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[Omitted by an oversight from the report of the December Meeting.]

A General Method of Solving the Equations of Elasticity.

By JOHN DOUGALL, M.A.

1. In the theory of Electrostatics, or of the Newtonian potential,
there exists between two systems of potentiating matter, a well-
known reciprocal relation, analytically expressed in the proposition
known as Green's Theorrn. By applying his theorem to the case
when one of the systems is of the simplest possible character,
namely, a mass concentrated at a single point, Green deduced a
general method of solving the equation for the potential. The idea
of a similar general method of dealing with the equations of
Elasticity is due to Professor Betti, of Pisa, who has proved a
reciprocal relation between two states of strain of an elastic solid,
analogous to the relation in Electrostatics referred to. Following
the example of Green, Betti considers what his theorem becomes
when one of the states of strain belongs to one or other of certain
very simple types, and obtains results which may be applied to the
solution of the elastic equations. Strangely enough, however, Betti
does not include among his simple types the type which we should
naturally take as fundamental, namely, the strain in an infinite
solid due to a force applied at a single point.

The discussion of this type of strain, from the point of view of
Betti's theorem, is the object of the present paper. General theorems
are reached, in which Betti's results will be seen to be included as
special cases, by a method which makes physical interpretation easy.

2. In order to arrive at Betti's theorem, we start from the known
principle that the potential energy of an elastic solid strained at
constant temperature is a function of the strain only, i.e., is
independent of the succession of steps by which the strain may be
produced.

Let (w, v, w), (X, Y, Z), (F, G, H) denote respectively the
displacements, components of bodily force per unit volume, and
components of surface traction, in any state of equilibrium of an
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elastic solid, referred to for brevity as the state 11, v, w. Let the
same letters with accents denote the corresponding quantities in a
second state of equilibrium u, v, w.

The solid may be brought from the state u, v, w to the state
u', v\ w, by continuous passage through the states u + n(v! - u),
v + n(v — v), w + n(w - u>), where n varies from 0 to 1. The forces
required to maintain the intermediate state corresponding to a
particular value of n will be X + n(X.' - X), etc. The work done
by the applied forces in changing the n state into the n + dn state
will be

Volume integral of { X + ra(X' - X)} (n' -u)dn+... + ...

+ Surface integral of {F + n( F' - F)} («' - u)dn +. . . + ....

Integrating with regard to n from 0 to 1, we obtain for the total
work of the applied forces in changing the state u, v, w into
the state u', v', w,

Volume integral of £(X' + X)(?</ - u) +.. . + ...

+ Surface integral of | (F ' + F)(u - u) + ... + ....

This must be equal to the excess of the potential energy in the
state u', v, w', over that in the state u, v, w. We see that it is
half the work done by the resultant of the initial and final force,
acting through the increase of displacement.

In particular, if we take the state of zero potential energy to be
the state of no strain, we see that the potential energy in any state
is half the work done by the forces maintaining that state, acting
over the displacements of that state.

Denoting the energy of any state by W(M, V, IV) let us take for
initial state u, v, w and for final state u' -u, v' - v, to' - w.

Hence W(w' - u, v - v, w' - w) - W(M, V, W)

= Volume integral of JX'(M' - 1u) + £Y'(v' - 2v) + h Z' (tc - 1w)

+ Surface integral of AF'(M' - 2it) + JG'(u' - 2c) + },H'(w' - 2iv)

= W(M', v, w)
- {vol. int of (X'?t+Y'*;+Z'M>)+surf. int. of (F'u + G'v+H'w)}.

Or
Vol. int. of (X'u + Y'v + Z'w) + surf. int. of (F« + G'v + H'w)

= W(u, v, w) + W(it', v', w) - W(M' - n, v - v, w' - w).
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But clearly W(w' - u, v - v, w' ~w) = W(w - u', v - v', w — w').
Hence, from symmetry

Vol. int. of (X'u + Y'v + Z'w) + surf. int. of (F'u + G'v + IL'w)

= Vol. int. of (Xw' + Yv' + ZIP') + surf. int. of (FM' + GV' + H«').

This last equality is the reciprocal theorem discovered by Prof. Betti,
which will be referred to simply as Betti's Theorem.

