TPLP: Page 1-19. (© The Author(s), 2025. Published by Cambridge University Press. This is an 1
Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses /by /4.0/), which permits unrestricted re-use, distribution

and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068425100124

Counting Answer Sets of Disjunctive Answer Set
Programs

MD MOHIMENUL KABIR
School of Computing, National University of Singapore, Singapore, Singapore
(e-mail: mahibuet045@gmail . com)

SUPRATIK CHAKRABORTY

Department of Computer Science, Indian Institute of Technology Bombay, Mumbai, India

(e-mail: supratik@cse.iitb.ac.in)

KULDEEP S. MEEL
Georgia Institute of Technology, Atlanta, USA

(e-mail: meel@cs.toronto.edu)

submitted 19 July 2025; revised 19 July 2025; accepted 27 July 2025

Abstract

Answer Set Programming (ASP) provides a powerful declarative paradigm for knowledge
representation and reasoning. Recently, counting answer sets has emerged as an important com-
putational problem with applications in probabilistic reasoning, network reliability analysis,
and other domains. This has motivated significant research into designing efficient ASP coun-
ters. While substantial progress has been made for normal logic programs, the development of
practical counters for disjunctive logic programs remains challenging. We present sharpASP-SR,
a novel framework for counting answer sets of disjunctive logic programs based on subtractive
reduction to projected propositional model counting. Our approach introduces an alternative
characterization of answer sets that enables efficient reduction while ensuring the intermediate
representations remain polynomial in size. This allows sharpASP-SR to leverage recent advances
in projected model counting technology. Through extensive experimental evaluation on diverse
benchmarks, we demonstrate that sharpASP-SR significantly outperforms existing counters on
instances with large answer set counts. Building on these results, we develop a hybrid counting
approach that combines enumeration techniques with sharpASP-SR to achieve state-of-the-art
performance across the full spectrum of disjunctive programs. The extended version of the paper
is available at: https://arxiv.org/abs/2507.11655.

KEYWORDS: answer set counting, disjunctive programs, subtractive reduction, projected
model counting

1 Introduction

Answer Set Programming (ASP) (Marek and Truszczyriski 1999) has emerged as a pow-
erful declarative problem-solving paradigm with applications across diverse application

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124
https://orcid.org/0000-0001-7551-0337
mailto:mahibuet045@gmail.com
mailto:supratik@cse.iitb.ac.in
mailto:meel@cs.toronto.edu
https://doi.org/10.1017/S1471068425100124

2 M. M. Kabir et al.

domains. These include decision support systems (Nogueira et al. 2001), systems biol-
ogy (Gebser et al. 2008), and diagnosis and repair (Leone and Ricca 2015). In the ASP
paradigm, domain knowledge and queries are expressed through rules defined over propo-
sitional atoms, collectively forming an ASP program. Solutions manifest as answer sets —
assignments to these atoms that satisfy program rules according to ASP semantics. Our
work focuses on the fundamental challenge of answer set counting #ASP: determining
the total number of valid answer sets for a given ASP program.

Answer set counting shares conceptual similarities with propositional model counting
(#SAT), in which we count satisfying assignments of Boolean formulas (Valiant 1979).
While #SAT is #P-complete (Valiant 1979), its practical significance has driven sub-
stantial research, yielding practically efficient propositional model counters that combine
strong theoretical guarantees with impressive empirical performance. This, in turn, has
motivated research in counting techniques beyond propositional logic. Specifically, there
has been growing interest in answer set counting, spurred by applications in probabilistic
reasoning (Lee et al. 2017), network reliability analysis (Kabir and Meel 2023), answer set
navigation (Rusovac et al. 2024), system biology (Kabir et al. 2025), and others (Kabir
and Meel 2024, 2025).

Early approaches to answer set counting relied primarily on exhaustive enumeration
(Gebser et al. 2012). Recent methods have made significant progress by leveraging #SAT
techniques (Janhunen 2006; Janhunen and Niemeld 2011; Aziz et al. 2015b; Eiter et al.
2024; Kabir et al. 2024; Fichte et al. 2024). Complementing these approaches, dynamic
programming on tree decompositions has shown promise for programs with bounded
treewidth (Fichte et al. 2017; Fichte and Hecher 2019). Most existing answer set coun-
ters focus on normal logic programs — a restricted class of ASP. Research on counters
for the more expressive class of disjunctive logic programs (Eiter and Gottlob 1995) has
received relatively less attention over the years. Our work attempts to bridge this gap by
focusing on practically efficient counters for disjunctive logic programs. Complexity theo-
retic arguments show that barring a collapse of the polynomial hierarchy, translation from
disjunctive to normal programs must incur exponential overhead (Eiter et al. 2004; Zhou
2014). Consequently, counters optimized for normal programs cannot efficiently handle
disjunctive programs, unless the programs themselves have special properties (Fichte and
Szeider 2015; Ji et al. 2016; Ben-Eliyahu-Zohary et al. 2017). While loop formula-based
translation (Lee and Lifschitz 2003) enables counting in theory, the exponential over-
head becomes practically prohibitive for programs with many cyclic atom relationships
(Lifschitz and Razborov 2006). Similarly, although disjunctive answer set counting can
be reduced to QBF counting in principle (Egly et al. 2000), this doesn’t yield a practi-
cally scalable counter since QBF model counting still does not scale as well in practice as
propositional model counting (Shukla et al. 2022; Capelli et al. 2024). This leads to our
central research question: Can we develop a practical answer set counter for disjunctive
logic programs that can scale effectively to handle large answer set counts?

Our work provides an affirmative answer to this question through several key con-
tributions. We present the design, implementation, and extensive evaluation of a novel
counter for disjunctive programs, employing subtractive reduction (Durand et al. 2005)
to projected propositional model counting (Aziz et al. 2015a), while maintaining poly-
nomial formula size growth. The approach first computes an over-approximation of the

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

Theory and Practice of Logic Programming 3

answer set count and then subtracts the surplus computed using projected counting.
This yields a #NP algorithm that leverages recent advances in projected propositional
counting (Sharma et al. 2019). This approach is theoretically justified: answer set count-
ing for normal programs is in #P (Janhunen and Niemel&d 2011; Eiter et al. 2021), while
for disjunctive programs, it lies in # - co-NP (Fichte et al. 2017). Since # - co-NP = #
- PNP = NP (Hemaspaandra and Vollmer 1995; Durand et al. 2005), our reduction is
complexity-theoretically sound and yields a practical counting algorithm.

While subtractive reduction for answer set counting has been proposed earlier (Hecher
and Kiesel 2023), our work makes several novel contributions beyond the theoretical
framework. We develop a complete implementation with careful algorithm design choices
and provide comprehensive empirical evaluation across diverse benchmarks. A detailed
comparison with the prior approach is presented in Section 5.

