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Spatial Homogenization of Stochastic
Wave Equation with Large Interaction

Yongxin Jiang,Wei Wang, and Zhaosheng Feng

Abstract. A dynamical approximation of a stochastic wave equation with large interaction is de-
rived. A random invariant manifold is discussed. By a key linear transformation, the random in-
variant manifold is shown to be close to the random invariant manifold of a second-order stochastic
ordinary diòerential equation.

1 Introduction

Let D be an open bounded regular domain in Rn with 0 ≤ n ≤ 3 and denote by Γ
the boundary of D. We consider the following singularly perturbed stochastic wave
equation under the homogeneous Neumann boundary condition with a large k > 0:

uk
t t + νuk

t = k∆uk
+ f (uk

) + Ẇ , x ∈ D,

∂uk

∂n
∣ ∂D = 0.

(1.1)

_is system describes the motion of the particles in the continuum in a stochastic
force ûeld Ẇ , where k represents the strength of near neighbor, particle-particle,
quasi-elastic interaction forces. If the interaction is strong enough, namely, k is large
enough, the behavior of the system has a spatial homogenization phenomenon. First,
let us look at a spatial homogeneous system

(1.2) ut t + νut = f (u) + Ẇ ,

where f is the spatial homogenization of f , which is to be determined later, and

W(t) =
1

∣D∣
∫
D
W(t, x) dx .

For a large k, we show that the random dynamics of the stochastic problem (1.1) is
approximated by that of the spatial homogeneous system (1.2).

Random invariant manifolds are very important in modelling random dynamics
of a stochastic system [17], especially inûnite dimensional systems (see e.g., [1, 16]).
Duan et al. [5,6] generalized deterministicmethods to construct a random invariant
manifold for stochastic partial diòerential equationswithmultiplicative noise. Lu and
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Schmalfuss [8] and Liu [7] constructed random invariant manifolds for a stochastic
wave equation. _ere has been considerable attention dedicated to the approximation
of the stochastic wave equation on ûnite time intervals [3, 4] and for the long time
behavior in an almost sure sense [10, 18]. Lv et al. [9, 11] explored the approximation
of the random inertial manifold of singularly perturbed stochastic wave equation.

Spatial homogeneity of the asymptotic behavior has also been paidmuch attention
in the study of inûnite-dimensional dynamics systems. Carvalho andHale [2] studied
the spatial homogeneity when the diòusion coeõcients are large. Qin [15] discussed
the spatial homogeneity and invariant manifolds for the damped hyperbolic equa-
tions.

In this paper, we are concerned with the random dynamics of the stochastic prob-
lem (1.1) approximated by using the spatial homogeneous system (1.2) when k is suf-
ûciently large, that implies the spatial homogeneity of the stochastic system. To show
this, a�er presenting preliminaries and main results in Section 2, we consider an as-
sociated linear system in Section 3, whose solutions can be expressed explicitly. In
Section 4, we introduce a linear transformation that is a critical step in our discus-
sions. In Section 5, we study the nonlinear problem (1.1) by constructing a random
invariant manifold which is asymptotically complete. By virtue of an estimate of the
random invariant manifold and the linear transformation, we obtain the limit of the
random invariant manifold.

2 Preliminaries and Main Results

Recall the abstract linear operator A = −∆ on D with the zero Neumann boundary
condition. _en there are 0 = λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λ i ≤ ⋅ ⋅ ⋅ and functions e i(x) (i = 1, 2, . . . )
such that Ae i = λ i e i .
Deûne L2(D) as all square integrable functions on D and

H1
n(D) = {u ∈ L2

(D) ∶ ∇u ∈ L2
(D) and ∂u

∂n
∣ ∂D = 0} .