It may be stated :—If two states of equilibrium of an elastic
solid be taken, then the work done by the forces of the first state
acting over the displacements of the second, is equal to the work
done by the forces of the second state, acting over the displacements
of the first.

3. The differential equations satisfied by the components of stress
at any point of an elastic solid are obtained as conditions of
equilibrium of any portion of the solid. In cases where the stresses
are discontinuous at a surface S within the solid, these equations
have to be supplemented by a surface condition.

Discontinuity in the stresses at S may conceivably arise from

(a) Application at the surface S of external force having a

finite resultant per unit area.

(b) Abrupt change at S in the values of the elastic constants,

and,

(c) So far at least as appears at first sight, abrupt change at S
in the applied bodily force per unit volume.

Consider the equilibrium of a portion of the solid including
within it part of the surface S, and bounded by a closed surface S'.

The surface S separates a region O from a region I of the
solid; let dO, cH denote an element of volume in these respective
regions; let I, m, n denote the direction cosines of the normal at
any point of S, drawn from I to O; and V, m', n' the direction
cosines of the outward normal at any point of S'.

Let A, B, C be the components of the force per unit area
applied at S ; X, Y, Z the components of the force per unit volume
applied at any point of the solid.
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Resolving the forces parallel to the axis of x, and using the
notation of Lord Kelvin and Tait for the components of stress, we
have

{((IT + m'U + n'T)dS' + f UdS + f f (xdO + f f fxdl = 0

+ J j {(JP + wTJ + wT)o - = 0.

The volume integrals vanish separately from the conditions of
equilibrium of a portion of the solid wholly within either region ;
we have then the surface condition

mU + «T)0 - (ZP + mU + JIT), + A = 0,

and similarly two other conditions of like form, which must hold at
every point of S.

By (IF + »»U + nT)o is meant the value of IT? + mV + nT at S,
measured in the region 0, and similarly with (ZP + m'U+ nT)i.

The vanishing of the couples gives no new condition.

4. Confining ourselves now to the case of a solid, homogeneous
and isotropic throughout, and subjected to no superficial internal
applied force; that is, considering only, among possible sources of
discontinuity of stress, discontinuity in the applied force per unit
volume, we have the conditions at the surface S

(W + wQ + nS)o - (IJJ + mQ + nS), = 0

(IT + mS + nR)0 - (IT + ?«S + nK), = 0.

These conditions are clearly satisfied if the first derivatives of
u, v, w are continuous at S. This sufficient condition can be
shown to be also necessary. For, in the first place, u, v, w are
themselves continuous, since the solid is not to be ruptured. Hence
the rate of variation of «, v, w per unit length in any direction
lying in the surface must be continuous.
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Denoting, then, by I—j , I — I , rate of variation per unit
\dvfo \dvfj

length in the direction I, m, n of the normal in the respective

regions 0, I, we have

\dx)0 \dx/1 \ dv)0 \ dv),

idu\ ldu\ I du
\dyl0 \dyt\ \

and so on.

Now, using Lame's notation for the elastic constants,

/du

, . du dv dw
where A = -r- + — + - j - .

cfe dy dz

The above surface conditions may therefore be written

7,* KI du dv dw\ du . , _
j(A + M)I 1~T~ + »»-T" + »i-j-1 + u-r- = same in O and I

'\dv dv dvl dv

m{\ + /i)l same I + /*— = same in 0 and I

w(A + jn)l same I + /x— = same in 0 and I.

Multiplying these equations by I, m, n and adding we find

du dv dw .
I— + m— + n— = same in O and I :
dv dv dv

and then, from each of the equations in turn, we find that

du dv dw
— i ~r, -r a r e continuous.
dv dv dv

Hence all the first derivatives of u, v, w are continuous.

5. In a homogeneous isotropic solid subjected to applied force
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whose components at a point (x, y, z) have any finite values X, Y, Z
per unit volume, the displacements u, v, w at (x, y, z) satisfy the
equations

•J A

\x^"-u + (A + ju)— + X = 0

ay

^"-w + (A + /*)— + Z = 0

and we have just seen that whether X, Y, Z be continuous or not,
u, v, w and their first derivatives are finite and continuous
throughout.

