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Abstract

The probability h(n, m) that the block counting process of the Bolthausen–Sznitman
n-coalescent ever visits the state m is analyzed. It is shown that the asymptotic hitting
probabilities h(m) = limn→∞ h(n, m), m ∈ N, exist and an integral formula for h(m) is
provided. The proof is based on generating functions and exploits a certain convolution
property of the Bolthausen–Sznitman coalescent. It follows that h(m) ∼ 1/ log m as
m → ∞. An application to linear recursions is indicated.
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1. Introduction and main results

Let X = (Xk)k∈N0:={0,1,2,...} be a Markov chain with state space S := N := {1, 2, . . .}. For
given states n, m ∈ S, we are interested in the hitting probability

h(n, m) := P(the chain X ever visits the state m | X0 = n). (1.1)

Clearly, h(n, n) = 1 for all n ∈ S. It is known (see, for example, [12, Theorem 1.3.2]) that
the vector of hitting probabilities (h(n, m) : n ∈ S) is the minimal nonnegative solution to the
system of equations

h(n, m) =
⎧⎨
⎩

1 for m = n,∑
k∈S

pnkh(k, m) otherwise,

where P = (pnk)n,k∈S denotes the transition matrix of X. Minimality means that if x =
(xn : n ∈ S) is another solution with xn ≥ 0 for all n ∈ S then xn ≥ h(n, m) for all n ∈ S.
Explicit solutions for h(n, m) are known only for particular Markov chains, e.g. for birth-
and-death chains [12, Example 1.3.4]. For some chains X, the so-called asymptotic hitting
probabilities

h(m) := lim
n→∞ h(n, m), m ∈ S, (1.2)

exist and formulae for h(m) can be provided.
We mention a concrete nontrivial example. Fix a parameter u ∈ (0, 1), and consider the

chain X on state space N with transition probabilities p11 := 1 and

pnk :=
(
n−1
k−1

)
un−k(1 − u)k−1

1 − (1 − u)n−1 , 1 ≤ k < n.
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In this case the same renewal argument as in [7, pp. 85–86] shows that h(1) = 1 and h(m) =
[1 − (1 − u)m−1]/[(m − 1)μ] for all m ≥ 2, where μ := − log(1 − u).

In this article we are interested in the particular Markov chain X that has transition proba-
bilities p11 := 1 and

pnk := n

(n − 1)(n − k)(n − k + 1)
, 1 ≤ k < n. (1.3)

This chain occurs for example when successively cutting edges at random of a random recursive
tree and recording after each cut of an edge the size of the remaining tree containing the root.
See Meir and Moon [9, 10] and Panholzer [13] for more details.

This Markov chain also arises in coalescent theory. It is known (see, for example, [4,
Equation (9)]) thatpnk in (1.3) is the probability that the jump chain of the block counting process
of the Bolthausen–Sznitman coalescent [3] jumps from state n to state k. For fundamental
information on the class of coalescent processes with multiple collisions, we refer the reader
to [14] and [16].

Our main result, Theorem 1.1 below, shows that the probability h(n, m) that the block
counting process of the Bolthausen–Sznitman n-coalescent ever visits the state m converges as
n → ∞ and provides an integral representation for the asymptotic hitting probability h(m) :=
limn→∞ h(n, m).

Theorem 1.1. For the Bolthausen–Sznitman coalescent, for every m ∈ N \ {1}, the hitting
probabilities h(n, m) are strictly decreasing in n ∈ {m, m + 1, m + 2, . . .} and the asymptotic
hitting probabilities (1.2) are given by h(1) = 1 and

h(m) = (m − 1)

∫ 1

0

tm−1

− log(1 − t)
dt, m ≥ 2. (1.4)

Remark 1.1. Our proof of Theorem 1.1 in Section 3 is based on generating functions and
exploits a certain convolution property of the Bolthausen–Sznitman coalescent. Essentially
the same convolution property has been used by Panholzer [13] and Drmota et al. [5] to study
the number of cuts needed to isolate the root of a random recursive tree, and by Drmota et al.
[4] to study the number of collisions and the total branch length of the Bolthausen–Sznitman
coalescent.

