To illustrate the framework, we study two examples of symmetric monoidal theories (SMTs):
Frobenius semi-algebras and bialgebras. For both theories, we demonstrate straightforward proofs
of terminationmaking explicit use of the graph-theoretic structure.We furthermore show that the
theory of Frobenius semi-algebras is not confluent using a surprising property of convex rewrit-
ing: namely that non-overlapping rewriting rule applications can interfere with each other. Our
counter-example to confluence is adapted from an example due to Power (1991), which was origi-
nally given in the context of pasting diagrams for 3-categories. Incidentally, Power’s example also
occurred in a festschrift, in honour of Max Kelly’s 60th birthday in 1991.

This paper is based on previous conference articles (Bonchi et al. 2016, 2017a, 2018a), and it
is the second in the series, following Bonchi et al. (2022), that collects these results in a coherent
and comprehensive narrative. The formulation of our characterisation for coloured props, as well
as the case studies of Frobenius semi-algebras (Section 5.1) and bialgebras (Section 5.2), is novel
with respect to the conference papers.

Structure of the paper. Although the material in this paper is a prosecution of Bonchi et al.
(2022), we have tried to make the presentation self-contained. We give the background mate-
rial in Section 2. In Section 3, we give the characterisation of string diagrams for PROPS as
discrete cospans of hypergraphs that are acyclic and monogamous. In Section 4, we develop
convex DPO rewriting, the mechanism that correctly implements rewriting modulo symmetric
monoidal structure. Finally, in Section 5, we consider two case studies: Frobenius semi-algebras
and bialgebras.

2. Background
2.1 Symmetric monoidal theories and PROPs
In this section, we recall some basic notions and fix notation. We confine ourselves to the defini-
tions that are strictly necessary for our developments and refer the reader to the first part of this
exposition (Bonchi et al. 2022) for a gentler introduction to the same notions.

A SMT is a pair (�, E). Here, � is a monoidal signature, consisting of operations o : n→m
of a fixed arity n and coarity m, for n,m ∈N. The second element E is a set of equations, namely
pairs of �-terms l, r : v→w with the same arity and coarity. Recall that �-terms are constructed
by combining the operations in �, identities idn : n→ n and symmetries σm,n : m+ n→ n+m
for eachm, n ∈N, by sequential (;) and parallel (⊕) composition.

SMTs have a categorical rendition as PROPs (Mac Lane 1965) (monoidal product and
permutation categories).

Definition 1. (PROP). A PROP is a symmetric strict monoidal category with objects the natural
numbers, where the product on objects, denoted ⊕, is addition. Morphisms are identity-on-objects
symmetric strict monoidal functors. PROPs and their morphisms form the category PROP.

An SMT (�, E) gives raise to a PROP S�,E by letting the arrows u→ v of S�,E be the �-terms
u→ vmodulo the laws of symmetric monoidal categories (Figure 1) and the smallest congruence
containing the equations t= t′ for any (t, t′) ∈ E . We are going to represent these arrows by using

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

514 F. Bonchi et al.

(s ; t) ; u= s ; (t ; u) idn ; s= s= s ; idm
(s⊕ t)⊕ u= s⊕ (t⊕ u) id0 ⊕ s= s= s⊕ id0

(s ; u)⊕ (t ; v)= (s⊕ t) ; (u⊕ v) idm ⊕ idn = idm+n
(σm,n ⊕ idp) ; (idn ⊕ σm,p)= σm,n+p σm,n ; σn,m = idm+n

(s⊕ idm) ; σm,n = σm,p ; (idm ⊕ s)

Figure 1. Laws of symmetric monoidal categories instantiated to a PROP (C,⊕, 0), withm, n, p ∈N objects ofC and s, t, u, v
morphisms ofC of the appropriate (co)arity. The laws express associativity of ; and⊕, and how they interact with each other
and with the identities. Also, they express that symmetries are natural and involutive.

the graphical language of string diagrams (Selinger 2011). When E is empty, we shall use notation
S� for the PROP presented by (�, E).

The SMT of special commutative Frobenius algebras (which we shall usually refer to simply as
Frobenius algebras, for brevity) plays a special role in our developments.

Example 2. (Frobenius Algebras). Consider the SMT (�Frob, Efrob), where

�Frob :=
{

: 2→ 1, : 0→ 1, : 1→ 2, : 1→ 0
}

and Efrob is the set consisting of the following three equations

= = =

s = = =

= =

We use Frob to abbreviate the PROP S(�Frob,Efrob) presented by (�Frob, EFrob).

As for regular algebraic theories, one may consider multi-coloured versions of SMTs and
PROPs. What changes is the notion of signature, which is now a pair (C,�) consisting of a set
C of colours and a set � of operations o : w→ v, with w, v ∈ C� words over C.

Definition 3. (Coloured Prop). Given a finite set C of colours, a C-coloured PROP A is a sym-
metric strict monoidal category where the set of objects C� is the set of the finite words over C and
the monoidal product on objects is word concatenation. A morphism from a C-coloured PROP A

to a C′-coloured PROP A
′ is a symmetric strict monoidal functor H : A→A

′ acting on objects as
a monoid homomorphism generated by a function C→ C′. Coloured PROPs and their morphisms
form the category CPROP.

As expected, PROP is the full sub-category of CPROP given by restricting to {c}-coloured
PROPs, for a fixed colour c.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 515

Example 4. For later use, we recall the multi-coloured analogous of Example 2, which is the
theory of Frobenius algebras over a set C of colours. Its monoidal signature includes operations

: cc→ c : ε→ c : c→ cc : c→ ε

(where ε ∈ C� denotes the empty word) and equations as in Example 2 for each colour c ∈ C. We
write FrobC for the C-coloured PROP presented by this SMT.

Remark 5. As observed in Bonchi et al. (2022), coproducts in CPROP work a bit differently
than in PROP. Intuitively, a coproduct C+C

′ in PROP will identify the common core of the two
PROPs, i.e. the set of objectsN and the symmetrical monoidal structure on these objects. Instead, a
coproduct in CPROP will not make such identification, as the involved PROPs, say D and D′, may
be based on different sets of colours. However, if D and D

′ happen to be coloured from the same
set C, we may still identify their common structure. Formally, this takes the form of a pushout,
which we write D+C D

′. Such pushout is obtained from the span of the inclusion morphisms
D←− PC −→D

′, where PC is theC-coloured PROP presented by the theory with an empty signature
(C,∅) and no equations. One may think of PC as having arrows w→ v the permutations of w into
v (thus arrows exist only when the word v is an anagram of the word w).

2.2 Syntactic rewriting for PROPs
Definition 6. A rewriting rule in a PROP A consists of a pair of arrows l, r : i→ j in A with the
same arities and coarities, which we write as

〈
l, r

〉
. Given a, b : m→ n in A, a rewrites into b via R,

written a⇒〈l,r〉 b, if they are decomposable as follows

a = a1 a2
li j

nm
k

m n b = a1 a2
ri j

nm
k

m n

(1)
In this situation, we say that a contains a redex for

〈
l, r

〉
. A rewriting system R is a set of rewriting

rules, where we write a⇒R b to mean there exists
〈
l, r

〉 ∈R such that a⇒〈l,r〉 b.

The equations E associated with an SMT (�, E) can be oriented as rewriting rules. They
give rise to a rewriting system, in the PROP S� presented by (�,∅). Note that the decompo-
sitions (1) are equalities modulo the laws of Symmetric Monoidal Category (SMCs) (Figure 1).
Thus, rewriting in a PROP always happens modulo these laws.

Notation 7. Note that we write generic pairs and tuples using parentheses and reserve the notation〈
l, r

〉
specifically for the case when the pair (l, r) forms a rewriting rule.

2.3 Hypergraphs with interfaces
String diagrams in PROPs are interpreted as hypergraphs with interfaces, which we recall below.

Definition 8. (Hypergraphs). A hypergraph G consists of a set G� of nodes and, for each k, l ∈N,
a (possibly empty) set of hyperedges Gk,l with k (ordered) sources and l (ordered) targets of elements
in G�, while a hypergraph morphisms f :G→H is a family of functions {f�, fn | n ∈N} satisfying the
expected constraints.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

516 F. Bonchi et al.

We denote byHyp the category of (finite) hypergraphs and hypergraph homomorphisms.

Alternatively, and the characterisation will become useful later on,Hyp is the functor category
F
I, where I has as objects pairs of natural numbers (k, l) ∈N×N together with one extra object �,

and, for each k, l ∈N, there are k+ l arrows from (k, l) to �.
Nodes will be drawn as dots and a (k, l) hyperedge h will be drawn as a rounded box, whose

connections on the left represent the list [s1(h), . . . , sk(h)], ordered from top to bottom, and whose
connections on the right represent the list [t1(h), . . . , tl(h)].

We now introduce hypergraphs with hyperedges typed in a monoidal signature�. First, define
G� as the hypergraph with just one node and for each k, l ∈N the set of �-operations of arity k
and coarity l as set of hyperedges with k sources and l targets. The category Hyp� of �-labelled
hypergraphs is the category whose objects consists of an hypergraphG together with a graph homo-
morphism λ :G→G� , which intuitively labels each hyperedge with an operation in �, while
labelled graph homomorphisms are defined accordingly. We call such objects�-hypergraphs and
we visualise them as hypergraphs whose hyperedges h are labelled by λ(h). Observe that this defini-
tion ensures that a�-operation o : n→m labels a hyperedge only when it has n (resp.m) ordered
input (resp. output) nodes.

Example 9. We show our notational conventions for labelled hypergraphs with the aid of an
example. The hypergraph G has nodes {n1, . . . , n8}, a (3, 3)-hyperedge h1, a (2, 1)-hyperedge h2
and a (1, 0)-hyperedge h3, and the following source and target maps

s1(h1) := v1
s2(h1) := v2
s3(h1) := v3

t1(h1) := v5
t2(h1) := v6
t3(h1) := v6

,
s1(h2) := v3
s2(h2) := v4
t1(h2) := v8

, s1(h3) := v6

Also, suppose � = {o1 : 3→ 3, o2 : 1→ 0, o3 : 2→ 1} is a monoidal signature and o1, o2, o3 label
the hyperedges of G of the matching type. Then G is drawn as follows

o1

o3

o2

h1

h2

h3
v1
v2
v3

v4

v5

v6
v7

v8

Arrows of a PROP will receive an interpretation as labelled hyergraphs with interfaces. The
notion of interface is modelled using certain cospans inHyp� .