Our counter, sharpASP-SR, employs an alternative definition of answer sets for dis-
junctive programs, extending earlier work on normal programs (Kabir et al. 2024). This
definition enables the use of off-the-shelf projected model counters without exponen-
tial formula growth. Extensive experiments on standard benchmarks demonstrate that
sharpASP-SR significantly outperforms existing counters on instances with large answer
set counts. This motivates our development of a hybrid counter combining enumeration
and sharpASP-SR to consistently exceed state-of-the-art performance.

The remainder of the paper is organized as follows. Section 2 covers essential back-
ground. Section 3 reviews prior work. Section 4 presents our alternative answer set
definition for disjunctive programs. Section 5 details our counting technique sharpASP-
SR. Section 6 provides experimental results, and Section 7 concludes the paper with
future research directions.

2 Preliminaries

We now introduce some notations and preliminaries needed in subsequent sections.

2.1 Propositional satisfiability

A propositional variable v takes value from the domain {0,1} ({false, true} resp.). A
literal ¢ is either a variable or its negation.

A clause C'is a disjunction (V) of literals. For clarity, we often represent a clause as a
set of literals, implicitly meaning that all literals in the set are disjoined in the clause. A
unit clause is a clause with a single literal. The constraint represented by a clause C' =
(mx1 V...V o2 Ve V...V Zrem) can be expressed as a logical implication as follows:
(k1 Ao Ax) — (Z41 V...V T), where the conjunction of literals zq A ... Axy is
known as the antecedent and the disjunction of literals is known as the consequent. If
k =0, the antecedent of the implication is true, and if m =0, the consequent is false.

A formula ¢ is said to be in conjunctive normal form (CNF) if it is a conjunction (A)
of clauses. For convenience of exposition, a CNF formula is often represented as a set of
clauses, implicitly meaning that all clauses in the set are conjoined in the formula. We
denote the set of variables of a propositional formula ¢ as Var(¢).

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

4 M. M. Kabir et al.

An assignment over a set X of propositional variables is a mapping 7: X — {0, 1}. For
a variable z € X, we define 7(—z) =1 — 7(z). An assignment 7 over Var(¢) is called a
model of ¢, represented as 7 |= ¢, if ¢ evaluates to true under the assignment 7, as per
the semantics of propositional logic. A formula ¢ is said to be SAT (resp. UNSAT) if
there exists a model (resp. no model) of ¢. Given an assignment 7, we use the notation
7% (resp. 77) to denote the set of variables that are assigned 1 or true (resp. 0 or false).

Given a CNF formula ¢ (as a set of clauses) and an assignment 7: X — {0, 1}, where
X CVar(¢), the unit propagation of T on ¢, denoted ¢|., is another CNF formula obtained
by applying the following steps recursively: (a) remove each clause C from ¢ that contains
aliteral £ s.t. 7(¢) =1; (b) remove from each clause C in ¢ all literals ¢ s.t. either 7(¢) =0
or there exists a unit clause {—}, that is, a clause with a single literal —¢; and (c)
apply the above steps recursively to the resulting CNF formula until there are no further
syntactic changes to the formula. As a special case, the unit propagation of an empty
formula is the empty formula. It is not hard to show that unit propagation of 7 on ¢
always terminates or reaches fized point. We say that 7 unit propagates to literal £ in ¢,
if {¢} is a unit clause in ¢|,, that is, if {¢} € ¢|.

Given a propositional formula ¢, we use #¢ to denote the count of models of ¢. If
X CVar(¢) is a set of variables, then #3X¢ denotes the count of models of ¢ after
disregarding assignments to the variables in X. In other words, two different models of
¢ that differ only in the assignment of variables in X are counted as one in #3X ¢.

2.2 Answer set programming

An answer set program P consists of a set of rules, where each rule is structured as
follows:

Ruler:a1V...Vag<by,...,bm,notcy,...,notec, (1)

where aq,...,ar,b1,...,bm,c1,...,c, are propositional variables or atoms, and k, m,n
are non-negative integers. The notations P and at(P) refer to the rules and atoms of
the program P, respectively. In rule r above, the operator “not” denotes default negation
(Clark 1978). For each such rule r, we use the following notation: the set of atoms
{a1,...,ar} constitutes the head of r, denoted by Head(r), the set of atoms {b1,...,bn}
is referred to as the positive body atoms of r, denoted by Body(r)*, and the set of
atoms {ci, ..., c,} is referred to as the negative body atoms of r, denoted by Body(r)~.
We use Body(r) to denote the set of literals {by, ..., by, ¢, ..., ¢, }. For notational
convenience, we sometimes use L on the left (resp. T on the right) of + in a rule r to
denote that Head(r) (resp. Body(r)) is empty. A program P is called a disjunctive logic
program if 3r € P such that |Head(r)| > 2 (Ben-Eliyahu and Dechter 1994); otherwise, it
is a normal logic program. Our focus in this paper is on disjunctive logic programs.
Following standard ASP semantics, an interpretation M over the atoms at(P) specifies
which atoms are present in M, or equivalently assigned true in M. Specifically, atom a is
true in M if and only if « € M. An interpretation M satisfies a rule r, denoted by M |=r,
if and only if (Head(r) UBody(r)~) N M # 0 or Body(r)™ \ M # (. An interpretation M
is a model (though not necessarily an answer set) of P, denoted by M |= P, if M satisfies
every rule in P, that is, V,epM |=r. The Gelfond-Lifschitz (GL) reduct of a program

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

Theory and Practice of Logic Programming)

P with respect to an interpretation M is defined as P = {Head(r) +~ Body(r)* | r €
P,Body(r)” N M =0} (Gelfond and Lifschitz 1991). An interpretation M is an answer
set of P if M |= P and AM’ C M such that M’ = PM. In general, an ASP P may have
multiple answer sets. The notation AS(P) denotes the set of all answer sets of P.

2.3 Clark completion

The Clark Completion (Lee and Lifschitz 2003) translates an ASP program P to a propo-
sitional formula Comp(P). The formula Comp(P) is defined as the conjunction of the
following propositional implications:

1. (group 1) for each atom a € at(P) s.t. Ar € P and a € Head(r), add a unit clause
—a to Comp(P)
2. (group 2) for each rule r € P, add the following implication to Comp(P):

/\ {— \/ x
£€Body(r) zEHead(r)
3. (group 3) for each atom a € at(P) occuring in the head of at least one of the rules

of P, let r1,...,7; be precisely all rules containing a in the head, and add the
following implication to Comp(P):

a— \/(/\ LA /\)

i€[1,k] £€Body(r;) z€Head(r;)\{a}

It is known that every answer set of P satisfies Comp(P), although the converse is not
necessarily true (Lee and Lifschitz 2003).

