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Abstract

Using backward stochastic difference equations (BSDEs), this paper studies dynamic
convex risk measures for risky positions in a simple discrete-time, binomial tree model.
A relationship between BSDEs and dynamic convex risk measures is developed using
nonlinear expectations. The time consistency of dynamic convex risk measures is
discussed in the binomial tree framework. A relationship between prices and risks is
also established. Two particular cases of dynamic convex risk measures, namely risk
measures with stochastic distortions and entropic risk measures, and their mathematical
properties are discussed.
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1. Introduction

Risk management is an important issue in the banking, finance, and insurance industries.
Recent financial crises, collapses of major financial institutions and insurance companies,
such as the global financial crisis of 2008, the Asian financial crisis, collapses of Long-Term
Capital Management (LTCM), AIG and Lehman Brothers, the turmoil at Barings and Orange
County, may be partly attributed to inappropriate risk measurement. International regulatory
bodies, such as the Bank of International Settlements (BIS) and the Basel Committee for
Banking Supervision, have produced reports with detailed guidelines on quantitative methods,
techniques, and practices for risk management. Among various issues of risk management,
developing appropriate quantitative models for risk measurement is of importance. Due to the
proliferation of financial and insurance products, risk measurement issues have become more
sophisticated.

Value at Risk (VaR) has emerged as a popular tool for risk measurement among market
practitioners in the banking, finance, and insurance industries. Its origin may be traced back to
the famous 4:15 p.m. report at JP Morgan, where an early application of VaR was presented.
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Although VaR is a popular tool for risk measurement in practice, it has been noted that VaR has
some defects. Artzner et al. [1] introduced the class of coherent risk measures, which satisfy
the properties of subadditivity, translation invariance, positive homogeneity, and monotonicity
and obtained a representation for coherent risk measures. Subadditivity is one of the four
desirable properties. Intuitively, it states that the diversification between two risky positions
should always reduce risk. Artzner et al. [1] pointed out thatVaR does not, in general, satisfy the
subadditivity property, especially when the portfolio contains derivative instruments. Föllmer
and Schied [23] and Frittelli and Rosazza-Gianin [25] argued that in many cases the risk of
a trading portfolio might increase in a nonlinear fashion with the size of the portfolio due to
the additional liquidity risk of a large portfolio. They relaxed the subadditive and positive
homogeneous properties and replaced them with the convexity property. The notion of convex
risk measures, which extends the concept of coherent risk measures, was then introduced.
Föllmer and Schied [23] and Frittelli and Rosazza-Gianin [25] established independently a
representation for convex risk measures based on probability measures on the underlying space
of ‘scenarios’ and a penalty function. Interested readers may refer to Elliott and Kopp [18]
for a discussion of coherent risk measures and to Föllmer and Schied [24] for an exposition of
convex risk measures.

Both coherent and convex risk measures were initially introduced in a static setting. However,
in practice, risk measurement should be performed dynamically over time. Consequently, there
is a need for dynamic risk measures. Some versions of dynamic coherent risk measures appeared
in [2], [5], [12], and [34]–[36]. Frittelli and Rosazza-Gianin [26], Detlefsen and Scandolo [15],
Klöppel and Schweizer [28], Jobert and Rogers [27], and others studied dynamic convex risk
measures from a theoretical perspective; see also [19], [20], and [33]. Time-consistency is
an important property of dynamic risk measures. This property has been defined in a number
of works including, e.g. [2], [11], [26], [32], and [39]. These works also defined dynamic
risk measures and studied their time consistency. It was noted in Rosazza-Gianin [32] that
the notion of time consistency is related to the ‘filtration consistency’ introduced by Coquet et
al. [11] and the recursivity of Artzner et al. [2]. Artzner et al. [2] and Delbaen [13] stressed that
time-consistency is not satisfied by all the dynamic risk measures. It is satisfied only by those
dynamic risk measures with a set of probability measures or generalized scenarios satisfying the
‘m-stability’ property, which, roughly speaking, requires that the generalized scenario obtained
by ‘pasting ad hoc’ two probability measures in the set of generalized scenarios again falls
into the same set. The ‘m-stability’ and pasting of probability measures were discussed in
Delbaen [13]. Rosazza-Gianin [32] established the link between dynamic convex/coherent risk
measures and conditional g-expectations in a continuous-time Brownian filtration setting. The
conditional g-expectations satisfy the backward stochastic differential equations driven by a
standard Brownian motion under certain conditions. For an excellent exposition on the use of
backward stochastic differential equations in finance, we refer the reader to [17].