Remark 1.2. The proof of Theorem 1.1 gives more information than stated in the theorem,
namely, it provides a formula for the hitting probability h(n, m) in terms of the Bernoulli
numbers of the second kind (see (3.4) below). Note that, for n ≥ 2, pnn = 0, so, for
n ≥ 2, the hitting probability h(n, m) coincides with the Green matrix entry g(n, m) :=
E(

∑∞
k=0 1{Xk=m} | X0 = n) (see, for example, [12, p. 145]).

Remark 1.3. Our method of proof of Theorem 1.1 is adapted specifically to the Bolthausen–
Sznitman coalescent; it does not seem to work directly for other coalescent processes. Clearly,
for the Kingman coalescent, h(m) = 1 for all m ∈ N, since the block counting process of
the Kingman coalescent has all jumps of size 1 and, hence, visits every state m almost surely.
The other extreme is the star-shaped coalescent, for which we have h(m) = 0 for all m ≥ 2.
Verifying the existence of the limits h(m) := limn→∞ h(n, m) and finding expressions for
the asymptotic hitting probabilities h(m) for other exchangeable coalescents, e.g. for beta
coalescents different from the Bolthausen–Sznitman coalescent, seems to be an open problem.
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Asymptotic hitting probabilities for the Bolthausen–Sznitman coalescent 89

Alternative integral formulae for h(m), m ≥ 2, are obtained from (1.4) via the substitutions
t = e−u and t = 1 − e−u, respectively, namely,

h(m) = (m − 1)

∫ ∞

0

e−mu

− log(1 − e−u)
du = (m − 1)

∫ ∞

0
(1 − e−u)m−1 e−u

u
du. (1.5)

Based on (1.5), further properties of h(m) can be derived. For example (see (3.5) below),
we can derive further integral representations for h(m) by partial integration. The following
corollary shows that h(m) is strictly decreasing in m and clarifies the asymptotic behavior of
h(m) as m tends to ∞.

Corollary 1.1. For the Bolthausen–Sznitman coalescent, h(m) is strictly decreasing in m and
h(m) ∼ 1/ log m as m → ∞.

The next corollary provides an alternative formula for the asymptotic hitting probability
h(m); it is particularly useful for computing h(m) for small values of m.

Corollary 1.2. For the Bolthausen–Sznitman coalescent,

h(m) = (m − 1)

m−1∑
i=1

(
m − 1

i

)
(−1)i−1 log(i + 1), m ≥ 2. (1.6)

For instance, h(2) = log 2 ≈ 0.693 147 and h(3) = 4 log 2 − 2 log 3 ≈ 0.575 364.

Remark 1.4. For n ∈ N and a given subset A of the state space N, there is some interest (see,
for example, [12]) in more general hitting probabilities of the form

h(n, A) := P(the chain X ever visits a state in A | X0 = n).

For A = {m}, we recover the hitting probability h(n, m) = h(n, {m}) in (1.1). Depending on
the choice of A, the analysis of h(n, A) can be simple or complicated. For example, for the
Bolthausen–Sznitman coalescent, if A = Am := {m, m + 1, m + 2, . . .} for some fixed m ∈ N

then h(n, Am) is equal to the probability that after the first jump the chain X is still in a state
larger than or equal to m. We therefore obtain the simple expression

h(n, Am) =
n−1∑
k=m

pnk = n(n − m)

(n − 1)(n − m + 1)
, 1 ≤ m < n.

In particular, h(Am) := limn→∞ h(n, Am) = 1 for all m ∈ N. We leave the analysis of h(n, A)

for general subsets A ⊆ N to future work.