Given a program P, we define the positive dependency graph DG(P) of P as follows.
Each atom z € at(P) corresponds to a vertex in DG(P). For x, y € at(P), there is an edge
from y to 2 in DG(P) if there exists a rule r € P such that « € Body(r)* and y € Head(r)
(Kanchanasut and Stuckey 1992). A set of atoms L C at(P) forms a loop in P if, for every
x,y € L, there is a path from z to y in DG(P), and all atoms (equivalently, nodes) on
the path belong to L. An atom x is called a loop atom of P if there is a loop L in DG(P)
such that x € L. We use the notation LA(P) to denote the set of all loop atoms of the
program P. If there is no loop in P, we call the program tight; otherwise, it is said to be
non-tight (Fages 1994).

FEzample 1.
Consider the program P={ri:poVp1<+ T; ro:qoV g1+ T; r3:qo$ w; T4:q1
w; T W4 Po; Te W< P, q1; T7: L not w;}.

The group 2 clauses in Comp(P) are: {(poVpi1),(0Vaq),(—wVq), (—wV
q1), (mpo Vw), (-p1 Vg1 Vw), (w)}; and the group 8 clauses are: {(po — —p1), (p1 —
—Po), (g0 — (—q1 Vw)), (g1 — (=go V w)), (w — (po V (p1 A q1)))}-

Since each atom occurs in at least one rule’s head, there are no group 1 clauses. Thus,
Comp(P) consists of only group 2 and group 3 clauses. In this program, the set of loop
atoms is {q1, w}.

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

6 M. M. Kabir et al.

2.4 Subtractive reduction

Borrowing notation from Durand et al. (2005), suppose ¥ and I' are alphabets, and
Q1,Q2 CX* x I'* are binary relations such that for each x € ¥*, the sets Q1(z) ={y €
I'| Q1(z,y)} and Q2(z) = {y € T | Q2(x, y) } are finite. Let #Q; and #Q2 denote count-
ing problems that require us to find |Q1(z)| and |Q2(x)]|, respectively, for a given x € *.
We say that #@Q; strongly reduces to #@Q)2 via a subtractive reduction, if there exist
polynomial-time computable functions f and g such that for every string x € ¥*, the fol-
lowing hold: (a) Qa(g(x)) C Q2(f(2)), and (b) [Q1(2)| = |Qa(f(@))] - |Qa(g(@))]. As we
will see in Section 5, in our context, #(); is the answer set counting problem for disjunc-
tive logic programs, and #@5 is the projected model counting problem for propositional
formulas.

3 Related Work

Answer set counting exhibits distinct complexity characteristics across different classes
of logic programs. For normal logic programs, the problem is #P-complete (Valiant
1979), while for disjunctive logic programs, it rises to # - co-NP (Fichte et al. 2017).
This complexity gap between normal and disjunctive programs highlights that answer
set counting for disjunctive logic programs is likely harder than that for normal logic
programs, under standard complexity theoretic assumptions.

This complexity distinction is also reflected in the corresponding decision problems
as well. While determining the existence of an answer set for normal logic programs
is NP-complete (Marek and Truszezyriski 1991), the same problem for disjunctive logic
programs is Y5-complete (Eiter and Gottlob 1995). This fundamental difference in com-
plexity has important implications for translations between program classes. Specifically,
a polynomial-time translation from disjunctive to normal logic programs that preserves
the count of answer sets does exist unless the polynomial hierarchy collapses (Janhunen
et al. 2006; Zhou 2014; Ji et al. 2016).

Much of the early research on answer set counting focused on normal logic programs
(Aziz et al. 2015b; Eiter et al. 2021, 2024; Kabir et al. 2024). The methodologies for count-
ing answer sets have evolved significantly over time. Initial approaches relied primarily
on enumerations (Gebser et al. 2012). More recent methods have adopted advanced algo-
rithmic techniques, particularly tree decomposition and dynamic programming. Fichte et
al. (2017) developed DynASP, an exact answer set counter optimized for instances with
small treewidth. Kabir et al. (2022) explored a different direction with ApproxASP, which
implements an approximate counter providing (e, §)-guarantees, with the adaptation of
hashing-based techniques.

Subtraction-based techniques have emerged as promising approaches for various count-
ing problems, for example, MUS counting (Bendik and Meel 2021). In the context of
answer set counting, subtraction-based methods were introduced in Hecher and Kiesel
(2023) and Fichte et al. (2024). These methods employ a two-phase strategy: initially
overcounts the answer set count, subsequently subtracts the surplus to obtain the exact
count. Hecher and Kiesel (2023) developed a method utilizing projected model counting
over propositional formulas with projection sets. A detailed comparison of our work with

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

Theory and Practice of Logic Programming 7

their approach is provided at the end of Section 5. In a different direction, Fichte et al.
(2024) proposed iascar, specifically tailored for normal programs. Their approach itera-
tively refines the overcount count by enforcing external support for each loop and applying
the inclusion-exclusion principle. The key distinction of iascar lies in its comprehensive
consideration of external supports for all cycles in the counting process.

4 An Alternative Definition of Answer Sets

In this section, we present an alternative definition of answer sets for disjunctive logic
programs, that generalizes the work of Kabir et al. (2024) for normal logic programs.
Before presenting the alternative definition of answer sets, we provide a definition of
justification, which is crucial to understand our technical contribution.

4.1 Checking Justification in ASP

Intuitively, justification refers to a structured explanation for why a literal (atom or its
negation) is true or false in a given answer set (Pontelli et al. 2009; Fandinno and Schulz
2019). Recall that the classical definition of answer sets requires that each true atom in
an interpretation, that also appears at the head of a rule, must be justified (Gelfond and
Lifschitz 1988; Lifschitz 2010). More precisely, given an interpretation M s.t. M = P,
ASP solvers check whether some of the atoms in M can be set to false, while satisfying
the reduct program PM (Lierler 2005). We use the notation 73; to denote the assignment
of propositional variables corresponding to the interpretation M. Furthermore, we say
that x € 73, (resp. 73;) iff Tar(z) =1 (resp. 0).

While the existing literature typically formulates justification using rule-based or graph-
based explanations (Fandinno and Schulz 2019), we propose a model-theoretic definition
from the reduct P, for each interpretation M |= P. An atom x € M is justified in M
if for every M’ = PM such that M’ C M, it holds that x € M’. In other words, remov-
ing x from M violates the satisfaction of PM. The definition is compatible with the
standard characterization of answer sets, since M is an answer set, when no M’ C M
exists such that M’ |:PM ; that is, each atom x € M is justified. Conversely, an atom
x € M is not justified in M if there exists a proper subset M’ C M such that M’ |= PM
and x ¢ M’. This notion of justification also aligns with how SAT-based ASP solvers
perform minimality checks (Lierler 2005) — such solvers encode PM as a set of impli-
cations (see definition of PM in Section 2) and check the satisfiability of the formula:
PA[A/\ Y/

+ T,

TET,, TETy,

Proposition 1.
For a program P and each interpretation M such that M = P, if the formula PM A
/\rer* -z A \/xeT+ —x is satisfiable, then some atoms in M are not justified.