Definition 10. (Hypergraphs with Interfaces). A cospan from G to G′ inHyp� is a pair of arrows

G
f−→G′′

g←−G′ in Hyp� , where G′′ is called the carrier of the cospan and G, G′ are the interfaces of
G′′. Two cospans G

f 1−→G1
g1←−G′ and G

f 2−→G2
g2←−G′ are isomorphicwhen there is an isomorphism

α : G1→G2 inHyp� making the following diagram commute

G1

α
��

G

f 2
��

f 1 ��

G′
g1��

g2��G2

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 517

We define Csp(Hyp�) as the category with the same objects as Hyp� and arrows G→G′ the
cospans from G to G′, up-to cospan isomorphism. Composition of G→H

f←−G′ and G′
g−→H′ ←G′′

is G→H +f ,g H′ ←G′′, obtained by taking the pushout of f and g.1
We define CspD(Hyp�) as the full subcategory of the category of cospans in Csp(Hyp�) with

objects the discrete hypergraphs (i.e. hypergraphs with empty set of hyperedges).

Notation in Definition 10 follows the one introduced in Bonchi et al. (2022), where
CspD(Hyp�) is presented as an instance of a more general construction CspH(C), for a given func-
tor H and a category C. Without going in full details, in the case of CspD(Hyp�), the subscript D
is a functor with the role of selecting those cospans whose source and target (the interfaces) are
discrete hypergraphs. This means that the objects of CspD(Hyp�) are natural numbers, and it is in
fact a PROP.

As with PROPs, we shall also consider the multi-coloured case of hypergraphs with interfaces.
Given a set C of colours, a (multi-coloured) signature (C,�) can be encoded as an hypergraph
GC,� : the set of nodes is C and each operation o : u→ v yields an hyperedge, with ordered
input nodes forming the word u ∈ C� and ordered output nodes forming the word v ∈ C�. We
then define the category HypC,� of (C,�)-labelled hypergraphs as the slice category Hyp ↓GC,� .
Objects of HypC,� can be visualised as hypergraphs with nodes labelled in C and hyperedges
labelled in �, in a way that is compatible with the arity and coarity of operations in �.

Analogously to the one-coloured case, we can form the category Csp(HypC,�) of cospans in
HypC,� . We will work in CspDC (HypC,�), the full subcategory of Csp(HypC,�) with objects the
discrete hypergraphs. Note that CspDC (HypC,�) is a C-coloured PROP.

2.4 Double-pushout rewriting of hypergraphs
Double-pushout (DPO) rewriting (Corradini et al. 1997) is an algebraic approach to rewriting that,
originally given for the category of graphs, can be defined in categories whose pushouts obey
certain well-behavedness conditions, called adhesive categories (Lack and Sobociński 2005). Now,
note that Hyp� of Definition 8 can be abstractly characterised as Hyp ↓G� , i.e. the coslice of a
presheaf category: this guarantees that it is adhesive (Bonchi et al. 2022), and thus we may apply
DPO rewriting therein. In fact, in order to properly interpret string diagram rewriting, we will
need a variation of DPO rewriting that takes into account interfaces. This variation, which we
call DPO rewriting with interfaces (DPOI), has appeared in different guises in the literature, see
e.g. Ehrig and König (2004), Gadducci (2007), Bonchi et al. (2009), Gadducci and Heckel (1998),
Sassone and Sobociński (2005). DPOI provides a notion of rewriting for arrows G←− J in Hyp� ,
which we write this way to emphasise that J acts as the interface of the hypergraph G, allowing G
to be “glued” to a context. We now recall the definition of DPOI rewriting step.

Definition 11. (DPOI Rewriting). Given G← J and H← J in Hyp� , G rewrites into H with
interface J — notation (G←− J)�R (H←− J) — if there exist rule L←−K −→ R in R and object C
and cospan of arrows K→ C← J in Hyp� such that the diagram below commutes and its marked
squares are pushouts

L
m ��

K
��� �

�� �� R
��

G C�� �� H

J

		

������

��������
(2)

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

518 F. Bonchi et al.

Typically, DPOI rewriting takes two distinct steps: first one computes from K −→ L m−→G the
object C and the arrows K −→ C−→G (called a pushout complement), then one pushes out the span
C←−K −→ R to produce the rewritten object H, preserving the interface J.

Pushout complements always exist in Hyp� , but they are not necessarily unique. They are so
if the rule is left-linear, that is, if K −→ L is monic. We will come back to this point in Section 4,
as it plays an important role in giving a sound interpretation of string diagram rewriting as DPOI
rewriting. For more details on the properties of pushout complements inHyp� , we refer to Part I
of this work (Bonchi et al. 2022, Section 4).

3. Combinatorial Characterisation of String Diagrams
Let us fix a monoidal signature �. In Bonchi et al. (2022), we gave an interpretation of the arrows
of the PROP S� in terms of cospans in Hyp� . We also saw that to make this interpretation an
isomorphism, one needs to augment S� with the structure of a Frobenius algebra. Formally, there
are PROP morphisms

S�
[[·]] �� CspD(Hyp�) Frob[·]��

such that their copairing 〈〈·〉〉 : S� + Frob→ CspD(Hyp�) is an isomorphism of PROPs (Bonchi
et al. 2022, Theorem 3.9). For the purpose of this paper, it is convenient to recall the definition of
both morphisms: it suffices to define how they act on the generators, as for arbitrary arrows their
action is given by induction on the structure of PROPs. The morphism [[·]] : S�→ CspD(Hyp�)
maps a generator o ∈� into the following cospan

o... (3)

where the inputs (outputs) of the edge labelled o are in bijective correspondence with the nodes of
the discrete graph on the left (on the right, respectively).

For the generators of Frob, the morphism [·] : Frob→ CspD(Hyp�) is defined as follows

�→ �→

�→ �→

Note that 〈〈·〉〉 : S� + Frob→ CspD(Hyp�) is defined on the generators of S� + Frob, but
it respects the laws of symmetric monoidal categories (Figure 1) and of Frobenius algebras
(Example 2). Indeed, a major payoff of the combinatorial interpretation is that equivalent string
diagrams are all interpreted as the same hypergraph with interfaces. We refer to Bonchi et al.
(2022) for more discussion on this aspect.

In this paper, we plan to exploit CspD(Hyp
�
) as a combinatorial domain where to interpret

rewriting in S� . In the remainder of this section, we thus focus on [[·]] : S�→ CspD(Hyp�)
and provide a combinatorial characterization of its image. A preliminary series of definitions
introduces the relevant hypergraph notions:monogamy and acyclicity.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 519

Definition 12. (Degree of a node). The in-degree of a node v in hypergraph G is the number of
pairs (h, i)where h is an hyperedge with v as its ith target. Similarly, the out-degree of v is the number
of pairs (h, j) where h is an hyperedge with v as its jth source.

Definition 13. (Monogamy). Given m
f−→G

g←− n in CspD(Hyp
�
), let in(G) be the image of f and

out(G) the image of g. We say that the cospan ismonogamous if f and g are mono and for all nodes
v of G

the in-degree of v is

{
0 if v ∈ in(G)
1 otherwise.

the out-degree of v is

{
0 if v ∈ out(G)
1 otherwise

We refer to the nodes in in(G) and out(G) as the inputs and the outputs of G and abusing
notation we may say that G is monogamous. The cospan in (3) is clearly monogamous: all the
nodes on the left are inputs and they have in-degree 0 and out-degree 1, while all the nodes on the
right are outputs and they have in-degree 1 and out degree 0.

Example 14. Four examples of cospans that are not monogamous are displayed below. In here
and the reminder of the paper, we use numeric labels when we wish to specify how the cospan legs
are defined on the nodes.

0 0 1 1 0
0 1

1

0 0

1 1

22 0

1 1

0

Lemma 15. Identities and symmetries in CspD(Hyp�) are monogamous.

Proof. The cospans identifying identities and symmetries involve discrete graphs, so the in-degree
and the out-degree of all nodes are 0. Moreover, all these nodes are both inputs and outputs.

Lemma 16. Let m−→G←− n and n−→H←− o be arrows in CspD(Hyp�). If both are monogamous
cospans, then (m−→G←− n) ; (n−→H←− o) is monogamous.

Proof. Since pushouts along monos in Hyp� are mono, the morphisms of the cospans resulting
from the composition (m−→G←− n) ; (n−→H←− o) are also mono. The condition on degrees is
trivially preserved since (m−→G←− n) ; (n−→H←− o) is obtained by gluing together G with H
along the nodes in n. This means that each of the nodes in out(G) is identified with exactly one of
the node in in(H).

Lemma 17. Let m1 −→G1←− n1 and m2 −→G2←− n2 be arrows in CspD(Hyp�). If both are
monogamous cospans, then (m1 −→G1←− n1) ⊕ (m2 −→G2←− n2) is monogamous.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

520 F. Bonchi et al.

Proof. By definition (m1 −→G1←− n1) ⊕ (m2 −→G2←− n2) is obtained by coproduct and there-
fore the degree of each node is the same as in the original graphs G1 and G2. Moreover, each node
is an input iff it is an input in G1 or in G2 and it is an output iff it is an output in G1 or G2.

The notions of acyclicity and (directed) path between two nodes in a (directed) graph gener-
alises to (directed) hypergraphs in the obvious way.

Definition 18. For a pair of hyperedges h, h′, we call h a predecessor of h′ and h′ a successor of h if
there exists a node v in the target of h and in the source of h′.

Definition 19. (Path). For a hypergraph G and hyperedges h, h′, a path p from h to h′ is a sequence
of hyperedges [h1, . . . , hn] such that h1 = h, hn = h′, and for i< n, hi+1 is a successor of hi. We say
p starts at a subgraph H if H contains a node in the source of h, and terminates at a subgraph H′ if
H′ contains a node in the target of h′.

By regarding nodes as single-node subgraphs, it clearly makes sense to talk about paths from/to
nodes as well.

Definition 20. (Acyclicity). A hypergraph G is acyclic if there exists no path from a node to itself.
We also call a cospan m−→G←− n acyclic if the property holds for G.