Rewrite the stochastic nonlinearwave equation as the following second-order sto-
chastic evolutionary problem

uk
t t + νuk

t = −kAu
k
+ f (uk

) + Ẇ ,(2.1)

uk
(0) = u0 , uk

t (0) = u1 ,

with (u0 , u1) ∈ H1
n(D)×L2(D), and Ẇ is the formal derivative of theWiener process

W . For the above problem, we assume that the following conditions (H) hold:

(a)(H) _ere is a constant L f > 0 such that ∣ f (s) − f (t)∣ ≤ L f ∣s − t∣ for
any s, t ∈ R and f (0) = 0.

(b) _e stochastic process W is a Q-Wiener process with trQ <∞.
(c) _e probability space (Ω,F, {Ft}t ,P) is the canonical proba-

bility spacewith theWiener measure P [1]. More precisely,W is
the identity on Ω, where

Ω = {ω ∈ C(R, L2
(D)) ∶ ω(0) = 0} .
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Using a similar discussion as that in [14], we have the following result regarding
the existence of solutions of system (2.1).

_eorem 2.1 For k > 0, assume that conditions (H) hold. _en for any (u0 , u1) ∈

H1
n(D) × L2(D) and any T > 0, system (2.1) has a unique solution

(uk , uk
t ) ∈ L2(Ω,C(0, T ;H1

n(D) × L2
(D))) .

Denote the norm of L2(D) by ∥ ⋅ ∥. _e following result is regarding an approxi-
mation that describes the random dynamics of system (2.1) for the large k > 0.

_eorem 2.2 Assume that conditions (H) hold and L f is suõciently small. System
(2.1) has an invariant manifold Mk(ω) that is exponentially attracting. _at is, for
any solution (uk(t), uk

t (t)) of system (2.1), there is a solution (uk
(t), uk

t (t)) lying on
Mk(ω) such that

∥(uk
(t), uk

t (t)) − (uk
(t), uk

t (t))∥ Ð→ 0 as t Ð→∞.

Furthermore, for any t > 0 we have

∥(uk
(t), uk

t (t)) − (u(t), ut(t))∥Ð→ 0 as k Ð→∞,

where (u, ut) is the solution of the spatial homogeneous system (1.2) with initial condi-
tions

u(0) = ∫
D
uk

(0) dx and ut(0) = ∫
D
uk

t (0) dx .

3 Linear Problem

Let us consider a linear problem

ηk
t t + νηk

t = k∆ηk
+ Ẇ ,

∂ηk

∂n
∣ ∂D = 0,

(3.1)

where ηk = ∑
∞
i=1 η

k
i e i . So we get

η̈k
i + νη̇k

i = −kλ iηk
i +

√
q i β̇ i .

For i ≥ 2, we know that the above equation has a unique stationary solution η∗i
with the distribution

N(0, q i

2νkλ i
) ,

which is strong mixing with the exponential rate. Furthermore, one can see that for
i ≥ 2 there holds η∗i → 0 as k → ∞. So the behavior of the higher modes (i ≥ 2) is
simple, and is killed a�er a long time as k →∞.
For i = 1, we have a k-independent system, and so denote ηk

1 by η1; that is,

(3.2) η̈1 + νη̇1 =
√

q1 β̇1 .
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To describe the dynamics of the above system, we change it into an equivalent ûrst-
order system

η̇1 = δ1 , δ̇1 = −νδ1 +
√

q1 β̇1 .

_e linear part has eigenvalues 0 and −ν with two eigenvectors

e1 =
1
ν
(
1
0
) and e2 =

1
ν
(

1
−ν

),

respectively. Recall the inner product as [12]:

⟨U1 , U2⟩ = 2[ ν2

4
u1u2 + (

ν
2
u1 + v1)(

ν
2
u2 + v2)] ,

where U1 = (u1 , v1)
T and U2 = (u2 , v2)

T . Using this inner product, the components
of (η1 , δ1) along the eigenvectors e1 and e2 respectively, are

ẋ1 =
√

q1 β̇1 , ẏ1 = −νy1 −
√

q1 β̇1 ,

with x1 = ⟨(η1 , δ1), e1⟩ and y1 = ⟨(η1 , δ1), e2⟩. _us, we decouple η1 and δ1 into x1
and y1. _e dynamics of this system can be described by one-dimensional Wiener
process

x1(t) = x1(0) +
√

q1β1(t)

and the one-dimensional Gaussian process

y1(t) = e−ν t y1(0) −
√

q1 ∫

t

0
e−ν(t−s)dβ1(s).