In this paper, we adopt backward stochastic difference equations (BSDEs) to study dynamic
convex risk measures in a simple discrete-time, binomial tree model. Dynamic convex risk
measures are linked to solutions of BSDEs via nonlinear expectations in the binomial tree
model. The necessary and sufficient conditions for the time consistency of dynamic convex
risk measures are given. We also discuss the relationship between prices and risks, and derive
a decomposition for the difference between a price and a risk into different risk-premium
components in the binomial tree framework. Two particular cases of dynamic convex risk
measures are considered. The first one is a risk measure introduced by stochastic distortion
probabilities and the second one is an entropic risk measure. Time consistency of these two
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Backward stochastic difference equations 773

risk measures is discussed. The one-step law invariance of dynamic convex risk measures is
also analysed.

The rest of the paper is structured as follows. In the next section we present the BSDEs under
the binomial tree model. In Section 3 we discuss the link between the BSDEs and dynamic
convex risk measures. In Section 4 we discuss the relationship between prices and risks. The
two particular cases and some mathematical properties of risk measures are considered in
Section 5.

2. BSDEs in a binomial tree

In this section we present a discrete-time, binomial model and some basic results for BSDEs
in the binomial model. These results include the existence and uniqueness of the solutions of
the BSDEs as well as a comparison theorem.

As usual, let (�, F , P) be a probability space describing uncertainty in the binomial model,
where P is a real-world probability measure. Denote the time index set {0, 1, 2, . . . , T } by T .
Consider a Bernoulli process X := {Xt | t ∈ T \ {0}} on (�, F , P) with state space {0, 1}.
Let F := {Ft | t ∈ T } be the natural filtration generated by the process X. To simplify the
discussion, take F = FT and assume that F0 is trivial. This defines a martingale difference
process, denoted by M := {Mt | t ∈ T \ {0}}, as

Mt = Xt − E[Xt | Ft−1].
Write pt−1 = E[Xt | Ft−1] = P(Xt = 1 | Ft−1) so that pt−1 is Ft−1 measurable, and
Mt = 1 − pt−1 when Xt = 1. The process M is used as the basic martingale difference
process of the BSDE to be defined later in this section.

We shall henceforth assume that, for the measures considered, pt ∈ (0, 1) for all t and ω. This
assumption ensures that each path of our binomial tree is associated with a positive probability,
and ensures that all probability measures on our sample space (�, F ) are absolutely continuous
with respect to P. Consequently, our results will hold for all ω, rather than for almost all ω.

The following construction is standard.

Lemma 1. For any F-adapted stochastic process p̃ := {p̃t | t ∈ T \ {T }} on (�, F , P) with
state space [0, 1], there is a probability measure P̃ on (�, F ) such that

Ẽ[Xt+1 | Ft ] = p̃t .

Here Ẽ is the expectation under P̃.

Proof. Define

dP̃

dP

∣∣∣∣
FT

:=
T −1∏
i=1

(
p̃i

pi

)Xi+1
(

1 − p̃i

1 − pi

)1−Xi+1

.

In the sequel, some basic results for existence and uniqueness of solutions to BSDEs are
given in the binomial context. Conditions under which a comparison theorem will hold are
provided. The theory of discrete-time BSDEs and its relationships with dynamic risk measures
were discussed in Cohen and Elliott [8], [10], and Cheridito and Stadje [6].

We begin by defining the following version of the Malliavin difference, which will be used
in the martingale representation theorem for Markov chains. A full treatment of the discrete
Malliavin calculus (scaled to fit an alternate notation) can be found in Privault [31, Chapter 1].
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Definition 1. Let Q be a FT -measurable random variable. By the Doob–Dynkin lemma, it has
a representation Q = f (X1, X2, . . . , XT ). Define the up- and down-values Qt+ and Qt− by
the random variables

Qt+ := f (X1, . . . , Xt−1, 1, Xt+1, . . . , XT ),

Qt− := f (X1, . . . , Xt−1, 0, Xt+1, . . . , XT ).

Define the Malliavin difference DtQ by

DtQ := Qt+ − Qt−.

Clearly, Q is Fk-measurable if and only if DtQ = 0 for all t > k, in which case DkQ is
Fk−1-measurable.

Lemma 2. (Martingale representation.) Let L be a martingale difference process, i.e. an
adapted process with E[Lt+1 | Ft ] = 0. Then there exists a unique adapted process Z such
that

Lt+1 = ZtMt+1 P-almost surely for all t ∈ T \ {T }.
Furthermore, Zt = Dt+1Lt+1.

Proof. As in the martingale representation theorem for Markov chains in Elliott andYang [21]
and for general finite-state processes in Cohen and Elliott [9], [10], it is not difficult to see that
Zt−1 = DtLt is the unique solution to

Lt+
t = Zt−1M

t+
t = Zt−1(1 − pt−1), Lt−

t = Zt−1M
t−
t = Zt−1(−pt−1).