Like for monogamy, it is easy to see that identities and symmetries are acyclic and that the
monoidal product of acyclic cospans is acyclic. Unfortunately, the composition of two acyclic
cospans might be cyclic: for instance by composing the following two acyclic cospans

3

1

20

1 1

0 2
;2 1, 2, 3

one obtains the cyclic cospan

3

0 0

3

This issue can be avoided by additionally requiring the cospans to be monogamous.

Proposition 21. Let m−→G←− n, n−→H←− o, m1 −→G1←− n1 and m2 −→G2←− n2 be monoga-
mous acyclic cospans.
(1) Identities and symmetries in CspD(Hyp�) are monogamous acyclic.
(2) (m−→G←− n) ; (n−→H←− o) is monogamous acyclic.
(3) (m1 −→G1←− n1) ⊕ (m2 −→G2←− n2) is monogamous acyclic.

Proof. The first and the third points follow from what we discussed so far. The second point is the
most interesting one. From Lemma 16, it follows immediately that (m−→G←− n) ; (n−→H←− o) is
monogamous, so we only need to show that this is acyclic. Since bothm−→G←− n and n−→H←− o
are monogamous, their composition just identifies each of the nodes in out(G) with exactly one
node in in(H). The identification of these nodes cannot create any cycle since there is no path in

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 521

G starting with one of these nodes (since their out-degree in G is 0) and there is no path in H
arriving in one of these nodes (since their in-degree in H is 0).

The above proposition informs us that monogamous acyclic cospans form a sub-PROP
of CspD(Hyp�), which we call hereafter MACspD(Hyp�). The main result of this section
(Theorem 25) shows that MACspD(Hyp�) is exactly the image of S� through [[·]]. Its proof relies
on an additional definition and a decomposition lemma.

Definition 22. (Convex sub-hypergraph). A sub-hypergraph H ⊆G is convex if, for any nodes
v, v′ in H and any path p from v to v′ in G, every hyperedge in p is also in H.

Example 23. Consider the following hypergraph

Below on the left and on the right are illustrated a convex and a non-convex sub-hypergraph

Lemma 24. (Decomposition). Let m→G← n be a monogamous acyclic cospan and L a convex
sub-hypergraph of G. Then there exist k ∈N and a unique cospan i→ L← j such that G factors as

G = C1 C2

Li j

nm
k

m n (4)

where all cospans in (4) are monogamous acyclic.

Proof. Let C1 be the smallest sub-hypergraph containing the inputs of G and every hyperedge h
that is not in L, but has a path to it. Let C2 then be the smallest sub-hypergraph containing the
outputs of G such that C1 ∪ L∪ C2 =G. By construction, C1 and L share no hyperedges. Should
C2 share a hyperedge with C1 or L, then a smaller C′2 would exist such that C1 ∪ L∪ C′2 =G, so
C2 shares no hyperedges with either C1 or L. Hence, the three sub-hypergraphs only overlap on
nodes. Now let

i := C1∗ ∩ L∗
j := C2∗ ∩ L∗
k := (C1∗ ∩ C2∗)\L∗

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

522 F. Bonchi et al.

where L∗ are the nodes of hypergraph L and the same for C1 and C2. Pictorially, these sub-
hypergraphs are defined as follows

i
L

C1 C2

...

...

k

...

j

Now, define the following cospans, where arrows are all inclusions
m→ C1← k+ i

i→ L← j

k+ j→ C2← n
Then (4) is computed as the colimit of the following diagram

m→ C1← k+ i→ k+ L← k+ j→ C2← n
The two spans identify precisely those nodes from G that occur in more than one sub-hypergraph,
so this amounts to simply taking the union

m→ C1 ∪ L∪ C2← n = m→G← n
Now C1, C2 and L are acyclic because G is, so it only remains to show that each of these cospans is
monogamous. For C1 and C2 it follows straightforwardly from the observation that, by construc-
tion, C1 is closed under predecessors and C2 under successors. The interesting case is L, which
relies on convexity. Suppose v has no in-hyperedge in L. Then either v is an input or there exists
a hyperedge with a path to v. One of these two is true precisely when v ∈ i. Suppose v has no out-
hyperedge in L. Then, either v is an ouput or it has an out-hyperedge in C1 or C2. But if it has
an out-hyperedge h in C1, then there is a path from v to another node v′, going through h. By
convexity, h must then be in L, which is a contradiction. Hence, v ∈ C2, which is true if and only
if v ∈ j.

Theorem 25. A cospan n−→G←−m is in the image of [[·]] : S�→ CspD(Hyp�) if and only if
n−→G←−m is monogamous acyclic.

Proof. The only if direction follows by induction on the arrows of S� : for the base case, it
is immediate to check that (3) is monogamous acyclic, while the inductive cases follow from
Proposition 21.

For the converse direction, we can reason by induction on the number of hyperedges in G. If G
does not contain any, then monogamy and acyclicity imply that n−→G andm−→G are bijections,
so that n−→G←−m is in the image of an arrow only consisting of identities and symmetries. For
the inductive step, pick any hyperedge e of G. Recall that e has a label l(e) ∈� and that l(e) is
an arrow of S� . By monogamy and acyclicity, [[l(e)]] is a convex sub-hypergraph of G. Hence,
by Lemma 24, n−→G←−m factors as (4), with L being [[l(e)]]. The lemma guarantees that all the
above cospans are monogamous acyclic. Therefore, by the inductive hypothesis they are in the
image of [[·]], and so the same holds for n−→G←−m.

The following result (Corollary 3.11 in Bonchi et al. 2022) proves that [[·]] : S�→ CspD(Hyp�)
is faithful, so an immediate consequence of the above theorem is that S� is isomorphic to the
sub-PROP of CspD(Hyp�) of monogamous acyclic cospans.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 523

Corollary 26. S�
∼=MACspD(Hyp�).

3.1 Characterisation for coloured PROPs
At the beginning of this section, we recalled from Bonchi et al. (2022) that CspD(Hyp�) is isomor-
phic to S� + Frob. The isomorphism extends in the obvious way to the coloured case: Proposition
3.12 in Bonchi et al. (2022) states that CspDC (HypC,�) is isomorphic to SC,� +C FrobC (where
+C and FrobC are defined as in Example 4 and Remark 5). The same holds for Theorem 25.
The definition of [[·]]C given in Bonchi et al. (2022) is the same as the one in (3), but with the
proper interpretation of colours as labels of nodes. The definition of monogamous acyclic cospans
(Definitions 13 and 20) does not change: the notions of degree and path are exactly the same in
coloured and non coloured hypergraphs. All the results proved above hold straightforwardly by
following the same proofs. In particular, we have the following.

Theorem 27. A cospan w−→G←− v is in the image of [[·]]C : SC,�→ CspDC (HypC,�) if and only
if w−→G←− v is monogamous acyclic.

4. A Sound and Complete Interpretation for String Diagram Rewriting
In this section, we develop a version of DPOI rewriting that is sound and complete for symmetric
monoidal categories that do not come with a chosen Frobenius algebra on each object. Recall that,
as shown in Bonchi et al. (2022), DPOI rewriting for hypergraphs (Definition 11) corresponds
exactly to the rewriting for a SMT �, modulo Frobenius structure.

Before formally stating this correspondence (Theorem 28 below), we recall from Bonchi et al.
(2022) the notation �d�, which refers to the ‘rewiring’ of a syntactic term d, turning all of the
inputs into outputs

dn m �·��−−→
dn m

n

Working with ‘rewired’ graphs is equivalent to working with the original ones, in the sense that
d⇒〈l,r〉 e if and only if �d�⇒〈�l�,�r�〉 �e�. However, since the rewired rules have only one boundary,
they are readily interpreted as hypergraphs with interfaces. That is, if d corresponds to a cospan
i→G← j, then �d� corresponds to 0→G← i+ j, or simply G← i+ j.

Similarly, a syntactic rewriting rule
〈
�l�, �r�

〉
corresponds to a pair of hypergraphs with the

same interface, L← i+ j and R← i+ j, i.e. a span L← i+ j→ R. Hence, we can extend the defini-
tion of 〈〈·〉〉 : S� + Frob→ CspD(Hyp�) (cf. Section 3) to rewriting rules by letting 〈〈〈�l�, �r�〉〉〉 :=
L← i+ j→ R. We now have all the ingredients to recall the correspondence theorem between
(syntactic) rewriting modulo Frobenius relation⇒ and the DPOI rewriting relation�.

Theorem 28. (Bonchi et al. 2022). Let
〈
l, r

〉
be a rewriting rule on S� + Frob. Then

d⇒〈l,r〉 e iff 〈〈�d�〉〉�〈〈〈�l�,�r�〉〉〉 〈〈�e�〉〉 .

In this section, we will see that the full DPOI relation � is not sound for rewriting in the
absence of Frobenius structure. To fix this problem, we will put a restriction on which pushout
complements (i.e. contexts) are allowed in a rewriting step. If a rule is not left-linear, there
could be many different pushout complements for a given match, each one yielding a different
result. It was shown in Bonchi et al. (2022) that this makes perfect sense when rewriting mod-
ulo Frobenius structure. However, without this structure not all results can be interpreted in a
symmetric monoidal category.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

524 F. Bonchi et al.

Example 29. Consider � = {α1 : 0→ 1, α2 : 1→ 0, α3 : 1→ 1} and the PROP rewriting system
R =

{
⇒ α3

}
on S� . Its interpretation in CspD(Hyp

�
) is given by the rule

0 10,1
α3

0 1

The rule is not left-linear and therefore pushout complements are not necessarily unique for the
application of this rule. For example, the following pushout complement yields a rewritten graph
that can be interpreted as an arrow in an SMC

α1 α2

0 10,1

0,1

α3
0 1

α1
0

α2
1

α1 α2α3
0 1

f

On the other hand, if we choose a different pushout complement, we obtain a rewritten graph that
does not look like an SMC morphism

α1 α2

0 10,1

0,1

α3
0 1

α1
0

α2
1

α1 α2α3
0

1

g

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 525

The different outcome is due to the fact that f maps 0 to the leftmost and 1 to the rightmost
node, whereas g swaps the assignments. Even though both rewriting steps could be mimicked at
the syntactic level in S� + Frob, the second hypergraph rewrite yields a hypergraph that is not in
the image of any morphism of S� . In particular, the rewritten graph in the second derivation is
not monogamous: the outputs of α1 and α3 and the inputs of α2 and α3 have been glued together
by the right pushout.

