
Canad. Math. Bull. Vol. 39 (2), 1996 pp. 250-256 

QUASI-DUALITY, LINEAR COMPACTNESS 
AND MORITA DUALITY FOR POWER SERIES RINGS 

WEIMIN XUE 

ABSTRACT. AS a generalization of Morita duality, Kraemer introduced the notion 
of quasi-duality and showed that each left linearly compact ring has a quasi-duality. 
Let R be an associative ring with identity and R[[x]] the power series ring. We prove 
that (1) R[[x]] has a quasi-duality if and only if R has a quasi-duality; (2) R[[x]] is 
left linearly compact if and only if R is left linearly compact and left noetherian; and 
(3) R[[x]] has a Morita duality if and only if/? is left noetherian and has a Morita duality 
induced by a bimodule RUS such that S is right noetherian. 

0. Introduction. Let R be a ring and R[[x]] be the ring of all formal power series in 
JC with coefficients in R. If/? U is a left /^-module, we let U[x~l ] consist of all polynomials 
in x_1 with coefficients in U. Thus a typical element of £/[x-1] is an expression 

i/o + u\x~x + uix~2 + • • • + unx~n 

where w, G U. Now £/[x-1] can be turned into a left R[[x]]-module. The addition in 
£/[JC-1] is componentwise and the scalar multiplication is defined as follows 

(Li>oriXl)(Lj>ç)UjX~J) = Z/>o(I/>o^M/+/>"-/ 

where I/^or/jc' £ R[[x]] and Y.J>QUJX~J G U[x~]]. Note that, in particular, 

(rxm)(ux-n)~ 1° w h e n m > « , 
1 A } \rux-^-m) w h e n m < « . 

Then U[x~l ] becomes a left R[[x]]-module. Similarly, if Us is a right ^-module for some 
ring 5, then £/[x_1] is a right S[[x]]-module. If RUs is an ^-5-bimodule, according to the 
above construction, t/jx-1] becomes a left /?[[x]]- and right S[[x]] -bimodule. 

In this paper, rings are associative with identity and modules are unitary. We always 
let R and S be rings and freely use the terminologies and notations of [1]. 

Recall that a bimodule RUS defines a Morita duality if the bimodule R Us is faithfully 
balanced and both RU and Us are injective cogenerators (see [1, Theorem 24.1] or [13, 
Theorem 2.4]), and in this case, R has a Morita duality. Morita duality was established by 
Azumaya [3] and Morita [8], and a presentation of this duality can be found in Anderson 
and Fuller [1, § 23, § 24] and the author's book Xue [13]. 
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As a generalization of Morita duality, Kraemer [5] said that a bimodule RUS defines a 
quasi-duality in case RUS is faithfully balanced and both RUand Us are quasi-injective 
and finitely cogenerated, and in this case, R has a quasi-duality. 

This paper consists of two sections. The main result in Section 1 is Theorem 1.5 
which states that a bimodule RUS defines a quasi-duality if and only if the bimodule 
R[[x]]U[x _1lsiM] defines a quasi-duality. It follows that R has a quasi-duality if and only 
if R[[x]] has a quasi-duality. 

In Section 2, we consider when the power series ring R[[x]] is left linearly compact or 
has a Morita duality. We prove (Theorem 2.3) that R[[x]] is left linearly compact if and 
only if R is left linearly compact and left noetherian. This is a generalization of a result 
of Anh and Menini (informed to us by Anh), and Herbera (informed to us by Faith) 
who proved this for commutative rings. In [14, Theorem 1.3] we proved that if RUs 
defines a Morita duality, R is left noetherian and S is right noetherian, then the bimodule 
/?[[*]] kT*-1]sTM] defines a Morita duality. We shall establish the converse (Theorem 2.4). 
Consequently, R[[x]] has a Morita duality if and only if R is left noetherian and has a 
Morita duality induced by a bimodule RUS such that S is right noetherian. 

1. Quasi-duality for power series rings. Let RU be an 7?-module. McKerrow [6] 
proved that if the /?[[x]]-module U[x~l ] is injective then RU must be injective [6, Propo­
sition 1], and the converse is true if R is left noetherian [6, Theorem 1]. We shall see that 
the noetherian condition is essential (Example 2.6). However, we have the following 
result for quasi-injectivity. 

LEMMA 1.1. An R-module RU is quasi-injective if and only if the R[[x]]-module 
R[[x]]U[x~l] is quasi-injective. 