Note that, unlike in Cohen and Elliott [10], as we are in the situation of a binomial model,
this representation can be obtained with M and Z both scalar processes. The following two
theorems are modifications of results in Cohen and Elliott [8] for this situation.

Theorem 1. (Existence of BSDE solutions.) Let F : � × T × R × R → R be an F-adapted,
integrable function (i.e. F(·, t, y, z) ∈ L1(Ft ) for all t). Then the BSDE

Yt+1 = Yt − F(ω, t, Yt , Zt ) + ZtMt+1, YT = Q

has a unique solution (Y, Z) for all Q ∈ L1(FT ) if and only if the map

y �→ y − F(ω, t, y, z)

is a bijection for all (ω, t, z) ∈ � × T × R.

Here, (F, Q) are called the parameters of the BSDE, and will be called standard if Theorem 1
holds. Note that while the BSDE in Theorem 1 is in a differenced form, it can also be written
in the form

Yt −
T −1∑
u=t

F (ω, u, Yu, Zu) +
T −1∑
u=t

ZuMu+1 = Q.

Theorem 2. (Comparison theorem.) Consider the solutions (Y 1, Z1), (Y 2, Z2) to two BSDEs
with standard parameters (F 1, Q1), (F 2, Q2), respectively. Suppose that for all ω, t, y, y′, z,
and z′,

(P1) Q1 ≥ Q2;

(P2) F 1(ω, t, y, z) ≥ F 2(ω, t, y, z);
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(P3) F 1(ω, t, y, z) − F 1(ω, t, y, z′) ≥ min{(z − z′)pt , (z − z′)(pt − 1)};
(P4) y �→ y − F 1(ω, t, y, z) is strictly increasing as a function of y.

Then Y 1
t ≥ Y 2

t for all ω, t .

For a standard F 1, if properties (P3) and (P4) hold, then F 1 will be called balanced. Note
that property (P3) also holds with the roles of z and z′ exchanged, which proves the following
corollary.

Corollary 1. A balanced driver is Lipschitz in z with Lipschitz constant at most 1.

Proof. Exchanging the role of z and z′, we have

|F 1(ω, t, y, z) − F 1(ω, t, y, z′)| ≤ max{|(z − z′)pt |, |(z − z′)(pt − 1)|} ≤ |z − z′|.
Conversely, the comparison theorem has the following implication for BSDEs with non-

Lipschitz drivers.

Theorem 3. SupposeF is the driver of a BSDE and is not Lipschitz in z with positive probability.
Then there exist terminal valuesQ1, Q2 such that, for some t , the corresponding solutions satisfy
Y 1

t+1 ≤ Y 2
t+1 almost surely, Y 1

t+1 < Y 2
t+1 with positive probability, but Y 1

t = Y 2
t almost surely.

Proof. As F is not Lipschitz with positive probability, there exists some t , some set A ∈ Ft ,
and some y, z, and z′ such that

F(ω, t, y, z) − F(ω, t, y, z′) > |z − z′|
on A. Then, we define

Y 1
t+1 := y − F(·, t, y, z) + zMt+1,

Y 2
t+1 :=

{
y − F(·, t, y, z′) + z′Mt+1, ω ∈ A,

Y 1
t+1, ω ∈ Ac

so that on Ac we have Y 1
t+1 = Y 2

t+1 and on A,

Y 1
t+1 < y − F(ω, t, y, z′) − |z − z′| + zMt+1 < y − F(ω, t, y, z′) + z′Mt+1 = Y 2

t+1.

Hence, Y 1
t+1 ≤ Y 2

t+1, and the inequality is strict with positive probability. However, it is clear
that the BSDE dynamics indicate that the corresponding solutions at time t satisfy Y 1

t = Y 2
t = y.

To complete this argument, we simply run the BSDE dynamics forward from time t+1 to time T ,
using an arbitrary process for Z, to generate the terminal values Q1 and Q2 with the desired
solution.

3. Dynamic convex risk measures and BSDEs

In this section a BSDE for a dynamic convex risk measure is presented. Firstly, a conditional
nonlinear expectation is defined, and the link between the conditional nonlinear expectation and
the solution of a BSDE whose driver function and terminal condition satisfy certain properties is
provided. Then the relationship between the conditional nonlinear expectation and the dynamic
convex risk measure under certain mild conditions for the driver function is given. Finally, the
driver function is explicitly identified.

Following Detlefsen and Scandolo [15], Bion-Nadal [4], and others, we state the following
definition.
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Definition 2. A family of operators ρt : L1(FT ) → L1(Ft ), t ∈ T is called a dynamic convex
risk measure if the following hold.