To rule out ‘bad’ pushout complements, i.e. those not yielding monogamous acyclic hyper-
graphs after rewriting, we introduce the notion of boundary complement, which requires that
inputs only ever get glued to outputs (and vice-versa) in the two pushout squares of a DPO
diagram.

Definition 30. (Boundary complement). For monogamous cospans i a1−→ L a2←− j and n b1−→G b2←−m
and mono f : L→G, a pushout complement as depicted in (†) below

L
f
��

(†)

i+ ja=[a1,a2]��

c=[c1,c2]���G L⊥g
��

n+m
[b1,b2]

��������������
[d1,d2]

		�
�
�

is called a boundary complement if [c1, c2] is mono and there exist d1 : n→ L⊥ and d2 : m→ L⊥
making the above triangle commute and such that

n+ j [d1,c2]−−−→ L⊥ [d2,c1]←−−−m+ i (5)

is a monogamous cospan.

Intuitively, being a pushout complement, L⊥ can be figured as G with a ‘hole’, filled by L. As G
and L are both monogamous. This means that in S� we have

gn m = l⊥n m

li j

where g : n→m, l : i→ j, and l⊥ : n+ j→m+ i such that [[g]]= n←−G−→m, [[l]]= i←− L−→ j
and [[l⊥]]= n+ j←− L⊥ −→m+ i are guaranteed to exist by monogamicity of the three cospans
involved and Theorem 25. Note that, in particular, the requirement that (5) is monogamous
enforces that the string diagram

l⊥n m

ij

properly lives in S� instead of S� + Frob.

The notion of boundary complement has the pleasant property of restoring uniqueness of
pushout complements, even though we consider some rules that are not left-linear (namely, those
with an identity morphism on the left-hand side of the syntactic rule).

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

526 F. Bonchi et al.

Proposition 31. When boundary complements inHyp� exist, they are unique.

Proof. Since Hyp� is a presheaf category, a pushout of hypergraphs consists of pushouts on the
underlying sets of nodes and hyperedges and an appropriate choice of source and target maps.
Hence, the underlying sets of L⊥ must give pushout complements in the category F of finite sets

L�

f�
��

i+ ja���

c�
���G� L⊥�g�

��

Lk,l

fk,l
��

0��

���Gk,l L⊥k,lgk,l
��

where G� and Gk,l are the nodes and the (k, l)-hyperedges of G, and similarly for L and L⊥. Since
i+ j is discrete, Gk,l is a disjoint union, so L⊥k,l must be Gk,l\Lk,l. Since these are diagrams in F, and
c, f are mono, we can rewrite the left pushout square as

l+ x

f�
��

i+ ja���

c�
���l+ x+ y i+ j+ zg�

��

where the two downward arrows are coproduct injections and l is the image of a�. One can easily
verify that l+ x+ z also gives a pushout for the given span, so we obtain a commuting isomor-
phism l+ x+ y∼= l+ x+ z, from which we conclude y∼= z and that, up to isomorphism, the
pushout complement on nodes must be

l+ x

f�
��

i+ ja���

c�
���l+ x+ y i+ j+ yg�

��

from whence it follows that g� = a� + idn.

So far, we have proved that the sets L⊥� and L⊥k,l are defined uniquely by the property of being a
pushout complement. The only thing that remains is the definition of the source and target maps
sk,l : L⊥k,l→ L⊥� and target tk,l : L⊥k,l→ L⊥� maps. Since g is a homomorphism, by abusing notation
and denoting as g� also its extension to sequences, we have that for all hyperedges h

g�(sk,l(h))= sk,l(gk,l(h)) =⇒ sk,l(h) ∈ g−1� (sk,l(gk,l(h)))

Since g� is of the form [(a1)�, (a2)�]+ 1n, where a1 and a2 are mono, the inverse image
g−1� (sk,l(gk,l(h))) contains at most two elements. In the case where it has one element, sk,l is
uniquely fixed, so consider when it has two. It must then be the case that

g−1� (sk,l(gk,l(h)))= {v1 ∈ i, v2 ∈ j}
But monogamy of (5) says that the image of i in L⊥ cannot be the source of any hyperedge.

Therefore, it must be sk,l(h)= v2. Similarly, if

g−1� (tk,l(gk,l(h)))= {v1 ∈ i, v2 ∈ j}
then tk,l(h) must be v1. Since there is at most one choice of source and target maps for L⊥ making
g a homomorphism, L⊥ must be unique.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 527

Boundary complements solve the problem highlighted in Example 29, in that restricting to
boundary complements guarantees that the result of a rewrite will be a monogamous acyclic
hypergraph, which can be interpreted as morphisms in an SMC. However, a slightly more sub-
tle problem remains: some graph rewrites can be performed in such a way that the rule, target
graph, and rewritten hypergraph are all monogamous acyclic, but they correspond to an equation
between morphisms that is not derivable using the SMC laws and the rules of a SMT.

Example 32. Consider a � = {e1 : 1→ 2, e2 : 2→ 1, e3 : 1→ 1, e4 : 1→ 1} and the following
rewriting rule in S�〈

e1 e2 : 2→ 2 ,
e4

e4
: 2→ 2

〉
(6)

Left and right side are interpreted in CspD(Hyp
�
) as cospans

e1 e2

e4

e4

We introduce another diagram c : 1→ 1 in S� and its interpretation in CspD(Hyp
�
)

e1 e2
e3 [[·]]�−→ e3

e1 e2

Now, rule (6) cannot be applied to c, even modulo the SMC equations. However, their interpreta-
tion yields a DPO rewriting step in CspD(Hyp

�
) as below

e3
e1 e2 e3 e3e4 e4

e4

e4e1 e2

0

1

2

3

a b

a aab b b

2

3

0

1

0

1

2

3

0
31

2
0 31 2 0 31 2

Observe that the leftmost pushout above is a boundary complement: the input–output partition is
correct. Still, the rewriting step cannot be mimicked at the syntactic level using rewriting modulo
the SMC laws. That is because, in order to apply our rule, we need to deform the diagram such
that e3 occurs outside of the left-hand side. This requires moving e3 either before or after the

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

528 F. Bonchi et al.

occurrence of the left-hand side in the larger expression, but both of these possibilities require a
feedback loop

e1 e2

e3

e1 e2

e3

Hence, if the category does not have at least a traced symmetric monoidal structure (Joyal et al.
1996), there is no way to apply the rule.

The source of the problem in Example 32 is the fact that the image of the match f forms a non-
convex, ‘U-shaped’ sub-graph of the target graph. In other words, we identify a forward-directed
path of hyperedges going out of the image of f and back inside again. Hyperedges in such a path
(namely e3 in the example) cause obstructions to rewriting in an SMC. Hence, we introduce the
notion of convexmatches, which forbid forward-directed paths from outputs to inputs.

Definition 33. (Convex match). We call m : L→G inHyp� a convex match if it is mono and its
image is convex.

We saw from Lemma 24 that, for any convex sub-graph L of amonogamous acyclic hypergraph
G, G can be decomposed into parts using ‘⊕’ and ‘ ; ’, where one of those parts is L. This will play
a crucial role in our soundness theorem.

We now combine the notions of boundary complement and of convex match to tailor a family
of DPOI rewriting steps which only yield legal S�-rewriting.

Definition 34. Given D← n+m and E← n+m in Hyp� , D rewrites convexely into E with
interface n+m — notation (D←− n+m)�R (E←− n+m) — if there exist rule L←− i+ j−→ R
in R and object C and cospan arrows i+ j→ C← n+m in Hyp� such that the diagram below
commutes and its marked squares are pushouts

L
f
��

i+ j

��� �

[a1,a2]�� [b1,b2] �� R

��
D C�� �� E

n+m

		

[p1,p2]

�������[q1,q2]

�������

(7)

and the following conditions hold
• f : L→D is a convex match;
• i+ j→ C→D is a boundary complement in the leftmost pushout.

The relation �R is contained in the DPOI rewriting relation �R (Definition 11), the
difference being that the leftmost pushout must consist of a convex match and a boundary
complement.

We have now all the ingredients to prove the adequacy of convex DPO rewriting with respect
to rewriting in S� .

Theorem 35. Let R by any rewriting system on S� . Then,

d⇒R e iff 〈〈�d�〉〉�〈〈�R�〉〉 〈〈�e�〉〉.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 529

Proof. For the only if direction, by Theorem 28 d⇒R e implies 〈〈�d�〉〉�〈〈�R�〉〉 〈〈�e�〉〉. One may
check that the argument constructs a convex DPO rewriting step, thus yielding the desired
statement.

More in detail, our assumption gives that

dn m = c1n c2 m
l

k

i j

en m = c1n c2 m
r

k

i j

and hence the following equalities hold in S� + Frob, where c�i , i ∈ {1, 2}, is notation for ci

dn m

n
=

c∗1
n

c2 m
l

k

i

ji

(8)

en m

n
=

c∗1
n

c2 m
r

k

i

ji

(9)

We now define (
0−→D

[q1,q2]←−−− n+m
)
:= 〈〈�d�〉〉 =

〈〈
dn m

n 〉〉
(
0−→ E

[p1,p2]←−−− n+m
)
:= 〈〈�e�〉〉 =

〈〈
en m

n 〉〉
(
0−→ L [a1,a2]←−−− i+ j

)
:= 〈〈�l�〉〉 =

〈〈
li j

i 〉〉
(
0−→ R [b1,b2]←−−− i+ j

)
:= 〈〈�r�〉〉 =

〈〈
ri j

i 〉〉

(
i+ j−→ C←− n+m

) := 〈〈 c∗1
n

c2 m

k

i

j

〉〉
.

By these definitions and (8)–(9) it follows that
(0−→D←− n+m)= (

0−→ L←− i+ j
)
;
(
i+ j−→ C←− n+m

)
(0−→ E←− n+m)= (

0−→ R←− i+ j
)
;
(
i+ j−→ C←− n+m

)
.