Taking now any given state of strain, and any surface S within
the solid, we may, without altering the state of strain outside S,
replace u, v, to within S by any other functions u, v, w, which,
with their first derivatives, are finite and continuous, provided

, , , du' dv dw'
u' v' w> "AT' AT' -dV

have at the surface S the same values as
du dv dw

u, v, w -=-, -7-, — respectively.
dv dv dv

The new state of strain will require, within S, bodily forces
given explicitly by the above equations.

As an interesting special case, u, v, w may be zero at all
, . . „ . , , , , , du' dv' dw' „

points outside S, provided u, v, w, —r—, ——, —— are all
dv dv dv

zero at S. Thus we can find any number of systems of force
within S which will produce absolutely no effect outside S.

6. Again, the displacements

u = - — 1
1 dx1

V, = - -

X. + /J. r

1 dxdy

W -W l ~ "
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where r is the distance from (a;, y, z) to a fixed point (x, y', z')t

are at once seen (observing that y2r = — I to satisfy the equations

of equilibrium under no forces at all points except (x, y', a'), at
which they become infinite.

Taking a sphere of radius a about (x'y'z1) as centre, we may
find, in the way just explained, a system of force within this sphere
which will produce the above displacements at all external points.

Writing £, rj, £ for the coordinates of (x, y, z) relative to
(x', y', z'), the values of TJlt V n Wj at the surface of the sphere are

v,

f A4
a3 A.-

to
a3

a3

•3/i 1

Retaining the displacements U,, V,, W2 outside the sphere,
take the displacements within

Then Uo, Vo, Wo are equal to Uj, V,, Wj at the surface;

in order that ——°, —r-°, —=—2 should be equal to —r-1, —!,
dr dr dr dr dr dr

we must have at the surface
a ^ ^ + /̂* 1

~ ^ a5 H ) i 2s1

2 a"

2 a5

It is sufficient for our purpose to take U, V, W as having these
values throughout the sphere.

https://doi.org/10.1017/S0013091500032430 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500032430


89

The components Xo, Yo, Zo of the force within the sphere can
be readily calculated. They are found to be of the form

where A, B, C, D are numbers.
The resultant of this system of forces is a single force parallel
to the axis of x, and passing through {x'y'z'); its magnitude is

A + /» '

the reciprocal of this we shall denote by M.

7. Take now for the displacements of a solid

+ 2^ 2A y r/ d3r

1=Ml--r-

V l = M V , = - M

wi = MW, = - M

dxdy

dxdz

at all points external to the sphere of radius a about (x'y'z) ;
and MU0, MV0, MW, at all internal points.

This system is maintained by the system of forces
MX,, MY0, MZ0 within the sphere, the resultant of which is a
unit force parallel to Oz, through the point (x'y'z'); along with,
if the solid is bounded externally by a surface S completely
enclosing the sphere, surface tractions on S which we shall denote
by F,, Qlt Hi, immediately calculable when the surface S is known.

With a view to applying Betti's theorem, take along with this
system a second system in which the external surface S is held
fixed by tractions F, G, H, and in which the displacements and
components of force per unit volume at any point (xyz) are
(«, v, w); (X, Y, Z).
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Betti's theorem gives

f f f(XMl + Yf, + Zwjdx dydz+ [" |" f M(XU0 + YVo + ZW,)^ dr, d{

+ f ("(FMJ + Gr, + Hw^cZS = f J f M(XOM + Yov + Zow)d£ dv d(,

the first volume integral being taken through the space between
S and the sphere, and the other two through the sphere.

The integral (XM, + Yvi + Zw^dg dr] d{ taken through the

sphere, where «,, vlt wl are supposed to retain their values as given
above right up to (x', y', z'), is clearly finite, since ult v,, wY are

of the order — in the neighbourhood of (x'y'z); adding this

integral to both sides of the above equation, and transposing the
second integral, we have

| I f(Xi*! + Y«, + Zwx)dxdydz+ j |(FMI

f J JM(X,U + Yov

M(XUo + YV0

the first volume integral being now taken over the whole solid.

The left hand member is independent of the radius a; hence so
also must the right. To find the value of the latter, suppose a to
be indefinitely diminished. The first and third of the integrals
vanish in the limit; the second, from the form of Xo, Yo, Zo as
given in § 6, becomes

u' x Limit of MXod£ dr, d( + two similar terms

i.e. simply u, since the forces MX0, MY0, MZ0 have for
resultant a unit force parallel to Ox;
where u' is the value of u at {x'y'z').