(i) (Monotonicity) For any Q, V ∈ L1(FT ) with Q(ω) ≥ V (ω) for all ω ∈ �,

ρt (Q) ≤ ρt (V )for all (t, ω) ∈ T × �.

(ii) (Dynamic constancy) For any t ∈ T and Q ∈ L1(Ft ),

ρt (Q) = −Q.

(iii) (Dynamic translability) For any t ∈ T , q ∈ L1(Ft ), and Q ∈ L1(FT ),

ρt (Q + q) = ρt (Q) − q.

(iv) (Dynamic convexity) For each t ∈ T , ρt is convex; that is, for any Q1, Q2 ∈ L1(FT )

and α ∈ L1(Ft ) with α ∈ (0, 1),

ρt (αQ1 + (1 − α)Q2) ≤ αρt (Q1) + (1 − α)ρt (Q2).

Note that ρ0 is a (static) convex risk measure in the sense of Föllmer and Schied [23] and
Frittelli and Rosazza-Gianin [25]. Also note that, from [15, Corollary 1], we know that ρ is
regular, that is, for each t ∈ T , A ∈ Ft , and Q ∈ L1(FT ), ρt (1A Q) = 1A ρt (Q), where 1A is
the indicator function of a set A.

As we are working in a finite-state situation, the classical continuity of convex functions
implies that any convex risk measure is continuous, i.e. if Xn → X pointwise then ρ0(Xn) →
ρ(X). This implies (see[15, Theorem 1]) that there exists a family of probability measures P�

on (�, F ), and a random convex penalty function ηt : P� → L1(Ft ) such that

ρt (Q) = max
P∈P�

{−EP[Q | Ft ] − ηt (P)}

and
min
P∈P�

{ηt (P)} = 0.

Furthermore, without loss of generality

ηt (P) = max
Q∈L1(FT )

{−EP[Q | Ft ] − ρt (Q)},

and so ηt satisfies a regularity condition.

Lemma 3. Without loss of generality, for any probability measures Q, P ∈ P�, we can ‘paste’
together the measures at time t on a set A ∈ Ft to give a measure R ∈ P� by

dR

dP
= 1A

dQ/dP

E[dQ/dP | Ft ] + 1Ac ,

and ηt satisfies ηt (Q) = ηt (R).

Remark 1. In [15], the set P� is made to vary in time, and requires that Q = P on Ft for
all Q ∈ P�. We do not make this restriction, however, and obtain this regularity property
instead. The pasting of probability measures is fundamentally the same as the m-stability case
considered in [13].

Note that, in this context, these are true maxima and minima taken pointwise (rather than
essential suprema), due to the simplicity of the underlying binomial tree.
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Definition 3. A dynamic risk measure is said to be F-consistent if it satisfies the recursivity
property

ρs(−ρt (Q)) = ρs(Q) for all Q ∈ L1(FT ), s ≤ t.

We now consider risk measures through the framework of BSDEs.

Theorem 4. The following two statements are equivalent:

(i) the family {ρt | t ∈ T } is an F-consistent dynamic risk measure;

(ii) there exists a balanced driver H , which does not depend on y, is convex in z, and is such
that for any Q ∈ FT ,

Yt = ρt (Q),

where Yt is the first component in the solution to a BSDE with parameters (H, −Q).

Furthermore, the driver H and the risk measure are explicitly related by

H(ω, t, z) ≡ ρt (−zMt+1).

Proof. It is clear that Et (Q) := ρt (−Q) is a convex F-consistent nonlinear expectation in the
sense of Peng [30] (see also [32]). From [9, Theorem 5], we see that Et (Q) has a representation
as the solution to a BSDE with a balanced driver H(ω, t, z) = Et (zMt+1) = ρt (−zMt+1).

The following result is a direct consequence of Theorem 4 and Corollary 1. This is
fundamentally different from the case of a continuous-time Wiener space, where it was shown
in [11] that the driver relating to a dynamic convex risk measure is Lipschitz if and only if the
risk measure is Eμ-dominated (we would like to thank the referee for pointing this out).

Corollary 2. In discrete time, the drivers of BSDEs corresponding to F-consistent dynamic
risk measures are Lipschitz.

Proof. This follows from Corollary 1, as the drivers are balanced.

Note that in the case of continuous-time BSDEs driven by Wiener processes, the character-
ization of the driver has already appeared in [30].