PROOF. (=>). Let W be an #[[x]]-submodule of U[x~l] and h: W —> U[x~l] be an 
i?[[x]]-homomorphism. Let 

F={f:L^ U[x~l] \W<L< U[x~l] and/V = h} 

be a set of /?[[x]]-homomorphisms. Iff: 1/ —* U[x~] ] are two elements in W (i = 1,2), 
we define f\ <fi in case L\ < Li a n d / ^ , — f. By Zorn's Lemma, the partial ordered 
set (F, <) has a maximal element, say h:M —> U[x~l]. To show M = U[x~l], we need 
only to prove that each I^o*7*"' Q M (n = 0,1,...). Let Wn = M f l ÇL^Ux'1) and 
Pj\ £/[x_1] —> U be the j-th projections (nj — 0,1,...). Since RU is quasi-injective 
and Pjh\wn'- Wn —> U is an /^-homomorphism, there are elements %, sy, ...,snj- G S = 
End(#£/) such that for each I"=0w/x_/ G W„, 

Pj-hPUW') = Z7=o"«*iy (/ = 0,1,...), 

where we view RUs as a left R- and right S-bimodule. Let/: M + (SJLo^*') ~^ ^ I* - 1 ] 
via m + ISLof/pr1' •-» Â(/w) + SyLo^Lo"^^ - 7- I f m = -( s?=ow^_ /) ^ ^n then 0 = 
/j(xym) = xJh(m) for eachy > n. Hence h(m) = Y!J=QVjX~j G XJL0to~', and v, = Pjh(m) = 
Pjh(—Y!l=QUiX~l) — —YTi=0UiSij and h(m) = — Sy=0(S =̂0w/j,/y)x~-/". S o / is well-defined and 
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it is routine to check that/is an ̂ [[x]]-homomorphism. Since/|M = ^,bythemaximality 
of h, we have ^"=0Ux~l Ç M. 

(<=). Let V < RU and h: V —> f/ an /Miomomorphism. Then V[x~l] is an /?[[*]]-
submodule of U[x~l] and if: J^x"1] - • t^ j r 1 ] via E/v/jT'" »-* S/ACv,-̂ "'" is an #[[x]]-
homomorphism. By the quasi-injectivity of #[[*]] £/[x_1], we can find an /?[[x]]-homo-
morphism H: U[x~l] —> U[x~x] such that //|F[jc-i] = //. We view U as an /2[[JC]]-

submoduleof U[x~]] and xU = 0; hence x#(L0 - 0 and #([/) Ç U Therefore, 
h = H\u\ U —> {/is anTMiomomorphismand h\y = h. 

LEMMA 1.2. 4̂« R-module R U is finitely cogenerated if and only if the R[[x]]-module 

R[[x]]U[x~l] is finitely cogenerated. 

PROOF. (=>). We note that SocfoL/) is a finitely generated semisimple 7?[[x]]-sub-
module of £/[x-1]. If W is a non-zero i?[[x]]-submodule of U[x~l]9 it is easy to see that 
WPiU^O. Since RUis finitely cogenerated, FT H Soc(*L0 = (WHU)n Soc(RU) ^ 0. 
Hence £/[x-1] is finitely cogenerated as an /?[[x]]-module. 

(<=). If ^[[x]]L^[x_1] is finitely cogenerated, its i?[[x]]-submodule Uis also finitely co-
generated. SincexU = 0, RU is finitely cogenerated. 

LEMMA 1.3. An R-module R U is faithful if and only if the R[[x]]-module R[[X]] U[X~
 l ] 

is faithful. 

PROOF. Straightforward. 

LEMMA 1.4. An R-S-bimodule RUS is balanced if and only if the R[[x]]-S[[x]]-bi-

module R[[x]]U[x~l]s[[x]] is balanced. 

PROOF. (=>). This is [12, Lemma 1.1]. 

(<=). Use the proof of Lemma 1.1 (<=). 

Kraemer [5, p. 11] said that a bimodule RUS defines a quasi-duality in case RUS is 
faithfully balanced and both R U and Us are quasi-injective and finitely cogenerated, and 
in this case R is said to have a quasi-duality. The following result follows from the above 
four lemmas and their right symmetric versions. 

THEOREM 1.5. A bimodule RUS defines a quasi-duality if and only if the bimodule 

R[[x]]U[x~l]s[[x]] defines a quasi-duality. 

It is not known whether or not a factor ring of a ring with a quasi-duality has a quasi-
duality. However, ifR has a quasi-duality and / is an ideal which is finitely generated as 
a left 7?-module then R/I has a quasi-duality by [5, Lemma 2.3(3)(4)]. Hence we have 

COROLLARY 1.6. A ring R has a quasi-duality if and only if R[[x]] has a quasi-
duality. 
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2. Linear compactness and Morita duality for power series rings. The follow­
ing interesting result, due to Kraemer [5], will be often used throughout the rest of this 
paper. The reader is referred to [11, § 3, § 4] for linearly compact modules. 