Notice that the dynamics of (x1 , y1) are independent of k. _en the dynamics of
the linear problem (3.1) as k → ∞, are described by those of equation (3.2), namely,
the case of equation (1.2) with f (u) = 0.

4 A Linear Transformation

We present an explicit representation of a linear transformation that plays an impor-
tant role in the proof of our main result in the next section.
For i ≥ 2 and the ûxed k, we change the second-order system

η̈ i + νη̇ i = −kλ iη i +
√

q i β̇ i .

into an equivalent ûrst-order system

η̇ i = δ i , δ̇ i = −kλ iη i − νδ i +
√

q i β̇ i .

A simple calculation gives the eigenvalues of the linear part as

µ±i = −
ν
2
±

√
ν2

4
− kλ i ,

with the two corresponding eigenvectors

e±i = [
1
µ±i

] , i ≥ 2.
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Use the inner product deûned as [12]:

⟨U1 ,U2⟩ = 2[ kλ iu1u2 + (
ν2

4
− 2λ2)u1u2 + (

ν
2
u1 + v1)(

ν
2
u2 + v2)] ,

where U1 = (u1 , v1)
T and U2 = (u2 , v2)

T . We set

e+i =
1

2
√

kλ i − λ2
[

1
µ+i

] and e−i =
1

2
√

kλ i − λ2
[

1
µ−i

] .

By the above inner product, considering the components of (η i , δ i) along the eigen-
vectors e+i and e

−
i respectively, gives

(
x i

y i
) =

1
√

kλ i − λ2

⎡
⎢
⎢
⎢
⎢
⎣

kλ i +
ν2
4 − 2λ2 −

√
ν2
4 − kλ i −

√
ν2
4 − kλ i

kλ i +
ν2
4 − 2λ2 +

√
ν2
4 − kλ i

√
ν2
4 − kλ i

⎤
⎥
⎥
⎥
⎥
⎦

(
η i

δ i
).

_us, we further get

(
η i

δ i
) =

√
kλ i − λ2

2(kλ i +
ν2
4 − 2λ2)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1

−1 − kλ i+
ν2
4 −2λ2

√
ν2
4 −kλ i

1 + kλ i+
ν2
4 −2λ2

√
ν2
4 −kλ i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(
x i

y i
);

that is,

(4.1) η i =

√
kλ i − λ2

2(kλ i +
ν2
4 − 2λ2)

(x i + y i), i ≥ 2.

5 Nonlinear System

Now we get back to the nonlinear problem (1.1). We restrict our attention to the limit
of the dynamics of uk as k →∞. _e expected limit equation becomes

ut t + νut = P f (u) + PẆ ,

where P is the projection from H to H1 = span{e1}. Denote by Q = IdH − P and split
uk as

uk
= Puk

+ Quk
∶= u1,k

+ u2,k .

_en the problem (1.1) can be re-expressed as

u1,k
t t + νu1,k

t = P f (u1,k
+ u2,k

) + Ẇ1 ,

u2,k
t t + νu2,k

t = k∆u2,k
+ Q f (u1,k

+ u2,k
) + Ẇ2 ,

∂u2,k

∂n
∣
∂D

= 0,

whereW1 = PW andW2 = QW .
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5.1 Random Invariant Manifold

In this subsection,we construct a random inertial invariant manifold for the problem
(1.1) with the ûxed k > 0.

_e construction of random inertial manifold has been discussed by a number of
works [7,8]. Tomake this paper self-contained and state our discussions in a straight-
forward way, we give a brief introduction of this construction. For the detailed anal-
ysis, we refer the reader to [7, 8].