The proposition holds by definition. In the above formula, the term A _ - —x encodes
the fact that variables assigned false in M need no justification. On the other hand, the
term \/xeT;& —a verifies whether any of the variables assigned {rue in M is not justified.

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

8 M. M. Kabir et al.

Ezample 1 (continued).
Consider the following two interpretations over at(P):

o My ={po,w,qo,q1}: Clearly, Tar, = {po, w, qo0, g1, "p1}. As no strict subset of M,
satisfies PM1_ each atom of M, is justified.

o Ms={p1,w,qo,q1}: Here, Tar, ={p1,w,qo,q1, po}. Note that Tar, = Comp(P).
The program PM2 includes all rules of P except rule r7. There is an interpreta-
tion {p1,qo} C Mo that satisfies PM2. It indicates that atoms g and w are not
justified in Ms.

We now show that under the Clark completion of a program, or when 75, = Comp(P),
then it suffices to check justification of only loop atoms of P in the interpretation M.
Note that the ASP counter, sharpASP (Kabir et al. 2024), also checks justifications for
loop atoms in the context of normal logic programs. Our contribution lies in proving
the sufficiency of checking justifications for loop atoms even in the context of disjunctive
logic programs — a non-trivial generalization. Specifically, we establish that when 73, =
Comp(P), if some atoms in M are not justified, then there must also be some loop atoms
in M that is not justified. To verify justifications for only loop atoms, we check the
satisfiability of the formula: PM A /\mer,g -z A\ /\zer;}AszA(P) x A Vzer;;/\weLA(P) .

Proposition 2.
For each M Cat(P) such that MEP, if the formula PM AN _ - —xA

TET,,
/_\a:er;“,AmgLA(P) x /\ \/IET;&M&A(P) —x s satzsﬁa()le, tﬁe@ some of the loop atoms
in M are not justified; otherwise, each loop atom in M is justified.

Proof.
Since 7js = Comp(P), it implies that 7, = P*. Thus, the formula PM /\/\ZCETI\} -z A
AZGT&%&A(P) x is satisfiable.

If PY AN -z A /\xeT&AxQLA(P) x A vxerﬁAxeLA(P) -z is satisfiable, then there
are some loop atoms from 7;; ULA(P) that can be set to false, while satisfying the
formula PM A /\wET;, -z /\weT;;,AszA(P) x. It indicates that some of the loop atoms of
M are not justified; otherwise, each loop atom of M is justified. O

TET,

In this above formula, the term /\GCGTXZ AzgLA(P) T ensures that we are not concerned
with justifications for non-loop atoms. On the other hand, the term \/xeT;&/\xeLA(P) -z
specifically verifies whether any of the loop atoms assigned to true in M is not justified.

For every interpretation M | P, checking justification of all loop atoms of M suffices

to check justification all atoms of M. The following lemma formalizes our claim:

Lemma 1.

For a given program P and each interpretation M C at(P) such that Tpr = Comp(P),
if PM AN - —\x/\\/meﬁl -z is SAT then PM /\/\zer,g _‘I/\/\IGT&/\zQLA(P) x A
Vaert nveLacp) % is also SAT.

Proof.
For notational clarity, let A and B denote the formulas PM A A o -

M .
PN /\IET;{ T A /\IGTI\JrJ/\zQLA(P) A VIGTIEA:vGLA(P) I, respectlvely.

TET

-z A Vmerfw —x and

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

Theory and Practice of Logic Programming 9

We use proof by contradiction. Suppose, if possible, A is SAT but B is UNSAT. Given
that A is SAT, we know that some atoms are not justified in M (Proposition 1). Similarly,
since B is UNSAT, we know that all loop atoms are justified in M (Proposition 2).
Therefore, there must be a non-loop atom, say xp, that is not justified in M. Since
x1 € M and 737 = Comp(P), according to group 3 implications in the definition of Clark
completion, there exists a rule ri € P such that Body(r1) A A, cpead(ri)\, ~% 18 true
under 7j7. It follows that there exists an atom x5 € Body(rq)™ that is not justified; oth-
erwise, the atom x; would have no other option but be justified. Now, we can repeat
the same argument we presented above for x1, but in the context of the non-justified
atom x5 in M. By continuing this argument, we obtain a sequence of not justified atoms
{z1, x2, ...}, such that the underlying set is a subset of M. There are two possible cases
to consider: either (i) the sequence {z;} is unbounded, or (ii) for some i < j, z; = z;.
Case (i) contradicts the finiteness of at(P). Case (ii) implies that some loop atoms are
not justified — a contradiction of our premise! O

Ezample 1 (continued).
Consider the following two interpretations over at(P):

o My ={po,w,qo,q1}: Clearly, Tas, = {po,w, qo, q1, " p1}. Note that My € AS(P), as
no strict subset of M, satisfies PMt.

o Ms={p1,w,qo,q1}: Here, Tpr, = {p1,w, g0, q1, "po}. While Tpr, E Comp(P), it can
be shown that Mo ¢ AS(P). The program P2 includes all rules of P except rule
r7. There is an interpretation {p1, qo} C Mo that satisfies PM2. This means that the
atoms q1 and w in Ms are not justified. Note that both ¢ and w are loop atoms in
program P.

4.2 Copy(P) for disjunctive logic programs

Toward establishing an alternative definition of answer sets for disjunctive logic programs,
we now generalize the copy operation used in Kabir et al. (2024) in the context of normal
logic programs. Given an ASP program P, for each loop atom z € LA(P), we introduce
a fresh variable 2’ such that 2’ & at(P). We refer to 2’ as the copy variable of x. Similar
to Kabir et al. (2024) and Kabir (2024), the operator Copy(P) returns the following set
of implicitly conjoined implications.

1. (type 1) for each loop atom z € LA(P), the implication 2’ — z is included in

Copy(P).

2. (type 2) for each rule r=a;V...Vag<+b1,...,by,notcy,...,notc, € P such
that {a1,...ar} NLA(P)#0, the implication ©¥(by) A...AY(bp)A=ci A... A
—cp, —> P(a1) V... Vp(ag) is included in Copy(P), where 9 (z) is a function defined

P
as follows: (z) = v itz elAP)
x otherwise

3. No other implication is included in Copy(P).

Note that we do not introduce any type 2 implication for a rule r if
Head(r) NLA(P)=0. In a type 2 implication, each loop atom in the head and each

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

10 M. M. Kabir et al.

positive body atom is replaced by its corresponding copy variable. As a special case, if
the program P is tight then Copy(P) = 0.