Hence u = Xitj + Yt^ + Zw^dx dydz+ I (FMJ

If now we suppose the solid to extend to infinity, and to be
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subjected to force, continuous or discontinuous, throughout its whole
extent, we have for the displacement u at any point (xy'z), (the
solid being fixed at infinity)

u = (XM! + Y?;, + Zwj)dx dy dz,

provided X, Y, Z are such that the integral {¥uy + G^ + Hw,)rfS,

taken over the surface at an infinite distance, vanishes;

and provided that the integral I I (Xw, 4- Y^ + Zwjdx dy dz

is finite.
The values of v, w' may be written down from symmetry.

8. Apart from the preceding application, the process of last
section shows that we may apply Betti's theorem to the system
w,, vlt wit supposed for mathematical purposes to extend right up
to (x'y'z'), and that in calculating the work expressions, we must
suppose in the system Wj, vu wx a unit force to exist at (x'y'z').

We therefore, in the remainder of the paper, treat u^w^
without reserve, as the displacements due to a unit force parallel
to Ox at (x'y'z).

For a unit force at (x'y'z'), parallel to Oy, the displacements are

ay dx

r d*r X + 2fi 2M
+

, = - M -
dydz

and for a unit force parallel to Oz

cPr
= - M

«, = - M

dydx

dV
dzdy

„ cPr k + 2/x 2M
dz-
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The symbols ult vl, w:; «.,, v2, w2; u3, v3, w3 we shall use
throughout as they are now defined; further, in the case when the
solid is bounded by a surface S at a finite distance, the necessary
tractions on S will be denoted by

Fj. Glt Hi; F2, G2, H2; F3, G3, H3.

9. From these three fundamental solutions the solutions used by
Betti, referred to in § 1, may be derived as follows :

(a) Take a force Q parallel to Oy at (x'y'z), and a force - Q

parallel to Oy at (x', y', z + h).

The displacements due to the former are Qw.,, Qu2, QM>2 ; and to the

latter - QM2\ - Q̂ 2> - Q ^ ' J say-

Let Q be increased and h diminished indefinitely, so that QA

remains finite and equal to | .

The x - displacement due to the combination is Q(w2 - w2'), or

M 2 ' - M2 . . .du., ,du2- Qh , which in the limit = - 4-j-r or A——.
h dz dz

„ ,dnn ,dvt ,dw.
The displacements are, therefore, %—r1, $—j- , *-v— •

dz dz dz
The resultant of the forces applied to the element at (x'y'z) is a
couple of moment ^ in the yz plane;
the work done by these forces acting through any system of

displacements M, C, W is - | l — I , the value of - J— at (x'y'z').
\dzf dz

Again, if we take a force - R parallel to Oz at (x'y'z') and a
force + R parallel to Oz at (x1, y' +g, z), and proceed to the limit
as before, keeping Tig — J,

, . , , MI i t ^ M 3 i dv3 ,dw,the displacements will be - £-3—, - \-j-, - \---r1;
cty dy dz

the resultant of the forces on the element is again a couple of
moment | in the yz plane;

the work done by these forces acting through u, v, w is Jl-j-)
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Taking these two doublets together,
the displacements are