2. An application: linear recursions

For each n ∈ N, let pnm, m ∈ {1, . . . , n}, be a probability distribution with pnn = 0 for all
n ≥ 2. Note that p11 = 1. Define the sequence (an)n∈N as the unique solution to the recursion

an = rn +
n−1∑
m=1

pnmam, n ≥ 2, (2.1)

for given r2, r3, . . . ∈ R and given initial value a1 ∈ R. Linear recursions of this form
occur in many fields in applied mathematics, in particular in the analysis of algorithms and
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in probability. For example, in [8, Lemma A.1] recursions of the form (2.1) (and more general
linear recursions) are considered and a result on the O-behavior of the sequence (an)n∈N is
established. In particular cases Lemma A.1 of [8] leads to an = O(1). In this situation it is
natural to ask whether the limit a := limn→∞ an exists or not. Even if a exists, recursion (2.1)
usually does not provide direct information on a, since, for n → ∞, (2.1) usually degenerates
to the uninformative equation a = a.

Here is another criterion which yields the convergence of the sequence (an)n∈N and provides
a formula for the limit. As before, we interpret the pnm as the transition probabilities of a Markov
chain X and let h(n, m) denote the hitting probability that the Markov chain X ever visits state m

conditional on the chain starting in state n.

Proposition 2.1. Suppose that
∑∞

m=2 |rm| < ∞. If the asymptotic hitting probabilities
h(m) := limn→∞ h(n, m) exist for all m ∈ N then

lim
n→∞ an = a1 +

∞∑
m=2

h(m)rm.

Example. Suppose that a1 = 0 and that rm = 1/[m(m−1)] for all m ≥ 2. For the Bolthausen–
Sznitman coalescent, i.e. for the Markov chain with transition probabilities (1.3), a combination
of Theorem 1.1 and Proposition 2.1 shows that sequence (2.1) converges and has limit

lim
n→∞ an =

∞∑
m=2

rmh(m) =
∞∑

m=2

1

m

∫ 1

0

tm−1

− log(1 − t)
dt =

∫ 1

0

(
1

t
+ 1

log(1 − t)

)
dt = γ,

where γ := −�′(1) ≈ 0.577 216 denotes Euler’s constant.

3. Proofs

Throughout the proofs, D := {z ∈ C : |z| < 1} denotes the open unit disc and we write
L(z) := − log(1 − z), z ∈ D. Furthermore, for x ∈ R and n ∈ N0, we use the notation
(x)n := x(x − 1) · · · (x − n + 1) for the descending factorials, with the convention that
(x)0 := 1. We start with the following auxiliary lemma.

Lemma 3.1. The function g : D → C, defined by g(0) := 1 and g(z) := z/L(z) for z ∈ D\{0},
has Taylor expansion g(z) = ∑∞

n=0 anz
n, z ∈ D, with coefficients

an := (−1)n

n!
∫ 1

0
(x)n dx, n ≥ 0.

Remark 3.1. We provide here more information on the coefficients an, n ∈ N0. Note first
that a0 = 1 while all the other coefficients a1, a2, . . . are strictly negative. The coefficients
bn := ∫ 1

0 (x)n dx, n ∈ N0, are the Bernoulli numbers of the second kind (see, e.g. [15, p. 114]).
From (

∑∞
n=0 anz

n)(
∑∞

n=0 zn/(n + 1)) = 1, it follows that
∑n

j=0 aj /(n + 1 − j) = 0, n ∈ N.
Replacing n by n + 1 we conclude that the coefficients an, n ∈ N0, satisfy the recursion

an+1 = −
n∑

j=0

aj

n + 2 − j
, n ∈ N0.

It is also known (see, for example, [6, p. 387]) that an ∼ −1/(n log2 n) as n → ∞.
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Proof of Lemma 3.1. Clearly, for z = 0, we have
∑∞

n=0 anz
n = a0 = 1 = g(0). Assume

now that z ∈ D \ {0}. Then ∞∑
n=0

anz
n =

∞∑
n=0

(−z)n

n!
∫ 1

0
(x)n dx

=
∫ 1

0

∞∑
n=0

(
x

n

)
(−z)n dx

=
∫ 1

0
(1 − z)x dx

=
[

(1 − z)x

log(1 − z)

]1

0

= z

L(z)

= g(z),

where, for the second equality in the chain of equations above, dominated convergence justifies
the interchange of the infinite sum and the integral.