We use the transformation ũk = uk − ηk , where ηk = η1,k + η2,k with η1,k = η1

satisûes equation (3.2) with η1(0) = 0, and η1,k
t and (η2,k , η2,k

t ) are stationary such
that (ηk , ηk

t ) satisûes system (3.1). Make the change of variables

ũk
t = ṽk and Ũ k

= (ũk , ṽk
).

By the deûnition of Ũ k , we get a random diòerential equation

(5.1) Ũ k
t (t,ω) = CŨ k

(t,ω) + F( Ũ k
(t,ω), θ tω) ,

where

C = [
0 1

−kA −ν] and F(Ũ k ,ω) = [
0

f (ũk + ηk)
] .

Let E = H1
0(D) × L2(D). Set

E11 = span{[
e1
0] , [

0
e1
]} and E22 = span{[

e i
0 ] , [

0
e i
] ∶ i = 2, 3, . . .} .

_en E = E11 ⊕ E22, where E11 is orthogonal to E22 by the orthogonality of {e i}, and
dim E11 = 2. Moreover, both E11 and E22 are invariant subspaces of the operator C.

Since the eigenvalues of A are 0 = λ1 < λ2 ≤ ⋅ ⋅ ⋅ ≤ λn ≤ ⋅ ⋅ ⋅ with corresponding
eigenvectors e i (i = 1, 2, . . . ) by restricting C to E11, the eigenvalues of C∣E11 are 0 and
−ν with the associated eigenvectors

e+1 =
1
ν
(
1
0
) and e−1 =

1
ν
(

1
−ν

),

respectively.
By restricting C to E22, the eigenvalues of C∣E22 are

µ±i = −
ν
2
±

√
ν2

4
− kλ i , i = 2, 3, . . . ,

with the corresponding eigenvectors

e±i = [
e i

µ±i e i
] , i = 2, 3, . . . .

Let
E1 = span{e+1 } and E−1 = span{e−1 }.

Sowe see that E11 = E1⊕E−1, and E1 and E−1 are invariant subspaces of the operatorC.
Let P1 and P−1 be the corresponding spectral projections [13], and let P22 be the unique
orthogonal projection onto E22. _en there exists a decomposition E = E1⊕E−1⊕E22
with projections P1 , P−1, and P22, respectively. Note that E1 is not orthogonal to E−1.
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To overcome this obstacle, we may use an equivalent inner product on E, as deûned
for deterministic wave equations ([12]), to ensure that E1 is orthogonal to E−1.

Let U i = (u i , v i) (i = 1, 2) be two elements of E11 or E22. Assume that ν2 > 8λ2 .
We deûne the new inner products on E11 and E22 by

⟨U1 ,U2⟩E11 = 2[ ν2

4
u1u2 + (

ν
2
u1 + v1)(

ν
2
u2 + v2)] ,

⟨U1 ,U2⟩E22 = 2[⟨kAu1 , u2⟩ + (
ν2

4
− 2λ2)⟨u1 , u2⟩ + ⟨

ν
2
u1 + v1 ,

ν
2
u2 + v2⟩] ,

respectively, where ⟨ ⋅ , ⋅ ⟩ is the usual inner product of L2(D). Deûne a new inner
product on E by

⟨U ,V⟩E = ⟨U11 ,V11⟩E11 + ⟨U22 ,V22⟩E22 ,
whereU = U11+U22 andV = V11+V22 withU i i ,Vi i ∈ E i i (i = 1, 2). _e corresponding
norm is denoted by ∥ ⋅ ∥E .

Since ν2 > 8λ2 , one can see that ⟨ ⋅ , ⋅ ⟩E11 is equivalent to the usual inner product
on E11, and ⟨ ⋅ , ⋅ ⟩E22 is equivalent to the usual inner product on E22. Hence, the new
inner product ⟨ ⋅ , ⋅ ⟩E is equivalent to the usual inner product on E.

In terms of this new inner product, by the orthogonality of sin kx, a straightfor-
ward calculation shows that

E−1 ⊥ E22 , E1 ⊥ E22 , E1 ⊥ E−1 .