* dv3\ 1 d(1\
~~~Jy~)~ 8TT/* d~z\7)

dw* dw\ _ _ 1 j2/ \\
dz dy)~ S^dy\rf'

the resultant of the forces at (x'y'z) is a unit couple in the yz plane;

the work done on any displacements u,v,w is £1-^— -=-l

= Co/, the value at (x'y'z') of the ^-rotation in the system u, v, w.

Similar results hold for the similarly derived systems

1_ d^l J_\ _ J _ d_/ J_
Ui ~ ~ 8ir/x dz\ r) U"~ Birfi dy\ r

1 dl\°

The tractions on the surface S required to maintain these we denote

by F4, G4) H4; F6, G5, H5; F6, G6, H6.

It is to be noticed that the resultant of the tractions F4, G4) H4

on S must be a negative unit couple in the yz plane, and similarly
with the others.

(b) Take next the following system of applied forces :

parallel to Oa;, - P at (x'y'z') and + P at (*' + / y', z') ;

parallel to Oy, - Q at (x'y'z') and +Q at (x't y' +g, z');

parallel to Oz, - R at (x'y'z') and + R at (x': y', z' + h) .

Let P, Q, R increase, and f, g, h diminish indefinitely so that

P/=Q0 = R&=1.

7 Vol. 16
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Then ultimately the displacements are

( dux du2 du3\ 1 d 11

~fa+~dj + ~dz)=
 ~4TT(A + 2/*) di\V

( dvx dv2 dv3\ 1 d /1V

~~fa+~dj + ~dj) = ~47r(A + 2/x) rf^W'

(ctfic, dttt, eiioA 1 d / 1 \

~d^ + ~dJ + ~dVf'= ~47r(A + 2/i) diWthe applied forces are in equilibrium;
. idu dv dwV

the work done on any displacements u, v, w is I -z- + -r + ~T I >

the value at (x'y'z1) of the delatation A in the system u, v, w.
The tractions on S required to maintain w7, v-, w. we denote by
F7, O7, H7.

10. Consider now any system of displacements u, v, w of the
solid bounded by the surface S, produced by surface tractions alone,
F, G, H.

Apply Betti's Theorem to this system taken along with each of
the above systems «,, vu wlt etc., in turn: we find

u' = [f(F«-J-O^ + HwOdS- f [(FjW + G^ + H ^ d S - (1)

v' = f I* (Fw2 + Gv2 + HwJdS - f f (F2M + G2« + H2w)d& - (2)

w' = [ [ (FM3 + Gk>3 + H.w3)d8 - J f (F3M + Gs» + Hjt«)(fS - (3)

w,' = i f (FM4 + Gvt + HwJdS - | I (F4M + G,v + Rtw)dS - (4)

with two similar equations - - (5) and (6)

7M + G7i> + B>)dS - (7)

The equations from (4) to (7) are those on which Betti founds
his method of solving the equations of equilibrium under given
surface conditions; we propose to develop a similar method from
the more fundamental relations (1), (2), (3).
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It may be noticed that if both surface displacements and surface
tractions were given, these relations would give explicitly the values
of the displacements at any internal point (x'y'z').

11. Suppose, in the first place, that the displacements w, v, w
are given at every point of S; it is required to find u, v, w
at (x'y'z').

Let F,', G/, H,' be the tractions on S required to give surface
displacements equal to w,, vlt u\, the solid being free from internal
applied force; and in this case let w,', »,', w,' be the internal
displacements.

Applying Betti's theorem to the systems u, v, w and M/, «,', w,'
we have, since at the surface M/, V\, W\ are equal to uu vu wx

f [(Ft*, + Gi>, + KwJdS - f f(F> + Gt'v + H » d S = 0.

Combining this with (1) of § 10, we get

«' = JJ{(*Y " * > + (».'" O> + (H/ - H,)«}«ffl.

Hence if F/, G/, H,' can be found, the value of u at any
internal point (x'y'z') is determined.

We observe that the tractions Fj - F,', G, - G,', Hj - H/, acting
along with the unit force at (x'y'z') give zero displacements at the
surface S.

Similar relations may at once be written down for v', w,' for the
rotations, and for the dilatation at (x'y'z').

12. The process just explained for solving the problem of given
surface displacements, requires us to find surface tractions which,
acting along with a given internal source of strain, will hold the
surface fixed; the corresponding process, when the surface tractions
are given, is more complicated, since the surface cannot be free,
unless the internal applied forces are in equilibrium.

For this application we shall therefore suppose applied to the
solid, in addition to a unit force at the point whose displacement is
to be found, a balancing force and couples acting on the element at
some selected point of the solid, taken as origin of coordinates ; in a
sphere, for example, this point would naturally be taken at the
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centre ; in a solid bounded by a plane, or by two parallel planes, it
would be convenient to take it at an infinite distance.

Denote by capital letters U, V, W the displacements at any
point of the solid arising from a source at the origin, of any of the