4. BSDEs for prices and risks

In this section we shall discuss the relationship between the BSDEs for the price and the risk
of a contingent claim in the context of the binomial tree model. Consider a contingent claim
maturing at time T with payoff G at time T , where G is an FT -measurable random variable.
We wish to understand the dynamics of the difference between the price of the claim G and the
risk of the discounted value of G, i.e. ρt (G ·R−(T −t)), where the dynamic convex risk measure
{ρt } is given by the solution to a BSDE and R is the constant, one-period discount factor.

Let ρt (G · R−(T −t)) = Yt so that Yt is the risk of the claim G evaluated at time t , where
(Y, Z) is the solution to the BSDE,

G · R−(T −t) = Yt −
T −1∑
u=t

H(ω, u, Zu) +
T −1∑
u=t

ZuMu+1,

which is taken under the real-world, or reference, measure P.
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As in Cohen and Elliott [8], under the risk-neutral measure Q in the binomial tree model,
we have the following BSDE:

G · R−(T −t) = Yt −
T −1∑
u=t

H̃ (ω, u, Zu) +
T −1∑
u=t

ZuM̃u+1,

where H̃ (ω, t, z) = H(ω, t, y, z) + (qt − pt )z; {M̃t } is the martingale difference process
generated by Q.

Let Vt be the price of the claim G at time t . Taking an expectation under Q, as
E

Q[G · R−(T −t)] = Vt , we have

Yt − Vt = E
Q

[T −1∑
u=t

H̃ (ω, u, Zu) | Ft

]

= E
Q

[T −1∑
u=t

H(ω, u, Zu) + (qu − pu)Zu | Ft

]

= E
Q

[T −1∑
u=t

H(ω, u, Zu) | Ft

]
− E

Q

[T −1∑
u=t

(pu − qu)Zu | Ft

]

= E
Q[Yt+1 − Vt+1 | Ft ] + H(ω, t, Zt ) − (pt − qt )Zt .

This decomposition seems quite surprising as it can be given the following interpretation.
The term ‘(pu − qu)Zu’ may be interpreted as the market risk-premium associated with the
position Zu. We have also shown that H(ω, t, z) = ρt (−zMt+1), and so this quantity can
be thought of as a personal risk-premium associated with the position z, given by the risk-
measure ρt .

Consequently, the difference between the risk and the price of the discounted contingent
claim G · R−(T −t) is decomposed into three components: the market price of their future
difference, plus the personal evaluation of the risk associated with the one-step position Zt ,
compensated by the market premium associated with that position.

5. Mathematical properties of some specific risk measures

In this section a particular type of dynamic convex risk measures introduced by stochastic
distortion probabilities is first considered in the binomial tree framework and its time consistency
is discussed. Then the conditions for the one-step law invariance of nonlinear expectation are
identified. Finally, a dynamic entropic risk measure, which is another type of dynamic convex
risk measures, is also discussed and its BSDE representation is given.

5.1. Risk measures from stochastic distortions

We now specify a form of dynamic convex risk measure by introducing the concept of
‘stochastic distortion probabilities’. The notion of ‘stochastic distortion probabilities’ is related
to those of distortion probabilities in a binomial tree model in [5] and stochastic intervals for
subjective appreciation rates in [22].

Consider, for each t ∈ T \ {T }, a stochastic interval of ‘distortion factors’, say �t :=
[λL

t , λU
t ], where

(i) λL
t and λU

t are Ft -measurable;

(ii) 0 ≤ λL
t ≤ λU

t ≤ ∞, P-almost surely.
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Define an F -adapted process of ‘stochastic distortion factors’ λ := {λt | t ∈ T \ {T }} on
(�, F , P) such that λt ∈ �t . Write

� :=
T −1∏
t=0

�t .

For each λ := (λ0, λ1, . . . , λT −1) ∈ �, we take the stochastically distorted ‘up probability’
p

λt
t in the place of the corresponding physical probability pt . As pt ∈ [0, 1], it follows that

p
λt
t ∈ [0, 1]. Consequently, for each λ ∈ �, we can use Lemma 1 to define the probability

measure Pλ under which
E

λ[Xt+1 | Ft ] = p
λt
t .

Here E
λ is an expectation under Pλ.

For each λ ∈ �, Pλ is absolutely continuous with respect to P on (�, FT ). Furthermore,
if λL

t > 0 and λU
t < ∞ for all t ∈ T \ {T }, Pλ is equivalent to P on FT . Then a family

of equivalent probability measures P� := {Pλ | λ ∈ �} with index set � is generated by
‘stochastic distortion probabilities’.

Now, for a convex penalty function ηt : P� → L1(Ft ) satisfying the regularity property of
Lemma 3,

ρt (Q) = sup
λ∈�

{−E
λ[Q | Ft ] − ηt (Pλ)}.