Let E2 = E−1 ⊕ E22; then E1 ⊥ E2. Furthermore, for U = (0, v) ∈ E, we have

(5.2) ∥U∥E =
√

2∥v∥L2(D) ,

and for any U = (u, v) ∈ E, we have

(5.3) ∥U∥E ≥
√

2ρ∥u∥L2(D)

with ρ = min{ν/2,
√

ν2/4 + (k − 2)λ2}.
Let C1 ,C2 ,C−1 ,C22 denote C∣E1 ,C∣E2 ,C∣E−1 , and C∣E22 , respectively. By a discus-

sion similar to Mora’s bounds [12], we have

∥eC1 t∥ ≤ 1 for t ≤ 0,

∥eC−1 t∥ ≤ e−ν t for t ≥ 0,(5.4)

∥eC22 t∥ ≤ eRe µ+2 t for t ≥ 0.(5.5)

From (5.4) and (5.5), we have

∥eC2 t∥ ≤ eRe µ+2 t for t ≥ 0.

For the nonlinearity F, in terms of the new norm, by (5.2) and (5.3) we have

∥F(Ũ1 ,ω) − F(U2 ,ω)∥E =
√

2∥ f (ũ1 + η) − f (ũ2 + η)∥L2(D)

≤
√

2L f ∥ũ1 − ũ2∥L2(D) ≤
L f
ρ

∥Ũ1 − Ũ2∥E .

So F is Lipschitz with respect to Ũ and the Lipschitz constant LF = L f /ρ is indepen-
dent of k when k ≥ 2.
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Note that by choosing α = 0, β = Re µ+2 , and ζ = Re µ+2 /2, using a similar discussion
to that of Liu [7] and of Lu and Schmalfuss [8] leads to the following theorem.

_eorem 5.1 _ere is a one-dimensional inertial manifoldM
k
(ω) for equation (5.1),

which is represented by

M
k
(ω) = {(ξ, hk

(ξ,ω)) ∶ ξ ∈ E1}

with hk ∶ E1 → E2 is a Lipschitz continuous mapping given by

hk
(ξ,ω) = ∫

0

−∞
(P−1 + P22)e−CsF(U(s),ω)ds.

Moreover, if f ∈ C1(L2(D), L2(D)), then the random invariant manifold is C1, which
implies that h ∈ C1(E1 , E2). Here U is the unique solution of

U(t) = eC t ξ + ∫
t

0
P1eC(t−s)F(U(s),ω)ds + ∫

t

−∞
(P−1 + P22)eC(t−s)F(U(s),ω)ds

in the space

C−ζ = {u ∈ C((−∞, 0];H) ∶ sup
t≤0
e−ζ t∥u(t)∥ <∞}

with the norm
∣u∣C−ζ = sup

t≤0
e−ζ t∥u(t)∥.

Let ũ = u − η1, and η1 satisûes (3.2). We have

(5.6) ũt t + νũt = P f (ũ + η1).

Hence, we have the following result. Notice that in this case, E2 = E−1 holds.

_eorem 5.2 _ere is a one-dimensional inertial manifoldM(ω) for equation (5.6)
that is represented byM(ω) = {(ξ, h(ξ,ω)) ∶ ξ ∈ E1}with h∶ E1 → E2 being a Lipschitz
continuous mapping.

5.2 Limit of M
k
(ω)

Let U be the unique ûxed point of the nonlinear map Jξ ∶C−ζ → C
−
ζ :

Jξ(U) = eC t ξ + ∫
t

0
P1eC(t−s)F(U(s),ω)ds + ∫

t

−∞
(P−1 + P22)eC(t−s)F(U(s),ω)ds.

In view of the Lipschitz property of F, one can see that Jξ is Lipschitz with Lip(Jξ) < 1,
and

∥U∥C−η ≤ ∥Jξ(U) − Jξ(0)∥C−ζ + ∥Jξ(0)∥C−ζ leq Lip(Jξ)∥U∥C−ζ
+ ∥Jξ(0)∥C−ζ .