types already dealt with, and retain suffixes to denote the type of
the source. For example, the displacements due to a unit force
parallel to Ox applied at the origin denote by V1YlW1; the
displacements due to a source at O of the (M.|VJW>4) type, denote by

u4v4w4.
A unit force parallel to Ox at (x'y'z1) is balanced by a negative

unit force parallel to Ox at O, with a couple - z' about Oy, and a
couple +y' about Oz.

Hence the displacements

will give rise to tractions F8, G8, H8 on the surface, which are in
equilibrium.

Apply Betti's Theorem to the systems u, v, w and ue, va, wK.
By the results of § 10, we have

- f J(F8w
= u — u - z'<02 + y>u>s,

where u' is the a-displacement at (x'y'z'), and u, a>2 a>3 are the
values at O of the ^-displacement and the y and z rotations, all
in the system w, v, w.

Let M8', ««', ws' be the displacements due to the equilibrating
system F8, G8, H8 with no internal force.

By Betti's Theorem

f |"(|(FM8' + G< + Hw8')cZS - ( [ ( * > + G8v + H8w)dS = 0.

Combining this with (8) we have

v! -u-z'u>2 + y'o>3= {F(M8

Clearly ua - M8', va - v8', w>8 - wa' are the displacements due to
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the compound system of sources giving rise in an infinite solid to
us, Vg, ws, in the case when the surface is free.

The result illustrates the known principle that when the surface
tractions are given, the displacements are indeterminate to the
extent of an arbitrary displacement of the solid as a rigid body.

The solution can be made determinate if it is arranged that in
all cases of given surface tractions, the position of the solid shall be
so adjusted that displacements and rotations vanish at some one
assigned point.

If this point be the point O above, we have simply

' = JJ{{F(ue - ua') + G(va - »,')

Similar relations hold, of course, for v', w'.

13. Since the internal force producing the system «,u4i04 reduces
to a unit couple in the yz plane on the element at (x'y'z'), it follows
that the displacements

M9 = U, - U 4

VlJ = u4 - V 4

w9 = wi - W4

will require on the surface S tractions F9G9H8 which are in
equilibrium.

Apply Betti's Theorem to u, v, w and

Hence J J"(FM9 + Gr>9 + Hwt)dS - \\(F9u + G9v + H.ow)dS

o)/, o>! being the x-rotations in the system w, v, w at (x'y'z) and
O respectively.

Let u,', v9', w9' be the displacements due to the equilibrating
tractions F,, G9, H9 with no internal force.

Hence

f f(F«9' + Gva' + Kwa')dS - f f(F9M + G9v + H,M>)dS = 0.

Combining with (9), we have

< -«>i=f f {F(t*i, - M9') + G(v9 - va') + H(M>9 - ws')

Similarly for the y and z rotations.
These formulae for the rotations, and the corresponding formulae
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for the dilation, may of course be deduced directly from the equations
of §§11, 12, by differentiation with respect to {x'y'z'). I t maybe
noted that Betti obtains in place of (9) a formula giving a)/ simply
without to,, but he overlooks the remark at the beginning of §12.
The error is not corrected in Dr Love's text-book.

14. The general problem of an elastic solid with given bodily
forces and given surface tractions or displacements, may be divided
into two parts; in the first, we suppose the bodily force to be null,
and the surface tractions or displacements to have their given
values ; in the second, we suppose the bodily forces to exist, but the
surface to be free or fixed. The first part we have dealt with;
suppose now that any system of bodily forces X, Y, Z per unit
volume exists in the solid, and that

(a) the surface is fixed.
Referring to §11, the displacements when a unit z-force is

applied at (x'y'z'), and the surface is fixed, are
w, - Mi', v1 - vt', w1 — M>I'.

Take this system with the system u, v, w due to X, Y, Z.
Betti's Theorem gives for v! the ^-displacement at {x'y'z') in the
system u, v, w.

u' = | {X(M, - M,') + Y(«! - O + Z(Wj - wy')}dxdydz

the integral being taken over the whole solid.
Similarly with v,' w'.
(b) The surface is free.
Referring to § 12, the displacements due to a unit a;-force at

(x'y'z') with balancing sources at 0, when the surface is free, are

Taking this system with the system u, v, w due to X, Y, Z
when the surface is free, we have

M - U - Z 0), s =

When, in the general problem, the systems of bodily force and
of surface traction are not separately in equilibrium, a slight
modification of the process, such as is exemplified in §12, will be
required, but this need hardly be dealt with at length.
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