Since composition of cospans is defined by pushout, we have a commutative diagram with two
pushouts as in (7). It remains to check that the match L→D is convex and that C is a boundary

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

530 F. Bonchi et al.

complement: these conditions can be verified by definition of the involved components. Therefore,
〈〈�d�〉〉�〈〈�R�〉〉 〈〈�e�〉〉 by application of the rule

〈〈〈�l�〉〉, 〈〈�r�〉〉〉.
We now turn to the converse direction. Let

〈〈�d�〉〉 =: D

0
����

n+m
[q1,q2]����� 〈〈�e�〉〉 =: E

0
��		

n+m
[p1,p2]����� .

Our assumption gives us a diagram as in (7), with application of a rule
〈〈〈�l�〉〉, 〈〈�r�〉〉〉 in 〈〈�R�〉〉.

We now want to show that d⇒R e with rule
〈
l, r

〉
, say of type (i, j). Now, because n

q1−→D
q2←−

m= [[d]], it is monogamous acyclic by Theorem 25. Since the match f : L→D in (7) is convex,
Lemma 24 yields a decomposition of n

q1−→D
q2←−m in terms of monogamous acyclic cospans

(
n−→ C1←− i+k) ;

(
k id−→ k id←− k

)
⊕(

i−→ L←− j
) ;

(
j+k−→ C2←−m

)
.

Applying again Theorem 25 we obtain c1, c2 in S� such that

[[c1]]= n−→ C1←− i+ k [[c2]]= j+ k−→ C2←−m.

By functoriality of [[·]], [[d]]= [[c1 ; (id⊕ l) ; c2]] and, since [[·]] is a faithful PROP morphism, d=
c1 ; (id⊕ l) ; c2. Thus, we can apply the rule

〈
l, r

〉
on e, which yields e= c1 ; (id⊕ r) ; c2 such that

d⇒R e. We can conclude that [[e]]= n
p1−→ E

p2←−m because boundary complements are unique
(Proposition 31).

Hence, we have shown soundness and adequacy of convex DPOI rewriting for SMTs. In other
words, whenever we want to perform rewriting in a free symmetric monoidal category, we could
just as well do convex DPOI.

Remark 36. A natural question is ask is whether we can do convex DPOI rewriting efficiently.
This is not obvious since computing the match in a DPOI step involves solving a subgraph iso-
morphism problem and, as we saw in Section 4.5 of Part 1 (Bonchi et al. 2022), enumerating
pushout complements can require a substantial amount of computation for general. The issue
with matches is not really a problem since we consider rewriting with rules whose left-hand side
is of fixed constant size, which is typically much smaller than the target graph. In this regime, effi-
cient subgraph isomorphism algorithms exist going back (at least) to Ullmann (1976) and can be
easily adapted to our setting.

In fact, we can do even better in the case of monogamous hypergraphs. One can construct a
homomorphism m : L→G by traversing the nodes and hyperedges of L and mapping them one-
by-one. At each step in the traversal, the image of the next node (resp. hyperedge) is uniquely
fixed by the image of an adjacent hyperedge (resp. node), so the match will be uniquely fixed by
the image of a single node in each connected component of L. Hence, if L is connected, we can fix
a starting node v in L and check if for each node v′ in G the settingm(v) := v′ yields a valid match
in time linear in L. Once a match is found, we can check convexity by computing the successors
of the outputs of L in G and checking whether any input of L is contained in that set, which has
worse-case complexityO(|G�|), since we need to visit each node in G at most once. That is, we can
enumerate matches of L and G in O(|L�||G�|2) time.

The second issue is solved for convex DPOI by requiring pushout complements to be boundary
complements, which are unique, as we saw in Proposition 31.Whereas in the general case, we may
have to search an exponential space of potential pushout complements, boundary complements

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 531

force the fact that there is at most one solution, which can be constructed efficiently from themaps
i+ j→ L→G. Hence, convex DPOI rewriting is amenable to efficient implementations.

We conclude this section by showing that, for certain well-behaved rewriting systems, convex-
ity of matches follows automatically.

Definition 37. Amonogamous acyclic cospan n
f−→G

g←−m is strongly connected if for every input
x ∈ f (n) and output y ∈ g(n) there exists a path from x to y. A DPO rewriting system is left-connected
if it is left-linear and, for every rule L← i+ j→ R, the induced cospans i→ L← j and i→ R← j
are monogamous acyclic and i→ L← j is strongly connected. We call a PROP rewriting system R
on S� left-connected if for every

〈
l, r

〉 ∈R the associated DPO rule 〈〈〈�l�, �r�〉〉〉 is left-connected.
In Definition 37, strong connectedness prevents non-convex matches as in Example 32,

whereas left-linearity guarantees uniqueness of the pushout complements, and prevents the prob-
lem in Example 29.We are then able to prove the following theorem, for the not necessarily convex
DPOI rewriting relation�.

Theorem 38. Let R be a left-connected rewriting system on S� . Then
(1) if d⇒R e then 〈〈�d�〉〉�〈〈�R�〉〉 〈〈�e�〉〉;
(2) if 〈〈�d�〉〉�〈〈�R�〉〉 〈〈�e�〉〉 then d⇒R e.

Proof. (1) follows from Theorem 28. For (2), suppose 〈〈�d�〉〉 ∼=G← n+m and the rewriting
relation arose from applying a left-connected rule L← i+ j→ R at match p : L→G. By left-
connectedness, there exists a path from every input of L to every output. Hence, this will also
be the case for the sub-graph p(L). If there was a directed path from an output of p(L) to an input,
this would induce a directed cycle. But since G is a monogamous acyclic hypergraph, this cannot
be the case. Hence,m(L) is a convex sub-graph of G.

Furthermore, since the rewriting rule is left-linear, L← i+ j is mono. Hence, we can compute
the (unique) pushout complement by removing the hyperedges and non-interface nodes of p(L)
from G. Since L and G are both monogamous acyclic hypergraphs, the resulting pushout comple-
ment will always be a boundary complement. Hence, the DPOI rewriting step must in fact be a
convex DPOI step, so we can apply Theorem 35 to complete the proof.

As a consequence of this theorem, if a rewriting system is left-connected, we can forego the
convexity check mentioned in Remark 36, so we can enumerate matches of a single rule with
left-hand side L in G in time O(|L�||G�|).

4.1 Characterisation for coloured PROPs
It is a routine exercise to generalise the results in this section to coloured props. First, fixed a set
C of colours and a monoidal signature � on C, Bonchi et al. (2022) also states a multi-coloured
version of Theorem 28, proving a correspondence between rewriting in SC,� modulo the equa-
tions of FrobC, and DPOI rewriting in HypC,� . One may then define convex DPOI rewriting in
HypC,� , in the same way as we did forHyp� , and show correspondence results between this and
rewriting in SC,� , analogous to Theorems 35 and 38: the colouring on nodes does not affect how
these characterisations are formulated and proven.

Theorem 39. Let R by any rewriting system on SC,�,. Then

d⇒R e iff 〈〈�d�〉〉�〈〈�R�〉〉 〈〈�e�〉〉.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

532 F. Bonchi et al.

Furthermore, let R be left-connected. Then
(1) if d⇒R e then 〈〈�d�〉〉�〈〈�R�〉〉 〈〈�e�〉〉;
(2) if 〈〈�d�〉〉�〈〈�R�〉〉 〈〈�e�〉〉 then d⇒R e.

5. Case Studies
The two most fundamental properties of interest for a rewriting system are termination and con-
fluence. A rewriting relation is terminating if it admits no infinite sequence of rewrites, and it is
confluent if any pair of hypergraphs (or terms, etc.) arising from G by a sequence of rewriting
steps can eventually be rewritten to the same hypergraph. Taken together, these properties imply
the existence of unique normal forms.2

We will now apply the framework we have developed to two specific SMTs: Frobenius semi-
algebras and bialgebras. For both of these structures, we construct the associated DPOI rewriting
system and show that it is terminating. We will also show that the first theory is not confluent, by
adapting a counter-example due to Power to the setting of convex rewriting. The second theory is
confluent, but we leave the proof for the sequel paper, where we develop critical pair analysis for
convex rewriting (Bonchi et al. 2022).

As with term rewriting theory, an important tool for termination proofs is that of reduction
orderings. For a preorder �a on hypergraphs, we can define the associated equivalence relation
∼a and the strict ordering ≺a as follows

G∼a H ⇐⇒ (G�a H ∧H �a G) G≺a H ⇐⇒ (G�a H ∧G �∼a H)

Definition 40. A preorder �a is called a reduction ordering for a rewriting system R if it is well-
founded (i.e. has no infinite decreasing chains with respect to ≺a) and

G�R H =⇒ H ≺a G
Similarly, a preorder �a is called a weak reduction ordering for R if it is well-founded and

G�R H =⇒ H �a G

Clearly the existence of a reduction ordering forbids infinite sequences of rewrites, hence any
R that admits a reduction ordering is terminating.

A common strategy in termination proofs is to define reduction orderings in pieces which are
then combined lexicographically. For pre-orders �a and �b, we define the lexicographic ordering
�a,b as follows

H �a,b G ⇐⇒ (H ≺a G∨ (H ∼a G∧H �b G))
The following lemma can be shown straightforwardly from the definitions above.

Lemma 41. For a rewriting system R =R1 ∪R2, if �a is a reduction ordering for R1, �a is a
weak reduction ordering for R2, and �b is a reduction ordering for R2, then �a,b is a reduction
ordering for R.

Proof. Using the definition of a lexicographic ordering, we can see that the associated strict
ordering can be expressed as follows

H ≺a,b G ⇐⇒ (H ≺a G∨ (H ∼a G∧H ≺b G))
From this, we see that �a,b is well-founded whenever �a and �b are. Then, if G�r1 H for some
r1 ∈R1, then H ≺a G, so H ≺a,b G. If G�r2 H for some r2 ∈R2, then H �a G and H ≺b G. From
H �a G, it is either the case that H ≺a G or H ∼a G, which in either case yields H ≺a,b G.

With this bit of rewriting theory in hand, we are ready to look at our two case studies.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 533

5.1 Frobenius semi-algebras
Frobenius semi-algebras are Frobenius algebras lacking the unit and counit equations. That is, they
are the free PROP generated by the signature{

μ := , δ :=
}

modulo the following equations

= =

= =

(10)

It is interesting to study such structures, because full (co)unital Frobenius algebras always induce
a compact closed structure. Hence, categories that are not compact closed, such as infinite-
dimensional vector spaces, do not in general have Frobenius algebras. They can nevertheless
have Frobenius semi-algebras, which form the basis of interesting algebraic structures relevant
to quantum theory, such as H*-algebras (Abramsky and Heunen 2012).