Proof of Theorem 1.1. For m ∈ N and z ∈ D, define the generating function φm(z) :=∑∞
n=m h(n, m)zn. Note that φm(0) = 0 for all m ∈ N. In the following we use a particular

convolution property of the Bolthausen–Sznitman coalescent in order to determine h(m). We
have (see [12, Theorem 1.3.2]) h(m, m) = 1 and, for n > m, h(n, m) = ∑n

k=1 pnkh(k, m) =∑n−1
k=m pnkh(k, m). Hence,

∞∑
n=m+1

h(n, m)
n − 1

n
zn =

∞∑
n=m+1

n−1∑
k=m

pnkh(k, m)
n − 1

n
zn

=
∞∑

k=m

h(k, m)

∞∑
n=k+1

pnk

n − 1

n
zn

=
∞∑

k=m

h(k, m)zk
∞∑

n=k+1

1

(n − k)(n − k + 1)
zn−k,

∞∑
n=m

h(n, m)
n − 1

n
zn = m − 1

m
zm +

∞∑
k=m

h(k, m)zk
∞∑
i=1

zi

i(i + 1)
= m − 1

m
zm + φm(z)a(z),

where

a(z) :=
∞∑
i=1

zi

i(i + 1)
= 1 − (1 − z)L(z)

z
, z ∈ D.

On the other hand, ∞∑
n=m

h(n, m)
n − 1

n
zn =

∞∑
n=m

h(n, m)zn −
∞∑

n=m

h(n, m)
zn

n

= φm(z) −
∫ z

0

∞∑
n=m

h(n, m)tn−1 dt

= φm(z) −
∫ z

0

φm(t)

t
dt.
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Thus,

φm(z) −
∫ z

0

φm(t)

t
dt = m − 1

m
zm + φm(z)a(z),

or, equivalently, ∫ z

0

φm(t)

t
dt = [1 − a(z)]φm(z) − m − 1

m
zm.

Taking the derivative with respect to z yields

φm(z)

z
= −a′(z)φm(z) + [1 − a(z)]φ′

m(z) − (m − 1)zm−1,

or, equivalently,

[1 − a(z)]φ′
m(z) =

(
1

z
+ a′(z)

)
φm(z) + (m − 1)zm−1.

Since 1 − a(z) = (1 − z)L(z)/z and a′(z) = −1/z + L(z)/z2, it follows that φm satisfies the
differential equation

φ′
m(z) = φm(z)

z(1 − z)
+ rm(z), (3.1)

where

rm(z) := (m − 1)zm

(1 − z)L(z)
.

For m = 1, the solution of the (homogeneous) differential equation (3.1) with initial conditions
φ1(0) = 0 and φ′

1(0) = 1 is φ1(z) = z/(1 − z), in agreement with h(n, 1) = 1 for all
n ∈ N. Assume now that m ≥ 2. Then the solution of the (inhomogeneous) differential
equation (3.1) with initial conditions φ

(j)
m (0) = 0 for all j ∈ {0, . . . , m − 1} and φ

(m)
m (0) = m!

is φm(z) = cm(z)z/(1 − z), where

cm(z) :=
∫ z

0

1 − t

t
rm(t) dt = (m − 1)

∫ z

0

tm−1

L(t)
dt, m ≥ 2. (3.2)

For a power series f (z) = ∑∞
n=0 fnz

n, denote the coefficient fn of zn by [zn]f (z). In this
notation we obtain

h(n, m) = [zn]φm(z)

= [zn]
(

cm(z)
z

1 − z

)

=
n−1∑

k=m−1

([zk]cm(z))

(
[zn−k] z

1 − z

)

=
n−1∑

k=m−1

[zk]cm(z), 2 ≤ m ≤ n. (3.3)
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From (3.2) and Lemma 3.1, it follows that

cm(z) = (m − 1)

∫ z

0
tm−2 t

L(t)
dt

= (m − 1)

∫ z

0
tm−2

∞∑
j=0

aj t
j dt

= (m − 1)

∞∑
j=0

aj

∫ z

0
tj+m−2 dt

= (m − 1)

∞∑
j=0

aj

j + m − 1
zj+m−1, m ≥ 2.