Ezample 1(continued).

For the given program P, we have LA(P)={q,w}. Therefore, Copy(P) introduces
two fresh copy variables q1' and w', and adds the the following implications: {q;" —
g1, W' —w,qVaqi',w —q',po — W' p1 Ag' — w'}.

We now demonstrate an important relationship between PM and Copy(P)|,,,, for a
given interpretation M. Specifically, we show that we can use Copy(P)|,,, instead of PM
to check the justification of loop atoms in M. While sharpASP also utilizes a similar
idea for normal programs, the following lemma (Lemma 2) formalizes this important
relationship in the context of the more general class of disjunctive logic programs.

Lemma 2.
For a given program P and each interpretation M C at(P) such that Ta; = Comp(P),

1. the formula Copy(P)|;,, /\\/IGT&MGLA(P) -z’ s 'SAT if and only if PM A
/\167';1 A /\IGTX;I/\IQLA(P) z A \/IGT;&/\xELA(P) -z is SAT

2. the formula Copy(P)|ry, /\\/IGT&MGLA(P) -z’ is SAT if and only if PM A
/\ze,r;{ -z A Vxerj{ -z is SAT

The proof is deferred to the extended version of the paper.’
We now integrate Clark’s completion, the copy operation introduced above, and the
core idea from Lemma 2 to propose an alternative definition of answer sets.

Lemma 3.
For a given program P and each interpretation M C at(P) such that T = Comp(P),
M € AS(P) if and only if the formula Copy(P)|r,, N \/xerj;,/\xeLA(P) -z’ is UNSAT.

The proof follows directly from the correctness of Lemma 2 and from the definition of
answer sets based on the GL reduct P (see Section 2).

Ezample 1(continued).
Consider two interpretations My, My C at(P):

o M ={po,w,qo, q1}, where Tar, = {po, w, qo, q1, ~p1}. Note that M; € AS(P) and we
can verify that Copy(P)|r,, AN(=q"V —w') is UNSAT.

° M2 — {plv w, qo, ql}a where TMy = {pl» w, qo, 41, _‘p0}~ Here, M2 ¢ AS(P) While
Tm, = Comp(P), we can see that Copy(P)|r,,, AN(—q1"V —w’) is SAT.

Our alternative definition of answer sets, formalized in Lemma 3, implies that the
complexity of checking answer sets for disjunctive logic programs is in co-NP. In contrast,
the definition in Kabir et al. (2024), which applies only to normal logic programs, allows
answer set checking for this restricted class of programs to be accomplished in polynomial
time. Note that the Copy(P) has similarities with formulas introduced in Fichte and
Szeider (2015) and Hecher and Kiesel (2023) for co-NP checks.

! The extended version of the paper is available at: https://arxiv.org/abs/2507.11655

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

Theory and Practice of Logic Programming 11

Overcount

Subtraction

Surplus

Fig. 1. The high-level architecture of sharpASP-SR for a program P.

In the following section, we utilize the definition in Lemma 3 to count of models of
Comp(P) that are not answer sets of P. This approach allows us to determine the number
of answer sets of P via subtractive reduction.

5 Answer Set Counting: sharpASP-SR

We now introduce a subtractive reduction-based technique for counting the answer sets of
disjunctive logic programs. This approach reduces answer set counting to projected model
counting for propositional formulas. Note that projected model counting for propositional
formulas is known to be in #NP (Aziz et al. 2015a); hence reducing answer set counting
(a # - coNP-complete problem) to projected model counting makes sense.? In contrast,
answer set counting of normal logic programs is in #P, and is therefore easier.

At a high level, the proposed subtractive reduction approach is illustrated in Figure 1.
For a given ASP program P, we overcount the answer sets of P by considering the satis-
fying assignment of an appropriately constructed propositional formula ¢; (Overcount).
The value #¢, counts all answer sets of P, but also includes some interpretations that are
not answer sets of P. To account for this surplus, we introduce another Boolean formula
¢ and a projection set X such that #3X ¢ counts the surplus from the overcount of
answer sets (Surplus). To correctly count the surplus, we employ the alternative answer
set definition outlined in Lemma 3. Finally, the count of answer sets of P is determined

by #¢1 — #3X ¢o.
5.1 Counting overcount (¢,)

Given a program P, the count of models of Comp(P) provides an overcount of the count
of answer sets of P. In the case of tight programs, the count of answer sets is equivalent
to the count of models of Comp(P) (Lee and Lifschitz 2003). However, for non-tight
programs, the count of models of Comp(P) overcounts |AS(P)|. Therefore, we use

¢1 = Comp(P) 2)

2 The classes #NP and # - coNP are known to coincide.

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

12 M. M. Kabir et al.

5.2 Counting surplus (¢,)

To count the surplus, we utilize the alternative answer set definition presented in
Lemma 3. We use a propositional formula ¢-, in which for each loop atom =z, there
are two fresh copy variables: 2’ and z*. We introduce two sets of copy operations of
P, namely, Copy(P)" and Copy(P)*, where for each loop atom z, the corresponding
copy variables are denoted as z’ and x*, respectively. We use the notations CV’ and
CV* to refer to the copy variables of Copy(P)" and Copy(P)*, respectively; that is,

V' = {2'|z € LA(P)} and CV* = {z*|z € LA(P)}. To compute the surplus, we define the
formula ¢ (at(P), CV’', CV*) as follows:

$2(at(P), CV',CV*) = Comp(P) A Copy(P)" A Copy(P)*
A /\ (' — z*) A \/ (-2’ A z¥) (3)

z€LA(P) zcLA(P)
Lemma 4.
The number of models of Comp(P) that are not answer sets of P can be computed as
#3ICV', CV* ¢o(at(P), CV', CV*), where the formula ¢ is defined in Equation (3).

Proof.

From the definition of ¢ (Equation (3)), we know that for every model o = ¢3, the assign-
ment to CV' and CV* is such that Vo € LA(P),o(2') <o(2*) and 3z € LA(P),0(2’) <
o(z*).2 Let M be the corresponding interpretation over at(P) of the satisfying assign-
ment 0. Since o |= ¢2, Tar = Comp(P) and some of the copy variables 2’ € CV’ can be set
to false where o(x) = true, while after setting the copy variables z’ to false, the formula
Copy(P))r,, is still satisfied. According to Lemma 3, we can conclude that M ¢ AS(P). As
a result, #3CV’', CV* ¢q(at(P), CV’, CV*) counts all interpretations that are not answer
sets of P. O

Theorem 1.
For a given program P, the number of answer sets: |AS(P)|=#¢1 — #3X ¢2, where
X=CV'UCV*, and ¢1 and ¢o are defined in Equations (2) and (3). Furthermore,
both ¢1 and ¢o can be computed in time polynomial in |P].