Since Frobenius semi-algebras lack many of the equations of a Frobenius algebra, we cannot
use the technique for rewriting modulo Frobenius developed in Bonchi et al. (2022). Nevertheless,
we can represent this theory using a hypergraph rewriting system FS, defined as follows

μ

μ

0

1

2

3

0

1

2

3
μ

μ

0

1

2

3 0

1

2

3

0

1

2

3

0

1

2

3

δ

δ

δ

δ

0

1

2

3

μ

0

1 δ

2

3

FS1 := FS2 :=

FS3 :=
μ

δ

2

3

0

1

0

1

2

3

μ

0

1 δ

2

3FS4 :=
μ

δ

2

3

0

1

We first give a proof of termination for this rewriting system. This would be quite involved if
we wished to prove it using syntactic rewriting, modulo the equations of an SMC, but here we
show it is relatively straightforward, using some graph-theoretic reduction orderings.

We first deal with (co)associativity. It should be the case that naïvely applying rules FS1 and
FS2 will eventually terminate with all trees of multiplications and comultiplications associated to
the right (or bottom, as we are reading diagrams left-to-right). More formally, for any vertex x, let
a μ-tree with root x be a maximal tree of μ-hyperedges with output x. Similarly, a δ-tree with root
x is a maximal tree of δ-hyperedges with input x.

For aμ-hyperedge h, let theL -weight 	(h) be the size of theμ-tree whose root is the first input
of h. Similarly, for a δ-hyperedge, let 	(h) be the size of the δ-tree whose root is the first output of
h. Let 	(h)= 0 otherwise and

L (G) :=
∑

h∈G2,1 ∪G1,2

	(h)

Lemma 42. The following is a reduction ordering for {FS1, FS2}
H �L G ⇐⇒ L (H)≤L (G)

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

534 F. Bonchi et al.

Proof. L is N-valued, so �L is well-founded.
Applying the rule FS1 has no effect on the L -weight of any μ-hyperedges outside of the image

of the left-hand side. Suppose that there are μ-trees of size a, b, c connected to inputs 0, 1, 2 of the
left-hand side, respectively. The L -weight of the two μ-hyperedges on the left-hand side are thus
a and a+ b+ 1, whereas on the right-hand side they are a and b. Hence, �L is strictly decreased
by FS1. The property for FS2 follows symmetrically.

The previous result accounts for associativity ofμ and of δ, but we should do the same with the
two Frobenius equations. We can use the fact that each of the Frobenius rewriting rules FS3 and
FS4 strictly decreases |D(G)| where

D(G) := {(h ∈G2,1, h′ ∈G1,2) | there is no path from h to h′}
Following Definition 19, we will use the term path in this and the next section to refer exclusively
to directed paths, i.e. sequences of hyperedges [h1, . . . , hn] such that hi+1 is a successor of hi. Note
that, since h ∈G2,1, it must be a μ-hyperedge, and since h′ ∈G1,2, it must be δ-hyperedge. Also
note the negation in the definition of D : as more paths are introduced, the set D(G) gets smaller.

Lemma 43. The following is a weak reduction ordering for {FS1, FS2} and a reduction ordering for
{FS3, FS4}

H �D G ⇐⇒ |D(H)| ≤ |D(G)|

Proof. D sends a hypergraph to a finite set of ordered pairs, so �D is well-founded.
Note that all four of the rules FSi preserve the number of μ- and δ-hyperedges in G. Hence, if

G�FSi H, we can take H to have the same set of hyperedges as G, but with different connectiv-
ity. For the remainder of the proof, we examine how each rule application affects the paths in a
hypergraph. For this, we rely on the fact that all of the hypergraphs involved in the rewriting are
monogamous and acyclic. As a consequence of monogamy, any path entering the left-hand side
of a rule must do so via an input, and any path exiting must do so via an output.

For G�FS1 H, a μ-hyperedge h has a path to a δ-hyperedge in G if and only if it does in H.
This follows from the fact that there is a path from every input to the output and from both
μ-hyperedges to the output on both sides of the rewriting rule

μ

μ...

...

...

...

μ

μ...

...

...

...

�FS1

Hence G∼D H. A symmetric argument holds for FS2, so we conclude that �D gives a weak
reduction ordering for {FS1, FS2}.

For G�FS3 H, let L be the image of the left-hand side of FS3 in G and R the image of the right-
hand side of FS3 in H. We will refer to the unique μ-hyperedge in L and R as h, and the unique
δ-hyperedge in L and R as h′. First, note that there is a path from every input in R to every output.
There is also a path from every input of R to h′ and from h to every output

μ δ
μ

δ

�FS3

... ...

...

...

...
...

...

...
h

h′
h′h

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 535

Hence, applying FS3 can only create more paths from μ-hyperedges to δ-hyperedges and never
breaks them, so D(H)⊆D(G). Furthermore, by acyclicity, there must not be a path from h to
h′ in G, but there is one in H. So the containment D(H)⊆D(G) is strict and thus H ≺D G. The
argument for FS4 is identical.

Theorem 44. FS is terminating.

Proof. We form the lexicographic ordering �FS :=�D ,L . It then follows from Lemmas 41, 42,
and 43 that �FS gives a reduction ordering for FS.

It is worth noting that acylicity plays a crucial role in the above proof. If the two hyperedges in
the left-hand side of FS3 or FS4 were part of a directed cycle, one could potentially find an infinite
sequence of rule applications.

Next example shows that, while convex rewriting prevents us from introducing cycles (and
hence non-terminating behaviour), it also breaks confluence from this system. Our counter-
example is based on Example 3.11 from Power (1991), which was given in terms of string
diagrams by Hadzihasanovic (2020a). While Power’s original example concerned morphisms in a
3-category, the same phenomenon appears in symmetric monoidal categories and can be under-
stood as a surprising consequence of the convexity condition: namely, even non-overlapping rule
applications can block one another.

Example 45. Consider the following diagram, and its rendering as a cospan of hypergraphs

�→ (2→G← 2) :=
0

1

δ

δ

μ

μ

0

1

2

3

2

3

For a bialgebra (cf. the next section), this is a familiar diagram, as it is the right-hand side of one
of the equations. In that context, it is also a normal form. That is, none of the bialgebra rules can
be applied, so this diagram is considered fully simplified. However, for Frobenius semi-algebras
there are two different rules that apply: FS3 and FS4. Let us have a look at the hypergraph we
obtain when we apply each of these two rules

G �FS3

0

1
δ

δ

μμ

0

1

2

3

2

3 (11)

G �FS4

0

1
δ

δ

μμ

0

1

2

3

2

3 (12)

Note that these two rule applications act on disjoint sets of hyperedges, and yet they still interfere
with each other. In particular, applying FS3 introduces a new path from the leftmost δ-hyperedge
in hypergraph (11) to the rightmost μ-hyperedge. Whereas these two hyperedges previously
defined a convex sub-hypergraph of G, they are no longer convex after FS3 has been applied.
Consequently, these no longer define a valid match for FS4. Similarly, applying FS4 to G in (12)
blocks the application of FS3. In fact, neither of the hypergraphs (11) nor (12) contain a match for

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

536 F. Bonchi et al.

= =

=

=

=

=

= =

= =

(13)

Figure 2. The equations of a bialgebra.

any of the rules of FS. Hence, we have distinct hypergraphsH1 andH2 arising from G that cannot
be rewritten into the same hypergraph by the rules of FS, so FS is not confluent.

5.2 Bialgebras
We now consider bialgebras, i.e. a theory with the same generators as a Frobenius algebra{

μ := , η := , δ := , ε :=
}

but with a different set of equations. It is the theory underlying the (bi)-category of spans of
sets with disjoint union as monoidal product (Bruni and Gadducci 2001), and it has been used
in the axiomatisation of flownomials, an algebraic presentation of flowcharts (Stefanescu 2000).
The equations of non-commutative bialgebras are given in Figure 2, and their associated DPO
rewriting rules, forming the rewriting system BA, are shown in Figure 3.

We now focus on proving termination for this system. Its proof is slightly more elaborate,
as there are more rules, and the rules do not always preserve the number of hyperedges in
a hypergraph. Notably, repeated applications of BA9 can significantly increase the number of
hyperedges.

Nevertheless, we can find useful reduction orderings by counting paths rather than counting
hyperedges. For this, we define two kinds of paths, one that tracks paths involving (co)Units and
the other for (co)Multiplications

• a U-path is a path p from an input or an η-hyperedge to an output or an ε-hyperedge;
• anM-path is a path from a μ-hyperedge to a δ-hyperedge.
Next, define orders �U , �M , �μ, �δ based on counting the number of U-paths, M-paths, μ-

hyperedges, and δ-hyperedges, respectively. Using these four orderings, along with�L defined in
the previous section, we define the following lexicographic ordering

�BA := �U,M,μ,δ,L (14)
Each of the components of �BA is well-founded, so �BA itself is well-founded. Thus, we can
conclude as follows.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 537

μ

μ

η μ

0

1

2

3

0

1

2

3
μ

μ

0

1

2

3 0

1

2

3

0

1

2

3

0

1

2

3

δ

δ

δ

δ

0

1 0 1 0,1 ε
δ

0

1

0 1 0,1

η μ

0

1
0 1 0,1

εδ
0

1

0 1 0,1

μ

0

1

0

1ε

ε

ε

0

1 δ

0

1

0

1
η

η

η

0

1

0

1

2

3
μ

0

1 δ

2

3

δ

δ

μ

μ

η ε

0

1

2

3

BA1 := BA2 :=

BA10 :=

BA3 := BA4 :=

BA5 := BA6 :=

BA7 := BA8 :=

BA9 :=

Figure 3. DPO rewriting system BA for bialgebras.

Theorem 46. �BA is a reduction ordering for BA, thus BA terminates.

Proof. We argue rule-by-rule, showing that each one is strictly decreasing in one of the orders
from (14), and non-increasing in every order that is prior in the lexicographic ordering.