KRAEMER'S THEOREM. Let R US define a quasi-duality. Then 
(1) The following are equivalent: (i) R is left linearly compact; (ii) RU is an infective 

cogenerator; (Hi) Us is linearly compact. 
(2) The following are equivalent: (i) S is right linearly compact; (ii) Us is an injec-

tive cogenerator; (Hi) R U is linearly compact. 
(3) The following are equivalent: (i) R has a Morita duality; (ii) S has a right Morita 

duality; (Hi) R US defines a Morita duality; (iv) the equivalent conditions of both 
(1) and (2) hold. 

(4) R is left noetherian if and only if Us is artinian; consequently, R is left linearly 
compact. 

PROOF. (1), (2) and (3) are the contents of [5, Theorem 2.6]. Using [5, 
Lemma 2.3(2)(3)], we can prove that R is left noetherian if and only if Us is artinian. 
Since an artinian module is linearly compact, R must be left linearly compact by (1). 

In this section we shall use Theorem 1.5 and Kraemer's Theorem to determine when 
R[[x]] is left linearly compact and when it has a Morita duality. 

Let Us be a right S-module. Then we have a right S[[jt]]-module U[x~1]. Iff = UQ + 
u\x~x + • • • + U[X~l e U[x~l ] and w, ^ 0, we say that/ has degree /. Let F be an 5[[JC]]-

submodule of U[x~1]. For each / > 0, we let Lt{F) = {0}U {leading coefficients of 
elements of degree / in F}, which is an S-submodule of U. Moreover, it is easy to see 
that Lt(F) 2 Li+Ï(F) for each / > 0. 

LEMMA 2.1. Let Us be an S-module. IfFDG are S[[x]]-submodules ofU[x~l] 
satisfying Li{F) = Li(G)for all i > 0, then F = G. 

PROOF. Modify the proof of [12, Lemma 2.2]. 
To characterize the linear compactness of /*[[*]], we need the following result which 

has its own interest. 

PROPOSITION 2.2. The following are equivalent for a right S-module Us-' 
(1) Us is artinian; 
(2) U[x~[]s[[x]] is artinian; 
(3) U[x~l]s[[x)] is linearly compact. 

PROOF. (1) =» (2). We modify the proof of [12, Theorem A (a) => (b)]. Let 

F0DFlDF22-" 

be a descending chain of SfMJ-submodules of U[x~1]. From the comments preceeding 
Lemma 2.1, we get Li(Fj) 2 Li+\{Fj) for each / > 0 andy > 0. Also Fj D FJ+\ implies 
Li{Fj) 2 Li(Fj+\) for each / > 0 andy' > 0. Since Us is artinian, {^(^7)}/>Oj>o has a 
minimal element, say Lk(Fn). Then Lt{Fj) = Lk(Fn) whenever i > k andy > n. For each 
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fixed / < k, because Ms is artinian, we can find an integer t(i) with LtiFj) = Li(Ft(i)) for 
j > t(i). Let t = max{*(0), f(l), ...,t(k- 1), n}. Then Z^Fy) = Lt(Ft) for y > t and all 
/ > 0. From Lemma 2.1, we see that Fj = Ft for y > t. Hence £/[*-1]s[M] is artinian. 

(2) => (3). Each artinian module is linearly compact. 
(3) => (1). Suppose Us is not artinian, then Us has a strictly infinite chain of S-

submodules: 

U0 > f/i > U2 > • •. 

We view each £//[x_1] as an S[[x]]-submodule of U[x~1]. Let u{ G Ui\Ui+\ for each /. 
Then the S[[x]]-module (7[x_1 ] has a finitely solvable family 

{(L^ujx-^l Uilx-1]}^ 

which is not solvable. Hence the ^[[xJJ-module L^x-1] is not linearly compact, a contra­
diction. 

The next result is a characterization of the linear compactness of Z?[[x]], where the 
equivalence (1) <=* (3) was proved by Anh and Menini, and Herbera for commutative 
rings. 

THEOREM 2.3. The following are equivalent for a ring R: 
(1) R is left linearly compact and left noetherian; 
(2) R has a quasi-duality and is left noetherian; 
(3) R\\_x]\ is left linearly compact; 
(4) R[[x\,...9 xn]] is left linearly compact for any finitely many variables x\,...,x„. 

PROOF. (1) => (2) Kraemer [5, Proposition 2.4] proved that each left linearly com­
pact ring has a quasi-duality. 

(2) => (4). Since R is a left noetherian ring with a quasi-duality, the left noetherian 
ring R[[x\,..., jtj] has a quasi-duality by Corollary 1.6 and it is left linearly compact by 
Kraemer's Theorem. 

(4) => (3). This is clear. 
(3) => (1). We see that R is left linearly compact by (3), since R is a factor ring of 

/£[[*]]. By [5, Proposition 2.4], R has a quasi-duality induced by a bimodule RUS. Then 
thebimodule^jcjj^/fx-1]^^]] defines a quasi-duality by Theorem 1.5. Since 7?[[x]] is left 
linearly compact, £/[x_1]s[[*]] ^s linearly compact by Kraemer's Theorem. Hence Us is 
artinian by Proposition 2.2 and then R is left noetherian by Kraemer's Theorem again. 