The proof is deferred to the extended version of the paper.

Now recall to subtractive reduction definition (ref. Section 2), for a given ASP program
P, f(P) computes the formula ¢, and g(P) computes the formula 3CV’, CV*¢,.

We refer to the answer set counting technique based on Theorem 1 as sharpASP-SR.
While sharpASP-SR shares similarities with the answer set counting approach outlined
in Hecher and Kiesel (2023), there are key differences between the two techniques. First,
instead of counting the number of models of Clark completion, the technique in Hecher
and Kiesel (2023) counts non-models of the Clark completion. Second, to count the
surplus, sharpASP-SR introduces copy variables only for loop variables, whereas the
approach of Hecher and Kiesel (2023) introduces copy (referred to as duplicate variable)
variables for every variable in the program. Third, sharpASP-SR focuses on generating

3 We use 0 < 1 for this discussion.

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

Theory and Practice of Logic Programming 13

a copy program over the cyclic components of the input program, while their approach
duplicates the entire program. A key distinction is that the size of Boolean formulas
introduced by Hecher and Kiesel (2023) depends on the tree decomposition of the input
program and its treewidth, assuming that the treewidth is small. However, most nat-
ural encodings that result in ASP programs are not treewidth-aware (Hecher 2022).
Importantly, their work focused on theoretical treatment and, as such, does not address
algorithmic aspects. It is worth noting that there is no accompanying implementation.
Our personal communication with authors confirmed that they have not yet implemented
their proposed technique.

6 Experimental Results

We developed a prototype of sharpASP-SR.,* by leveraging existing projected model coun-
ters. Specifically, we employed GANAK (Sharma et al. 2019) as the underlying projected
model counter, given its competitive performance in model counting competitions. All
counters are sourced from the model counting competition 2024.

6.1 Baseline and benchmarks

We evaluated sharpASP-SR against state-of-the-art ASP systems capable of handling
disjunctive answer set programs: (i) clingo v5.7.1 (Gebser et al. 2012), (ii) DynASP v2.0
(Fichte et al. 2017), and (iii) Wasp v2 (Alviano et al. 2015). ASP solvers clingo and
Wasp count answer sets via enumeration. We were unable to baseline against existing
ASP counters such as aspmc+#SAT (Eiter et al. 2024), lp2sat+#SAT (Janhunen 2006;
Janhunen and Niemeld 2011), sharpASP (Kabir et al. 2024), and iascar (Fichte et al.
2024), as these systems are designed exclusively for counting answer sets of normal logic
programs. Since no implementation is available for the counting techniques outlined by
Hecher and Kiesel (2023), a comparison against their approach was not possible. We also
considered ApproxASP (Kabir et al. 2022) for comparison purposes and the result is
provided in the extended version.

Our benchmark suite comprised non-tight disjunctive logic program instances previ-
ously used to evaluate disjunctive answer set solvers. These benchmarks span diverse
computational problems, including (i) 2QBF (Kabir et al. 2022), (ii) strategic companies
(Lierler 2005), (iii) preferred extensions of abstract argumentation (Gaggl et al. 2015),
(iv) pc configuration (Fichte et al. 2022), (v) minimal diagnosis (Gebser et al. 2008), and
(vi) minimal trap spaces (Trinh et al. 2024). The benchmarks were sourced from abstract
argumentation competitions, ASP competitions (Gebser et al. 2020) and from Kabir et
al. (2022) and Trinh et al. (2024). Following recent work on disjunctive logic programs
(Alviano et al. 2019), we generated additional non-tight disjunctive answer set programs
using the generator implemented by Amendola et al. (2017). The complete benchmark
set comprises 1125 instances.

4 https://github.com/meelgroup/SharpASP-SR

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

14 M. M. Kabir et al.

Table 1. The performance of sharpASP-SR wvis-a-vis ezisting disjunctive answer set
counters, based on 1125 instances

clingo DynASP Wasp sharpASP-SR
#Solved (1125) 708 89 432 825
PAR2 4118 9212 6204 2939

5000 - - :
SharpASP-SR
—#— Clingo
—>— Wasp
4000 1 —— DynASP [~ g
= 3000 - 5
g ;
=
O 2000 - % S .
1000 -
[i : : E : ; ;
0 100 200 300 400 500 600 700 800 900

instances

Fig. 2. The runtime performance of sharpASP-SR vis-a-vis other ASP counters.

6.2 Environmental settings

All experiments were conducted on a computing cluster equipped with AMD EPYC 7713
processors. Each benchmark instance was allocated one core, with runtime and memory
limits set to 5000 seconds and 8 GB, respectively, for all tools, which is consistent with
prior works on model counting and answer set counting.

6.1.1 Experimental results

sharpASP-SR demonstrated significant performance improvement across the benchmark
suite, as evidenced in Table 1. For comparative analysis, we present both the number
of solved instances and PAR2 scores (Balyo et al. 2017), for each tool. sharpASP-SR
achieved the highest solution count while maintaining the lowest PAR2 score, indicating
superior scalability compared to existing systems capable of counting answer sets of
disjunctive logic programs. The comparative performance of different counters is shown
in a cactus plot in Figure 2.

Given clingo’s superior performance on instances with few answer sets, we developed
a hybrid counter integrating the strengths of clingo’s enumeration and other counting

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

Theory and Practice of Logic Programming 15

Table 2. The performance comparison of hybrid counters, based on 1125 instances.
The hybrid counters correspond to last 3 columns that employ clingo enumeration
followed by ASP counters. The clingo (2nd column) refers to clingo enumeration for
5000 seconds

clingo (< 10%) +

clingo DynASP Wasp sharpASP-SR
#Solved (1125) 708 377 442 918
PAR2 4118 4790 4404 1600

Table 3. The performance comparison of sharpASP-SR (SA) vis-a-vis ezisting
disjunctive answer set counters across instances with varying numbers of loop atoms.
The second column () indicates the number of instances within each range of |LA(P)|

[LA(P)| > clingo DynASP Wasp sharpASP-SR clingo+sharpASP-SR
[1, 100] 399 248 87 165 386 388
[101,1000] 519 316 2 142 398 401
> 1000 207 144 0 125 41 129

techniques, following the experimental evaluation of Kabir et al. (2024). This hybrid
approach first employs clingo enumeration (maximum 10* answer sets) and switches to
alternative counting techniques if needed. Within our benchmark instances, a noticeable
shift was observed on clingo’s runtime performance when the number of answer sets
exceeds 10%. As shown in Table 2, the hybrid counter based on sharpASP-SR significantly
outperforms baseline approaches.