The idea of ‘stochastic distortion probabilities’generalizes the concept of ‘constant distortion
probabilities’ used in actuarial science for premium calculations; see, e.g. [37] and [38]). In
a recent paper by Cherny and Madan [7], the concept of ‘constant distorted probabilities, or
distributions’ was used to develop a family of performance measures which are suitable for
non-Gaussian return distributions. These constant distortions were then used by Eberlein and
Madan [16] to measure hedge fund performance.

Theorem 5. If �t = [0, ∞] for all t then any probability measure on (�, F ) can be generated
by a stochastic distortion.

Proof. For any measure P̃, let p̃t = E
P̃[Xt+1 | Ft ]. Then define

λt = ln(pt )

ln(p̃t )
∈ [0, ∞].

It is easy to see that the process λt is the stochastic distortion relating P and P̃.

Theorem 6. The risk measures generated by stochastic distortion probabilities are F-consistent
if and only if η is of the form

ηt (Pλ) = f (ω, t, λt ) + E
λ[ηt+1(Pλ) | Ft ] = E

λ

[∑
u≥t

f (ω, u, λu) | Ft

]

for some adapted function f .

Proof. We know that

ρt (Q) = sup
λ∈�

{−E
λ[Q | Ft ] − ηt (Pλ)},

and by the F-consistency

ρt (Q) = ρt (−ρt+1(Q)) = sup
λ∈�

{Eλ[ρt+1(Q) | Ft ] − ηt (Pλ)}.
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Define
f (ω, t, λt ) := inf

{λ̄∈� : λ̄t=λt }
ηt (Pλ̄).

Then, as E
λ̄[V | Ft ] = E

λ[V | Ft ] for all λ̄ ∈ � with λ̄t = λt , and all V ∈ L1(Ft+1),

ρt (Q) = sup
λ∈�

{Eλ[ρt+1(Q) | Ft ] − f (ω, t, λt )}. (1)

We now write

ρt (Q) = sup
λ∈�

{
E

λ
[

sup
λ′∈�

{−E
λ′ [Q | Ft+1] − ηt+1(Pλ′)} | Ft

]
− f (ω, t, λt )

}
.

Clearly, this implies

ρt (Q) ≥ sup
λ∈�

{Eλ[−E
λ[Q | Ft+1] − ηt+1(Pλ) | Ft ] − f (ω, t, λt )}

= sup
λ∈�

{Eλ[−Q | Ft ] − [Eλ[ηt+1(Pλ) | Ft ] + f (ω, t, λt )]}. (2)

From the definition of the supremum, for every ε > 0 there exists a λ′ ∈ � such that

ρt (Q) ≤ sup
λ∈�

{Eλ[−E
λ′ [Q | Ft+1] − ηt+1(Pλ′) | Ft ] − f (ω, t, λt )} + ε.

For a given λ′, let (λλ′) ∈ � be the process defined by

(λλ′)s =
{

λs, s ≤ t,

λ′
s , s > t.

By the regularity property of η, we have ηt+1(P(λλ′)) = ηt+1(Pλ′). Hence,

ρt (Q) ≤ sup
λ∈�

{E(λλ′)[−Q − ηt+1(P(λλ′)) | Ft ] − f (ω, t, λt )} + ε

and, as (λλ′) ∈ �, we have

ρt (Q) ≤ sup
λ∈�

{Eλ[−Q | Ft ] − [Eλ[ηt+1(Pλ) | Ft ] + f (ω, t, λt )]} + ε.

As ε is arbitrary, combined with (2), we have

ρt (Q) = sup
λ∈�

{Eλ[−Q | Ft ] − [Eλ[ηt+1(Pλ) | Ft ] + f (ω, t, λt )]}

= sup
λ∈�

{−E
λ[Q | Ft ] − ηt (Pλ)},

and so ηt (Pλ) = E
λ[ηt+1(Pλ) | Ft ] + f (ω, t, λt ) as desired. The second equality follows

clearly by recursion.

Remark 2. This result can be seen as analogous to the cocycle condition obtained by Bion-
Nadal [4] in a general context. Furthermore, the representation of the penalty function in
Theorem 6 can be seen as a discrete-time version of the representation of the penalty function
in a continuous-time Brownian setting by Delbaen et al. [14], where the latter is obtained by
replacing the summation in the former by an integral.
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Theorem 7. The risk measures generated by the stochastic distortion probabilities are
F-consistent if and only if ρt (Q) is given by a BSDE with parameters (H, −Q), where

H(ω, t, z) = sup
λ∈�

{z(pλt
t − pt ) − f (ω, t, λt ))}.

Here, f is defined as in Theorem 6.

Proof. First note that as zMt+1 ∈ L1(Ft+1), from (1) we have

ρt (−zMt+1) = sup
λ∈�

{Eλ[zMt+1 | Ft ] − f (ω, t, λt )}.