By the deûnition of Jξ and using the assumption F(0) = 0, we have

∥Jξ(0)∥C−ζ = ∥ξ∥.

So we have ∥U∥C−ζ
≤ L∥ξ∥ for some L > 0.
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Consider U(t) = (U c(t),U s(t)) with

∥U s(t)∥ = ∥∫

t

−∞
(P−1 + P22)eC(t−s)F(U(s),ω)ds∥ .

In view of the Lipschitz property of f , we get

∥U s(t)∥ ≤
√

2L f ∫
t

−∞
∥eC2(t−s)

∥ ⋅ ∥U(s)∥ds,

≤
√

2L f ∫
t

−∞
∥eC2(t−s)

∥eζse−ζs∥U(s)∥ds,

≤
√

2L f ∫
t

−∞
eRe µ+2 (t−s)eζsds∥U∥C−ζ

.

_us, we have

∥h(ξ)∥ = ∥U s(0)∥ ≤
√

2L f ∫
0

−∞
e(ζ−Re µ+2 )sds∥U∥C−ζ

≤ K∥ξ∥

for some constant K > 0.
To consider estimates of the solution on the random invariant manifoldM

k
(ω),

we start with the limit of k →∞. For any (uk , vk
) ∈M

k
(ω), we rewrite uk as

u2,k
=

∞

∑
i=2

uk
i e i .

By the transformation (4.1), there exists a constant c > 0 such that

(5.7) ∥u2,k
∥ ≤

c
√

k
∥(ξ, h(ξ))∥ ≤ c(1 + K)

√
k

∥ξ∥.

Assume that (u, ut) ∈ M(ω) with the same initial ξ ∈ E1. We now show that for
any t > 0 there holds

∥uk
(t) − u(t)∥Ð→ 0, as k Ð→∞.

Let U 1,k
= u1,k

− u. So we have

U
1,k
t t + νU

1,k
t = P f (u1,k

+ u2,k
+ ηk

) − P f (u + η1).

Let ρ1,k
= U

1,k
t + δU

1,k with δ < ν. _en we deduce that

ρ1,k
t = −

1
2
(ν − δ)ρ1,k

−
1
2
(ν − δ)ρ1,k

+ δ(ν − δ)U
1,k

+ P f (u1,k
+ u2,k

+ ηk
) − P f (u + η1).

In view of the deûnition of ρ1,k and the Lipschitz property of f , we have
1
2
d
dt

[∥ρ1,k
∥
2
+ δ(ν − δ)∥U

1,k
∥
2]

= −
1
2
(ν − δ)∥ρ1,k

∥
2
−

1
2
(ν − δ)∥U

1,k
t ∥

2
−
δ2(ν − δ)

2
∥U

1,k
∥
2

+ ⟨δ(ν − δ)U
1,k , ρ1,k

⟩ + ⟨P f (u1,k
+ u2,k

+ ηk
) − P f (u + η1), ρ1,k

⟩

≤ Lδ[∥ρ
1,k

∥
2
+ δ(ν − δ)∥U

1,k
∥
2] + Lδ(∥u

2,k
∥
2
+ ∥ηk

− η1∥
2)
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for some constant Lδ > 0. By the decaying estimate (5.7) and

∥ηk
− η1∥

2
Ð→ 0, a.s. as k Ð→∞,

for any t > 0 it follows from Gronwall’s inequality that

∥ρ1,k
(t)∥ + ∥U

1,k
(t)∥Ð→ 0, a.s. as k Ð→∞.

Denote by dist( ⋅ , ⋅ ) theHausdorò semi-distance on E × E with
dist(A, B) = sup

x∈A
inf
y∈B

∥x − y∥E , A, B ⊂ E .

_us, we obtain the following result.

_eorem 5.3 For the random invariant manifold M
k
(ω), we have

lim
k→∞

dist(M
k
,M) = 0.

By virtue of_eorems 5.1–5.3, we arrive at _eorem 2.2.
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