The cactus plot in Figure 2 illustrates the runtime performance of the four tools, where
a point (z, y) indicates that a tool can count z instances within y seconds. The plot shows
sharpASP-SR’s clear performance advantage over state-of-the-art answer set counters for
disjunctive logic programs.

Since clingo and Wasp employ enumeration-based techniques, their performance is
inherently constrained by the answer set count. Our analysis revealed that clingo (resp.
Wasp) timed out on nearly all instances with approximately 230 (resp. 22%) or more
answer sets, while sharpASP-SR can count instances upto 227 answer sets. However, the
performance of sharpASP-SR is primarily influenced by the hardness of the projected
model counting, which is related to the cyclicity of the program. The cyclicity of a
program is quantified using the measure |LA(P)|.

To analyze sharpASP-SR’s performance relative to |LA(P)|, we compared different ASP
counters across varying ranges of loop atoms. The results in the Table 3 indicate that
while sharpASP-SR performs exceptionally well on instances with fewer loop atoms, its
performance deteriorates significantly for instances with a higher number of loop atoms
(e.g., those with |LA(P)| > 1000), leading to a decrease in the solved instances count.

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

16 M. M. Kabir et al.

To further analyze the performance of sharpASP-SR, we compare the number of answer
sets for each instance solved by different ASP counters. Since both clingo and Wasp count
using enumeration, clingo and Wasp can handle instances with up to 23° and 224 answer
sets (roughly), respectively, whereas sharpASP-SR is capable of counting instances having
2127 answer sets. Due to its use of projected model counting, sharpASP-SR demonstrates
superior scalability on instances with a large number of answer sets.

Further experimental evaluation of sharpASP-SR are provided in the extended version.

7 Conclusion

In this paper, we introduced sharpASP-SR, a novel answer set counter based on sub-
tractive reduction. By leveraging an alternative definition of answer sets, sharpASP-SR
achieves significant performance improvements over baseline approaches, owing to its
ability to rely on the scalability of state-of-the-art projected model counting techniques.
Our experimental results demonstrate the effectiveness and efficiency of our approach
across a range of benchmarks.

The use of subtractive reductions for empirical efficiency opens up potential avenues
for future work. In particular, an interesting direction would be to categorize problems
that can be reduced to #SAT via subtractive methods, which would allow us to utilize
existing #SAT model counters.

References

A1viANO, M., AMENDOLA, G., DODARO, C., LEONE, N., MARATEA, M. AND Ricca, F. 2019.
Evaluation of disjunctive programs in Wasp. In LPNMR, Springer, 241-255.

ArviaNo, M., Doparo, C., LEONE, N. AND Ricca, F. 2015. Advances in Wasp. In LPNMR,
Springer, 40-54.

AMENDOLA, G., Ricca, F. And TRUSzCZYNSKI, M. 2017. Generating hard random boolean
formulas and disjunctive logic programs. In IJCAI, 532-538.

Az1z, R. A., Cuu, G., MUISE, C. AND STUCKEY, P. 2015a. #3SAT: Projected model counting.
In SAT, Springer, 121-137.

Aziz, R. A., CHu, G., MUISE, C. AND STUCKEY, P. J. 2015b. Stable model counting and its
application in probabilistic logic programming. In AAAI.

BarLyo, T., HEULE, M. J. AND JARVISALO, M. 2017. SAT competition 2017—solver and benchmark
descriptions, pp. 14-15.

BEN-ELIYAHU, R. AND DECHTER, R. 1994. Propositional semantics for disjunctive logic
programs. Annals of Mathematics and Artificial Intelligence 12, 53-87.

BEN-ELIYAHU-ZOHARY, R., ANcGIuLLl, F., FasserTi, F. AND PAropoLi, L. 2017. Modular
construction of minimal models. In LPNMR, Springer, 43—48.

BENDIK, J. AND MEEL, K. S. 2021. Counting minimal unsatisfiable subsets. In CAV, Springer,
313-336.

CapreLLI, F.; LAGNIEZ, J.-M., PLANK, A. AND SEIDL, M. 2024. A top-down tree model counter
for quantified boolean formulas. In IJCAI.

CLARK, K. L. 1978. Negation as failure. In Logic and Data Bases, 293—-322.

DURAND, A., HERMANN, M. AND KorLaITIs, P. G. 2005. Subtractive reductions and complete
problems for counting complexity classes. Theoretical Computer Science 340, 3, 496-513.

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

Theory and Practice of Logic Programming 17

Ecvry, U., EITER, T., TompPITS, H. AND WOLTRAN, S. 2000. Solving advanced reasoning tasks
using quantified boolean formulas. In AAAI/IAAI, 417-422.

EI1TER, T., FINK, M., TOMPITS, H. AND WOLTRAN, S. 2004. On eliminating disjunctions in stable
logic programming. In KR, 4, 447-458.

Eiter, T. AND GOTTLOB, G. 1995. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Annals of Mathematics and Artificial Intelligence 15,
289-323.

E1TER, T., HECHER, M. AND KIESEL, R. 2021. Treewidth-aware cycle breaking for algebraic
answer set counting. In KR, 269-279.

E1TER, T., HECHER, M. AND KIESEL, R. 2024. New frontiers of algebraic answer set counting.
Artificial Intelligence 330, 104109.

Faces, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal of
Methods of Logic in Computer Science 1, 1, 51-60.

FANDINNO, J. AND ScHuULz, C. 2019. Answering the “why” in answer set programming—
a survey of explanation approaches. Theory and Practice of Logic Programming 19, 2,
114-203.

FicHTE, J. K., GAGGL, S. A., HECHER, M. AND Rusovac, D. 2024. TASCAR: Incremental
answer set counting by anytime refinement. Theory and Practice of Logic Programming 24, 3,
505-532.

FicHTE, J. K., GAGGL, S. A. AND Rusovac, D. 2022. Rushing and strolling among answer
sets—navigation made easy. In AAAI, Vol. 36, 5651-5659.

FicHTE, J. K. AND HECHER, M. (2019) Treewidth and counting projected answer sets. In
LPNMR, Springer, 105-119.

FicHTE, J. K., HECHER, M., MORAK, M. AND WOLTRAN, S. 2017. Answer set solving with
bounded treewidth revisited. In LPNMR, 132-145.

FicHTE, J. K. AND SZEIDER, S. 2015. Backdoors to normality for disjunctive logic programs.
ACM Transactions on Computational Logic 17, 1, 1-23.

GAGGL, S. A., MANTHEY, N., RONCA, A., WALLNER, J. P. AND WOLTRAN, S. 2015. Improved
answer set programming encodings for abstract argumentation. Theory and Practice of Logic
Programming 15, 4-5, 434-448.

GEBSER, M., KAUFMANN, B. AND ScHAUB, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187, 52—89.