Since every rule BAj has a unique path from every input to every output for both left- and
right-hand side, applications of these rules have no effect on paths which start and finish outside
of their image. Hence, for each rule, we only need to consider paths which start or terminate in
the image of the left-hand side.

BA1 has no effect on η or ε hyperedges, hence on �U . No M-path can terminate in BA1 and
any M-path originating on BA1 must exit through the unique output. Since there are precisely
two μ-hyperedges in both the left- and the right-hand side, there is a one-to-one correspondence
betweenM-paths before and after applying the rule. BA1 leaves the number ofμ and δ hyperedges
fixed, so it suffices to show it strictly decreases �L . Applying the rule has no effect on the L -
weight of any μ-hyperedges outside of the image of the left-hand side. Suppose there are μ-trees
of size a, b, c connected to inputs 0, 1, 2 of the left-hand side, respectively. The L -weight of the
two μ-hyperedges on the left-hand side is thus a and a+ b+ 1, whereas on the right-hand side
they are a and b. Hence, �L is strictly decreased. BA2 follows via a symmetric argument.

Since BA3–BA6 and BA10 remove η- and ε-hyperedges from the hypergraph, they will strictly
decrease the number of U-paths.

For BA7, no U-path can terminate in the left-hand side, and any U-path starting in the left-
hand side must exit through one of the two outputs. Hence, it corresponds to a unique U-path
exiting the right-hand side. M-paths are unaffected, as is the number of δ-hyperedges. However,
the number of μ-hyperedges is strictly decreased, so BA7 strictly decreases�μ. The argument for
BA8 is symmetric, yet with respect to �δ .

BA9 has no η or ε-hyperedges in either the left- or the right-hand side, so it leaves the number
of U-paths fixed. Consider an M-path that enters the left-hand side from the left. It enters either
from input 0 or input 1, hence it corresponds to a unique M-path entering the right-hand side.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

538 F. Bonchi et al.

We can argue similarly for M-paths exiting on the right. Hence, the only M-path left to consider is
the one from the μ-hyperedge to the δ-hyperedge in the left-hand side, which is eliminated. Thus,
BA9 strictly reduces �M .

It is also possible to show that, unlike FS, the rewriting system BA is confluent. An impor-
tant factor in the confluence proof is the fact that the rewriting system BA is left-connected (cf.
Definition 37), so we do not need to impose convexity as an additional requirement when we do
rewriting, thanks to Theorem 38. This rules out situations like the one for FS in Example 45, where
disjoint rule applications can block one another due to convexity considerations.

In order to show confluence, we can use a technique known as critical pair analysis. There
are various subtleties arising in critical pair analysis for DPO rewriting (Plump 1993) and gen-
eral rewriting for symmetric monoidal categories (Lafont 2003), which are beyond the scope of
the this paper. Hence, we leave a formal proof of the confluence of BA for the sequel to this
paper, in which we develop a comprehensive framework for critical pair analysis on convex DPOI
rewriting (Bonchi et al. 2022).

6. Conclusions and Further Works
In this paper, we developed a practical approach to the rewriting of symmetric monoidal cate-
gories. Relying on a previously identified Bonchi et al. (2022) correspondence between string
diagrams and cospans of hypergraphs, we classify those cospans that do not rely on the pres-
ence of an additional Frobenius structure, i.e. those that are relevant when considering only
symmetric monoidal categories. Having thereby identified a combinatorial structure that serves
as a sound encoding of string diagrams, we use the mechanism of DPO rewriting, which we mod-
ify in order to ensure soundness and completeness. This involves the identification of sufficiently
well-behaved pushout complements and the restriction to similarly well-behavedmatches: roughly
speaking, these restrictions ensure that the rewrites themselves can only rely on the “vanilla” sym-
metric monoidal structure, without any use of the laws of Frobenius algebras. We arrive at a
practical procedure for rewriting modulo symmetric monoidal laws: assuming an implementation
of DPO rewriting of hypergraphs, each restriction can be easily checked algorithmically.

While originating in category theory (Joyal and Street 1991), string diagrams have been influen-
tial in computer science, especially after the paper on traced monoidal categories by Joyal, Street
and Verity (Joyal et al. 1996). However, the correspondence between terms of “2-dimensional”
algebraic structures – i.e. those with sequential and parallel composition, understood as arrows of
a free symmetric monoidal category – and suitable hypergraphs (flow diagrams) were recognised
earlier and studied at least since the work of Stefanescu (see the references in Selinger 2011).

Closely related to our work, Dixon and Kissinger (2013) use cospans of string graphs (called
there open graphs) to encode morphisms in a symmetric monoidal category and reason equation-
ally via DPO rewriting. There is an evident encoding of the hypergraphs we use into string graphs.
However, the notion of rewriting considered there is only sound if there is a trace on the sym-
metric monoidal category, whereas our notion of convex DPO rewriting guarantees soundness
for any symmetric monoidal category. Another difference is that we directly work in an adhesive
category, while the category of open graphs inherits the relevant properties from an embedding
into the adhesive category of typed graphs.

In logic and computer science, diagrammatic rewriting wasmotivated in part by computational
patterns appearing in the proof theory of linear logic, leading to general diagrammatic rewriting
frameworks such as interaction nets (Lafont 1990; Mazza 2006). A general rewriting theory of
such structures has also been developed; notably, Burroni (1993) generalised term rewriting to
higher dimensions, including the 3-dimensional case of string diagram rewriting; see Mimram’s
survey (Mimram 2014). Here, in order to capture symmetric monoidal structure, the laws of sym-
metric monoidal categories would usually be considered as explicit rewriting rules, resulting in

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 539

sophisticated rewriting systems whose analysis is often challenging (see e.g. Guiraud 2006; Lafont
2003). Abstract higher dimensional rewriting is far more general than our approach, which has
been tailored over symmetric monoidal categories. The loss of generality brings the benefits of
specialisation: our approach has the laws of symmetric monoidal categories built-in, reducing the
complexity of the resulting rewriting systems. Thus, our work can be seen as part of a more gen-
eral effort the search for characterisations that capture some parts of relevant algebraic structure
in combinatorial models that bring the possibility of implementation; see e.g. Obradovic’s work
on capturing the algebra of cyclic operads (Curien and Obradovic 2020; Obradovic 2017) and
Hadzihasanovic’s recent work on diagrammatic sets (Hadzihasanovic 2020b, 2021).

This is the second of a three paper series, the first being Bonchi et al. (2022), and the
third Bonchi et al. (2022) devoted to solving the problem of confluence for string diagram
rewriting. With these papers, we hope to lay the foundations for the next generation of dia-
grammatic proof assistants for SMTs. Such tools would lie between Globular (Bar et al. 2018)
and homotopy.io (https://homotopy.io/) on the one hand, the foundations of which are
designed for reasoning about higher dimensional weak structures and thus have minimal alge-
braic structure built-in, and Quantomatic (Kissinger and Zamdzhiev 2015), PyZX and QuiZX on
the other, in which the implementations of rewriting rely on the rich algebraic structure of the
ZX-calculus.

Notes
1 Pushouts are unique only up-to iso, which explains why arrows of Csp(Hyp�) are defined up-to the same equivalence.
2 For background on termination and confluence in term rewriting systems, see for instance Terese (2003). Termination for
string diagram rewriting has been studied as an instance of higher-dimensional term rewriting, see Guiraud (2006) and the
discussion in Section 6.

References
Abramsky, S. and Heunen, C. (2012). H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional cat-

egorical quantum mechanics. In: Abramsky, S. and Mislove, M. (eds.) Mathematical Foundations of Information Flow,
Proceedings of Symposia in Applied Mathematics, vol. 71, American Mathematical Society, 1–14.

Baez, J. and Erbele, J. (2015). Categories in control. Theory and Application of Categories 30 836–881.
Bar, K., Kissinger, A. and Vicary, J. (2018). Globular: an online proof assistant for higher-dimensional rewriting. Logical

Methods in Computer Science 14 (1).
Behrisch, M., Kerkhoff, S. and Power, J. (2012). Category theoretic understandings of universal algebra and its dual: monads

and Lawvere theories, comonads and what? In: Berger, U. andMislove, M.W. (eds.)MFPS 2012, ENTCS, vol. 286, Elsevier,
5–16.

Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P. and Zanasi, F. (2016). Rewriting modulo symmetric monoidal structure.
In: Grohe, M., Koskinen, E. and Shankar, N. (eds.) LICS 2016, ACM, 710–719.

Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P. and Zanasi, F. (2017a). Confluence of graph rewriting with interfaces.
In: Yang, H. (ed.) ESOP 2017, LNCS, vol. 10201, Springer, 141–169.

Bonchi, F., Holland, J., Pavlovic, D. and Sobociński, P. (2017b). Refinement for signal flow graphs. In: Meyer, R. and
Nestmann, U. (eds.) CONCUR 2017, LIPIcs, vol. 85, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 24:1–24:16.

Bonchi, F., Pavlovic, D. and Sobociński, P. (2017c). Functorial semantics for relational theories. Preprint available at
arXiv:1711.08699.

Bonchi, F., Sobociński, P. and Zanasi, F. (2017d). The calculus of signal flow diagrams I: linear relations on streams.
Information and Computation 252 2–29.

Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P. and Zanasi, F. (2018a). Rewriting with Frobenius. In: Dawar, A. and
Grädel, E. (eds.) LICS 2018, ACM, 165–174.

Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P. and Zanasi, F. (2022). String diagram rewrite theory I: rewriting with
Frobenius structure. Journal of the ACM 69 (2) 14:1–14:58.

Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P. and Zanasi, F. (2022). String diagram rewrite theory III: confluence
with and without Frobenius. Mathematical Structures in Computer Science.