Then, from Theorem 4,

H(ω, t, z) = ρt (−zMt+1)

= sup
λ∈�

{Eλ[zMt+1 | Ft ] − f (ω, t, λt )}

= sup
λ∈�

{zEλ[Mt+1 | Ft ] − f (ω, t, λt )}

= sup
λ∈�

{z(pλt
t − pt ) − f (ω, t, λt )}.

Again, by Theorem 4,
H(ω, t, z) = Et (zMt+1)

and the result follows.

5.2. One-step law invariance

We now seek to understand under what conditions our nonlinear expectation satisfies a degree
of law invariance. Recent work of Kupper and Schachermayer [29] has shown that the only
nonlinear expectation which is time-consistent, relevant, and law-invariant with respect to the
terminal condition is the exponential utility, i.e. the negative of the entropic risk (see below).
However, we consider here under what properties law invariance is satisfied with respect to
the values in the next step. This may be interpreted as local law invariance. This weaker
condition allows far greater freedom in the choice of risk measures, while maintaining some of
the intuition behind law-invariant risk measures.

Definition 4. A risk measure ρ is said to be one-step law-invariant if, for any t , for any two
Ft+1 measurable random variables X, X′ with equal conditional laws FX | Ft = FX′ | Ft

, we
have ρt (X) = ρt (X

′).

Theorem 8. A risk measure is one-step law-invariant if and only if ρt (zMt+1) is an even
function of z whenever pt = 1

2 .

Proof. When pt = 1
2 , if X and X′ have the same law then it is easy to show that

X − E[X | Ft ] = ±[X′ − E[X′ | Ft ]]. Hence, in the BSDE representation, the solution
processes Z satisfy ZX = ±ZX′

. Hence, the risk measures are the same if and only if
H(t, ZX) = H(t, ZX′

), i.e. H is an even function of z. As H(ω, t, z) = ρ(−zMt+1),

the result is proven.

Note that whenever pt �= 1
2 , two Ft+1 random variables can agree in law if and only if they

are almost surely equal. Hence, one-step law-invariance is trivial. The result of Theorem 8 may
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suggest that in continuous time there may be a form of ‘short-term’ law invariance for classical
BSDEs driven by a Brownian motion whenever the driver is an even function. As our focus is
on the simple binomial model, we shall not pursue this further here.

In the following theorem, we strengthen the results in Theorem 8 by considering equivalent
probability measures.

Theorem 9. A risk measure is one-step law-invariant for every equivalent probability measure
if and only if

ρt

(
z
(
Xt+1 − 1

2

))
is an even function of z for all ω, t .

Proof. Using the preceding theorem, the BSDE representation, and a change of measures,
ρt is one-step law-invariant if and only if

ρt (zMt+1) − ( 1
2 − pt

)
z = ρ

(
z
(
Xt+1 − 1

2

))
is an even function of z, where the equality is due to translation invariance and the definition
of Mt+1.

This theorem seems quite surprising, as law invariance is typically closely tied to the choice
of probability laws.

5.3. Entropic risk

In this section, we consider a particular case of dynamic convex risk measure, namely, a
dynamic entropic risk measure, which is related to the certainty equivalence under an exponen-
tial utility function in a dynamic setting.

Definition 5. A dynamic entropic risk measure {ρE
t (·) | t ∈ T } of the position Q is defined by

ρE

t (Q) := 1

γ
ln{E[exp(−γQ) | Ft ]}, t ∈ T ,

where γ is the risk aversion parameter.

We now show that the dynamic entropic risk measure is obtained from a stochastic distortion
when the penalty function is given by a multiple of the conditional relative entropy between P

λ

and P given Ft .

Theorem 10. Suppose that, for each t ∈ T ,

ρt (Q) := 1

γ
ln{E[exp(−γQ) | Ft ]}.

Then ρt (Q) can be represented as

ρt (Q) = sup
λ∈�

{Eλ[−Q | Ft ] − ηt (Pλ)},

where � = (0, ∞)T and the penalty function ηt (Pλ) is given by

ηt (Pλ) := 1

γ
E

[(
dP

λ

dP

)
ln

(
dP

λ

dP

) ∣∣∣∣ Ft

]
.
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Proof. As �t = (0, ∞) for all t , we know from Theorem 5 that any probability measure
can be written as a distortion measure. The result is then standard; see, e.g. [3] or [15].

The following theorem gives the BSDE governing the evolution of {ρE
t | t ∈ T } over time.

Theorem 11. The dynamic entropic risk measure {ρE
t | t ∈ T } satisfies the following BSDE:

ρE

t − ZE

t pt − 1

γ
ln[1 − pt (1 − e−γZE

t )] + ZE

t Mt+1 = ρE

t+1, ρE

T = −Q.