GEBSER, M., MARATEA, M. AND Ricca, F. 2020. The seventh answer set program-
ming competition: Design and results. Theory and Practice of Logic Programming 20, 2,
176-204.

GEBSER, M., SCHAUB, T., THIELE, S., USADEL, B. AND VEBER, P. 2008. Detecting inconsistencies
in large biological networks with answer set programming. In ICLP, Springer, 130-144.

GELFOND, M. AND LirscHITZ, V. 1988. The stable model semantics for logic programming. In
ICLP/SLP, Vol. 88, 1070-1080.

GELFOND, M. AND LiFscHITZ, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365-385.

HECHER, M. 2022. Treewidth-aware reductions of normal ASP to SAT — Is normal ASP harder
than SAT after all? Artificial Intelligence 304, 103651.

HeCHER, M. AND KIESEL, R. 2023. The impact of structure in answer set counting: fighting
cycles and its limits. In KR, 344-354.

HEMASPAANDRA, L. A. AND VOLLMER, H. 1995. The satanic notations: counting classes beyond
#P and other definitional adventures. ACM SIGACT News 26, 1, 2-13.

JANHUNEN, T. 2006. Some (in) translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16, 1-2, 35-86.

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

18 M. M. Kabir et al.

JANHUNEN, T. AND NIEMELA, 1. 2011. Compact Translations of Non-disjunctive Answer Set
Programs to Propositional Clauses, 111-130.

JANHUNEN, T., NIEMELA, I., SEIPEL, D., SIMONS, P. AND You, J.-H. 2006. Unfolding partiality
and disjunctions in stable model semantics. ACM Transactions on Computational Logic 7, 1,
1-37.

Ji, J., WAN, H., WANG, K., WANG, Z., ZHANG, C. AND XU, J. 2016. Eliminating disjunctions in
answer set programming by restricted unfolding. In IJCAI, 1130-1137.

KABIR, M., CHAKRABORTY, S. AND MEEL, K. S. 2024. Exact ASP counting with compact
encodings. Proceedings of the AAAI Conference on Artificial Intelligence 38, 10571-10580.
KABIR, M., EVERARDO, F. O., SHUKLA, A. K., HECHER, M., FICHTE, J. K. AND MEEL, K. S. 2022.
ApproxASP-a scalable approximate answer set counter. Proceedings of the AAAI Conference

on Artificial Intelligence 36, 5755-5764.

KABIR, M. AND MEEL, K. S. 2023. A fast and accurate ASP counting based network reliability
estimator. In LPAR, 270-287.

KABIR, M. AND MEEL, K. S. 2024. On lower bounding minimal model count. Theory and Practice
of Logic Programming 24, 4, 586-605.

KABIR, M. AND MEEL, K. S. 2025. An ASP-based framework for MUSes, arXiv preprint arXiv:
2507.03929

KABIR, M. 2024. Minimal model counting via knowledge compilation, arXiv preprint arXiv:
2409.10170

KABIR, M., TRINH, V.-G., PAsTvVA, S. AND MEEL, K. S. 2025. Scalable counting of minimal trap
spaces and fixed points in boolean networks, arXiv preprint arXiv: 2506.06013

KANCHANASUT, K. AND STUCKEY, P. J. 1992. Transforming normal logic programs to constraint
logic programs. Theoretical Computer Science 105, 1, 27-56.

LEE, J. AND LIFSCHITZ, V. 2003. Loop formulas for disjunctive logic programs, ICLP 2003,
Springer, 451-465.

LEE, J., TALSANIA, S. AND WANG, Y. 2017. Computing LPMLN using ASP and MLN solvers.
Theory and Practice of Logic Programming 17, 5-6, 942-960.

LEONE, N. AND Ricca, F. 2015. Answer set programming: A tour from the basics to advanced
development tools and industrial applications. In Reasoning Web International Summer
School, Springer, 308-326.

LIERLER, Y. 2005. Cmodels—SAT-based disjunctive answer set solver. In LPNMR, Springer,
447-451.

LirscHITZ, V. 2010. Thirteen definitions of a stable model. In Fields of Logic and Computation,
488-503.

LirscHITZ, V. AND RAZBOROV, A. 2006. Why are there so many loop formulas? ACM
Transactions on Computational Logic 7, 2, 261-268.

MAREK, V. W. AND TRUSZCZYNSKI, M. 1999. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm, Springer, 375-398.

MAREK, W. AND TRUSzZCZYNSKI, M. 1991. Autoepistemic logic. Journal of the ACM (JACM)
38, 3, b87-618.

NOGUEIRA, M., BALDUCCINI, M., GELFOND, M., WATSON, R. AND BARRY, M. 2001. An A-Prolog
decision support system for the space shuttle. In PADL, Springer, 169-183.

PonTELLI, E., SON, T. C. AND ELKHATIB, O. 2009. Justifications for logic programs under
answer set semantics. Theory and Practice of Logic Programming 9, 1, 1-56.

Rusovac, D., HECHER, M., GEBSER, M., GAGGL, S. A. AND FICHTE, J. K. 2024. Navigating
and querying answer sets: how hard is it really and why? In KR, Vol. 21, 642-653.

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://arxiv.org/abs/2507.03929
https://arxiv.org/abs/2409.10170
https://arxiv.org/abs/2506.06013
https://doi.org/10.1017/S1471068425100124

Theory and Practice of Logic Programming 19

SHARMA, S., Roy, S., S00s, M. AND MEEL, K. S. 2019. GANAK: A scalable probabilistic exact
model counter. In IJCAI, Vol. 19, 1169-1176.

SHUKLA, A., MOHLE, S., KAUERS, M. AND SEIDL, M. 2022. Outercount: A first-level solution-
counter for quantified boolean formulas. In CICM, Springer, 272-284.

TRrINH, G., BENHAMOU, B., PASTVA, S. AND SOLIMAN, S. 2024. Scalable enumeration of trap
spaces in boolean networks via answer set programming. Proceedings of the AAAI Conference
on Artificial Intelligence 38, 10714-10722.

VALIANT, L. G. 1979. The complexity of enumeration and reliability problems. SIAM Journal
on Computing 8, 3, 410-421.

ZHou, Y. (2014) From disjunctive to normal logic programs via unfolding and shifting. In ECAT
2014, TOS Press, 1139-1140.

https://doi.org/10.1017/51471068425100124 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100124

	Introduction
	Preliminaries
	Propositional satisfiability
	Answer set programming
	Clark completion
	Subtractive reduction

	Related Work
	An Alternative Definition of Answer Sets
	Checking Justification in ASP
	(P) for disjunctive logic programs

	Answer set counting:
	Counting overcount
	Counting surplus

	Experimental Results
	Baseline and benchmarks
	Environmental settings
	Experimental results

	Conclusion
	References