Varnos [11] mentioned as a slightly modified version of Muller [9, Theorem 1] that a 
ring R has a Morita duality induced by RUE^^U) if and only if R is left linearly compact 
and RU is a linearly compact and finitely cogenerated injective cogenerator. (See [13, 
Theorem 4.5]). Anh [2] proved that each commutative linearly compact ring has a Morita 
duality. 

Let R be a commutative linearly compact ring which is not noetherian (e.g., the ring R 
in [13, Example 10.9]). Then/?[[jc]] is not linearly compact by Theorem 2.3. Since/? has 
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a Monta duality, this gives negative answers to both [13, Question 3.7] and [13, Ques­
tion 4.16]. Professor P. Vâmos has also informed us that the answers to these two ques­
tions are "No". Let £/be the minimal injective cogenerator in the category of/^-modules. 
By [2], R has a Monta duality induced by R UR which is not an artinian module, since R is 
not noetherian. If R[x] denotes the polynomial ring, we see that each /?[x]-submodule of 
U[x~]] is automatically an /?[[x]]-submodule. Hence the /?[x]-module U[x~l] is finitely 
cogenerated by Lemma 1.2 but not linearly compact by Proposition 2.2. This shows 
that R[x] is not a Vâmos ring, answering a question of Professor C. Faith (private com­
munication) in the negative, where a commutative ring is called Vâmos if each finitely 
cogenerated module is linearly compact. 

The next two results give conditions for the power series ring R[[x]] to have a Monta 
duality. 

THEOREM 2.4. The following two statements are equivalent for a bimodule R US: 
(1) RUS defines a Morita duality, R is left noetherian and S is right noetherian; 
(2) the bimodule R[[X]] U[x~l]s[[x]] defines a Morita duality. 

PROOF. (=>). This is [14, Theorem 1.3]. 
(4=). Since R[[x]] is left linearly compact, R is left noetherian and left linearly com­

pact by Theorem 2.3. Similarly, S is right noetherian and right linearly compact. By The­
orem 1.5, RUS defines a quasi-duality which is a Morita duality by Kraemer's Theorem. 

COROLLARY 2.5. The following are equivalent for a ring R: 
(1) R is a left noetherian ring with a Morita duality induced by a bimodule RUs such 

that S is right noetherian; 
(2) R[[x]] has a Morita duality; 

PROOF. (1) => (2). By Theorem 2.4. 

(2) => (1). Since a factor ring of a ring with a Morita duality has a Morita duality 
[13, Corollary 2.5], R is a left noetherian ring with a Morita duality by Theorem 2.3. 
Let RUS define a Morita duality. Then by Theorem 1.5, the bimodule /?[[*]] kT*_1]s[[jc]] 
defines a quasi-duality, which is a Morita duality by Kraemer's Theorem. Hence S is 
right noetherian by Theorem 2.4. 

We conclude this paper with an example to illustrate our results. 

EXAMPLE 2.6. Let F be a field and F((y)) the quotient field of F[[y]]. By Menini [7, 
Example 2.6.1] or Muller [10, p. 73], 

R = 
o F[\y]] 

has a Morita self-duality defined by an i?-bimodule RUR.WQ note that R is left noetherian 
but not right noetherian. Hence R[[x]] does not have a Morita duality by Corollary 2.5. 
By Theorem 1.5, the bimodule /?[[*]] ̂ T*-1 ]/?[[*]] defines a quasi-duality which is not a 
Morita duality. Since R[[x]] is left linearly compact but not right linearly compact by 
Theorem 2.3, it follows from Kraemer's Theorem that (1) /?[[*]]t/fx-1] is an injective 
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cogenerator which is not linearly compact, and (2) U[x~ ]R[[X]] is a linearly compact 
module which is not an injective cogenerator. Since R and R[[x]] have the same simple 
right modules, each simple right 7?[[.x]]-module embedes into U[x~l], hence £/[x_1 ]/?[[*]] 
is not an injective module. Since RUR defines a Morita duality, UR is an injective cogen­
erator. This shows that the noetherian condition in [6, Theorem 1] can not be dropped as 
we promised at the beginning of Section 1. Let 

A = R[[x]]oc U[x~{] 

be the trivial extension. Since the ^[[x]]-bimodule t/[x_1] is faithfully balanced, we see 
from [13, Theorem 10.7] that A is a left FF-ring which is not right PF, i.e., AA is an 
injective cogenerator but AA is not injective. The first example (different from ours) of 
one-sided FF-rings was given by Dischinger and Millier in [4]. 
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