Bonchi, F., Gadducci, F. and König, B. (2009). Synthesising CCS bisimulation using graph rewriting. Information and
Computation 207 (1) 14–40.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://homotopy.io/
https://doi.org/10.1017/S0960129522000317

540 F. Bonchi et al.

Bonchi, F., Piedeleu, R., Sobociński, P. and Zanasi, F. (2019). Graphical affine algebra. In: LICS 2019, IEEE, 1–12.
Bonchi, F., Sobociński, P. and Zanasi, F. (2018b). Deconstructing Lawvere with distributive laws. Logic and Algebraic Methods

in Programming 95 128–146.
Bruni, R. and Gadducci, F. (2001). Some algebraic laws for spans (and their connections with multirelations). In: Kahl, W.,

Parnas, D. L. and Schmidt, G. (eds.) RELMIS 2001, ENTCS, vol. 44(3), Elsevier, 175–193.
Burroni, A. (1993). Higher dimensional word problems with applications to equational logic. Theoretical Computer Science

115 (1) 43–62.
Coecke, B. and Duncan, R. (2011). Interacting quantum observables: categorical algebra and diagrammatics. New Journal of

Physics 13 (4) 1–85.
Coecke, B. and Kissinger, A. (2017). Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic

Reasoning, Cambridge University Press.
Corradini, A. and Gadducci, F. (2002). Functorial semantics for multi-algebras and partial algebras, with applications to

syntax. Theoretical Computer Science 286 (2) 293–322.
Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R. and Löwe, M. (1997). Algebraic approaches to graph transfor-

mation - Part I: basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foundations, World Scientific, 163–246.

Curien, P.-L. and Obradovic, J. (2020). Categorified cyclic operads. Applied Categorical Structures 28 (1) 59–112.
Dixon, L. and Kissinger, A. (2013). Open-graphs and monoidal theories. Mathematical Structures in Computer Science 23 (2)

308–359.
Ehrig, H. and König, B. (2004). Deriving bisimulation congruences in the DPO approach to graph rewriting. In:Walukiewicz,

I. (ed.) FOSSACS 2004, LNCS, vol. 2987, Springer, 151–166.
Fox, T. (1976). Coalgebras and cartesian categories. Communications in Algebra 4 665–667.
Gadducci, F. (2007). Graph rewriting for the π-calculus. Mathematical Structures in Computer Science 17 (3) 407–437.
Gadducci, F. and Heckel, R. (1998). An inductive view of graph transformation. In: Parisi-Presicce, F. (ed.)WADT 1997, vol.

1376, Springer, 223–237.
Garner, R. and Power, J. (2018). An enriched view on the extended finitary monad-Lawvere theory correspondence. Logical

Methods in Computer Science 14 (1).
Ghica, D. R., Jung, A. and Lopez, A. (2017). Diagrammatic semantics for digital circuits. In: Goranko, V. and Dam, M. (eds.)

CSL 2017, LIPIcs, vol. 82, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 24:1–24:16.
Guiraud, Y. (2006). Termination orders for three-dimensional rewriting. Pure and Applied Algebra 207 (2) 341–371.
Hadzihasanovic, A. (2020a). Via Twitter: twitter.com/amar_hh/status/1336274654923788288?s=20.
Hadzihasanovic, A. (2020b). A combinatorial-topological shape category for polygraphs. Applied Categorical Structures 28

(3) 419–476.
Hadzihasanovic, A. (2021). The smash product of monoidal theories. In: LICS 2021, IEEE, 1–13.
Hyland, M., Plotkin, G. D. and Power, J. (2002). Combining computational effects: commutativity & sum. In: Baeza-Yates,

R. A., Montanari, U. and Santoro, N. (eds.) TCS 2002, IFIP Conference Proceedings, vol. 223, Kluwer, 474–484.
Hyland, M. and Power, J. (2007). The category theoretic understanding of universal algebra: Lawvere theories and monads.

In: Cardelli, L., Fiore, M. P. and Winskel, G. (eds.) Computation, Meaning, and Logic, ENTCS, vol. 172, Elsevier, 437–458.
Jacobs, B., Kissinger, A. and Zanasi, F. (2019). Causal inference by string diagram surgery. In: Bojanczyk, M. and Simpson, A.

(eds.) FOSSACS 2019, LNCS, vol. 11425, Springer, 313–329.
Joyal, A. and Street, R. (1991). The geometry of tensor calculus, I. Advances in Mathematics 88 (1) 55–112.
Joyal, A., Street, R. and Verity, D. (1996). Traced monoidal categories. Mathematical Proceedings of the Cambridge

Philosophical Society 119 (3) 447–468.
Kissinger, A. and Zamdzhiev, V. (2015). Quantomatic: a proof assistant for diagrammatic reasoning. Preprint available at

arXiv:1503.01034.
Lack, S. and Power, J. (2009). Gabriel-Ulmer duality and Lawvere theories enriched over a general base. Functional

Programming 19 (3–4) 265–286.
Lack, S. (2004). Composing PROPs. Theory and Application of Categories 13 (9) 147–163.
Lack, S. and Sobociński, P. (2005). Adhesive and quasiadhesive categories. Theoretical Informatics and Applications 39 (3)

511–546.
Lafont, Y. (1990). Interaction nets. In: Allen, F. E. (ed.) POPL 1990, 95–108.
Lafont, Y. (2003). Towards an algebraic theory of Boolean circuits. Pure and Applied Algebra 184 (2–3) 257–310.
Liberti, I. D., Loregian, F., Nester, C. and Sobociński, P. (2021). Functorial semantics for partial theories. In: POPL 2021.
Mac Lane, S. (1965). Categorical algebra. Bulletin of the American Mathematical Society 71 (1) 40–106.
Mazza, D. (2006). Interaction Nets: Semantics and Concurrent Extensions. Phd thesis, Université Aix-Marseille II/Università

degli Studi Roma Tre.
Mimram, S. (2014). Towards 3-dimensional rewriting theory. Logical Methods in Computer Science 10 (2).
Moggi, E. (1991). Notions of computation and monads. Information and Computation 93 (1) 55–92.
Obradovic, J. (2017). Cyclic Operads: Syntactic, Algebraic and Categorified Aspects. Phd thesis, Université Paris 7.

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://twitter.com/amar_hh/status/1336274654923788288?s=20
https://doi.org/10.1017/S0960129522000317

Mathematical Structures in Computer Science 541

Plotkin, G. D. and Power, J. (2001a). Adequacy for algebraic effects. In: Honsell, F. and Miculan, M. (eds.) FOSSACS 2001,
LNCS, vol. 2030, Springer, 1–24.

Plotkin, G. D. and Power, J. (2001b). Semantics for algebraic operations. In: Brookes, S. D. and Mislove, M. W. (eds.)MFPS
2001, ENTCS, vol. 45, Elsevier, 332–345.

Plotkin, G. D. and Power, J. (2002). Notions of computation determine monads. In: Nielsen, M. and Engberg, U. (eds.)
FOSSACS 2002, LNCS, vol. 2303, Springer, 342–356.

Plotkin, G. D. and Power, J. (2003). Algebraic operations and generic effects. Applied Categorical Structures 11 (1) 69–94.
Plotkin, G. D. and Power, J. (2004). Computational effects and operations: an overview. In: Escardó, M. H. and Jung, A. (eds.)

Workshop on Domains VI, ENTCS, vol. 73, Elsevier, 149–163.
Plump, D. (1993). Hypergraph rewriting: critical pairs and undecidability of confluence. In: Ronan Sleep, M., Plasmeijer, M. J.

and van Eekele, M. C. J. D. (eds.) Term Graph Rewriting: Theory and Practice, Wiley, 201–213.
Power, J. (1991). An n-categorical pasting theorem. In: Carboni, A., Pedicchio, M. C. and Rosolini, G. (eds.) Category theory,

Lecture Notes in Mathematics, Springer, 326–358.
Power, J. (1999). Enriched Lawvere theories. Theory and Applications of Categories 6 (7) 83–93.
Power, J. (2004). Canonical models for computational effects. In: Walukiewicz, I. (ed.) FOSSACS 2004, LNCS, vol. 2987,

Springer, 438–452.
Power, J. (2005). Discrete Lawvere theories. In: Fiadeiro, J. L., Harman, N., Roggenbach, M. and Rutten, J. J. M. M. (eds.)

CALCO 2005, LNCS, vol. 3629, Springer, 348–363.
Power, J. (2006a). Countable Lawvere theories and computational effects. In: Seda, A. K., Hurley, T., Schellekens, M. P.,

Airchinnigh, M. M. and Strong, G. (eds.)MFCSIT 2004, ENTCS, vol. 161, Elsevier, 59–71.
Power, J. (2006b). The universal algebra of computational effects: Lawvere theories and monads. In: McBride, C. and

Uustalu, T. (eds.)MSFP@MPC 2006, Workshops in Computing. BCS.
Sadrzadeh, M., Clark, S. and Coecke, B. (2013). The Frobenius anatomy of word meanings I: subject and object relative

pronouns. Logic and Computation 23 (6) 1293–1317.
Sassone, V. and Sobociński, P. (2005). Reactive systems over cospans. In: LICS 2005, IEEE Computer Society, 311–320.
Selinger, P. (2011). A survey of graphical languages for monoidal categories. Springer Lecture Notes in Physics 13 (813)

289–355.
Stefanescu, G. (2000). Network Algebra, Springer, London.
Terese. (2003). Term Rewriting Systems, Cambridge University Press.
Ullmann, J. R. (1976). An algorithm for subgraph isomorphism. Journal of the ACM 23 (1) 31–42.
Zanasi, F. (2015). Interacting Hopf Algebras: The Theory of Linear Systems. Phd thesis, École Normale Supérieure de Lyon.
Zanasi, F. (2016). The algebra of partial equivalence relations. In: Birkedal, L. (ed.) MFPS 2016, ENTCS, vol. 325, Elsevier,

313–333.

Cite this article: Bonchi F, Gadducci F, Kissinger A, Sobocinski P and Zanasi F (2022). String diagram rewrite
theory II: Rewriting with symmetric monoidal structure. Mathematical Structures in Computer Science 32, 511–541.
https://doi.org/10.1017/S0960129522000317

https://doi.org/10.1017/S0960129522000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000317
https://doi.org/10.1017/S0960129522000317

	String diagram rewrite theory II: Rewriting with symmetric monoidal structure
	Introduction
	Background
	Symmetric monoidal theories and PROPs
	Syntactic rewriting for PROPs
	Hypergraphs with interfaces
	Double-pushout rewriting of hypergraphs

	Combinatorial Characterisation of String Diagrams
	Characterisation for coloured PROPs

	A Sound and Complete Interpretation for String Diagram Rewriting
	Characterisation for coloured PROPs

	Case Studies
	Frobenius semi-algebras
	Bialgebras

	Conclusions and Further Works