Proof. We know that ρE comes from a BSDE with driver

HE(ω, t, z) = ρt (−zMt+1)

and so

HE(ω, t, z) = − 1

γ
ln E[exp(γ zMt+1) | Ft ]

= − 1

γ
ln[(pte

γ z(1−pt ) + (1 − pt )e
−γ zpt )]

= − 1

γ
ln[e−γ zpt (1 − pt (1 − eγ z))]

= zpt − 1

γ
ln[1 − pt (1 − eγ z)].

For the special case where pt = 1
2 , this further reduces to

ρt (−zMt+1) = HE(ω, t, z) = − 1

γ
ln

[
cosh

(
γ z

2

)]
,

which is clearly an even function of z as required by Theorem 8.

Remark 3. It is worth recalling at this point that the driver we observe for the entropic risk
measure ρE must be Lipschitz continuous as it must be balanced (cf. Corollary 1). This stands
in contrast to the continuous-time case, where the exponential utility is known to be given by
a BSDE with quadratic driver −γ z2/2.

Nevertheless, by expanding HE(ω, t, z) in z using Taylor’s expansion, we have

HE(ω, t, z) = −zpt − 1

γ
ln[1 − pt (1 − e−γ z)]

= −γpt (1 − pt )
z2

2
+ o(z3)

≈ −γpt (1 − pt )
z2

2
.

This further connects the discrete-time theory with the continuous-time one for Brownian
motion, Note that the additional term pt (1−pt ) is the correction due to the conditional variance
of Mt+1. Consequently, {ρE

t | t ∈ T } satisfies approximately the following BSDE:

ρE

t + γpt (1 − pt )

2
(ZE

t )2 + ZE

t Mt+1 = ρE

t+1.

Note that the solution of this BSDE may not define a dynamic entropic risk measure since its
driver is not exactly equal to ρt (−zMt+1). The solution may only serve as an approximation
to a dynamic entropic risk measure at best.
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Remark 4. The relative entropy penalty function can be written as

ηt (Pλ) := 1

γ
E

[(
dP

λ

dP

)
ln

(
dP

λ

dP

) ∣∣∣∣ Ft

]
= E

λ

[∑
u≥t

f (ω, u, λu) | Ft

]
,

where f (ω, t, λu) = ln(p
λu−1
u ) = (λu − 1) ln(pu). This is of the form required by Theorem 6.

Acknowledgements

The authors would like to thank the anonymous referee for helpful comments. Robert J.
Elliott and Tak Kuen Siu would like to acknowledge the Discovery Grants from the Australian
Research Council (ARC) (project Nos. DP1096243 and DP130103517). Samuel Cohen thanks
the Oxford-Man Institute for Quantitative Finance for support.

References

[1] Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Math. Finance 9,
203–228.

[2] Artzner, P. et al. (2002). Coherent multiperiod risk measurement. Preprint, Department of Mathematics, ETH,
Zürich.

[3] Barrieu, P. and El Karoui, N. (2004). Optimal derivatives design under dynamic risk measures.
In Mathematics of Finance (Contemp. Math. 351), American Mathematical Society, Providence, RI, pp. 13–25.

[4] Bion-Nadal, J. (2004). Conditional risk measure and robust representation of convex conditional risk measures.
CMAP Preprint 557, École Polytechnique, Paris.

[5] Boyle, P., Siu, T. K. and Yang, H. (2002). Risk and probability measures. Risk 15, 53–57.
[6] Cheridito, P. and Stadje, M. (2013). BS�Es and BSDEs with non-Lipschitz drivers: comparison, convergence

and robustness. Bernoulli 19, 1047–1085.
[7] Cherny, A. and Madan, D. (2009). New measures of performance evaluation. Rev. Financ. Stud. 22,

2571–2606.
[8] Cohen, S. N. and Elliott, R. J. (2009). A general theory of backward stochastic difference equations.

Presentation Notes. University of Adelaide and University of Calgary.
[9] Cohen, S. N. and Elliott, R. J. (2010).A general theory of finite state backward stochastic difference equations.

Stoch. Process. Appl. 120, 442–466.
[10] Cohen, S. N. and Elliott, R. J. (2011). Backward stochastic difference equations with finite states. In Stochastic

Analysis with Financial Applications (Progr. Prob. 65), Birkhäuser, Basel, pp. 33–42.
[11] Coquet, F., Hu, Y., Mémin, J. and Peng, S. (2002). Filtration-consistent nonlinear expectations and related

g-expectations. Prob. Theory Relat. Fields 123, 1–27.
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