Thus, [zk]cm(z) = (m − 1)ak−(m−1)/k for all k ≥ m − 1. Substitution into (3.3) gives the
explicit expression

h(n, m) = (m − 1)

n−1∑
k=m−1

ak−(m−1)

k
= (m − 1)

n−m∑
j=0

aj

j + m − 1
, 2 ≤ m ≤ n, (3.4)

for the hitting probabilities. From Remark 3.1, the coefficients a1, a2, . . . are all strictly
negative. Consequently, by (3.4), for each m ≥ 2, the sequence (h(n, m) : n = m, m + 1, . . .)

is strictly decreasing. In particular, the limit h(m) := limn→∞ h(n, m) exists and we obtain
for m ≥ 2 the solution

h(m) = lim
n→∞ h(n, m) =

∞∑
k=m−1

[zk]cm(z) = cm(1) = (m − 1)

∫ 1

0

tm−1

L(t)
dt,

which is (1.4).

Proof of Corollary 1.1. Define the functions g : (0, ∞) → R and hm : (0, ∞) → R, m ∈ N,
via g(u) := (1 − e−u)/u and hm(u) := (1 − e−u)m−1, u ∈ (0, ∞). Note that g′(u) =
(ue−u + e−u − 1)/u2 and that h′

m(u) = (m − 1)(1 − e−u)m−2e−u, u ∈ (0, ∞). By (1.5), for
all m ≥ 2, h(m) = ∫ ∞

0 g(u)h′
m(u) du. Partial integration yields

h(m) = −
∫ ∞

0
g′(u)hm(u) du =

∫ ∞

0

1 − e−u − ue−u

u2 (1 − e−u)m−1 du. (3.5)

Note that (3.5) also holds for m = 1. The integral on the right-hand side of (3.5) is strictly
decreasing in m ≥ 1, since 1 − e−u − ue−u > 0 and 1 − e−u ∈ (0, 1) for all u ∈ (0, ∞).
Also, (3.5) implies that h(m) = E[(1 − e−U)m−1] for all m ∈ N, where U is a positive random
variable with density u �→ (1 − e−u − ue−u)/u2, u ∈ (0, ∞).

To verify that h(m) ∼ 1/ log m as m → ∞, we proceed much as in the proof of Corol-
lary 4.1 of [11]. Consider the kernel k : (0, ∞) → R, k(t) := te−t , and its Mellin transform
ǩ(z) := ∫

(0,∞)
t−z−1k(t) dt = ∫

(0,∞)
t−ze−t dt = �(1 − z), which converges at least for all

z ∈ C with −∞ < Re(z) < 1. Define the function f : (0, ∞) → R via

f (t) := e−1/t

− log(1 − e−1/t )
, t ∈ (0, ∞),
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such that the Mellin convolution, k ∗M f , of k and f satisfies

(k ∗M f )(x) :=
∫ ∞

0
k

(
x

t

)
f (t)

dt

t
=

∫ ∞

0
k(xu)f

(
1

u

)
du

u
= x

∫ ∞

0

e−(x+1)u

− log(1 − e−u)
du.

(3.6)
Obviously, t2f (t) is bounded on every interval (0, a] and f (t) ∼ 1/ log t as t → ∞. Thus we
can apply Theorem 4.1.6 of [2] (with σ = −2, τ = 1

2 , ρ = 0, and l(x) = 1/ log x) to conclude
that (k ∗M f )(x) ∼ ǩ(0)l(x) = �(1)/ log x = 1/ log x as x → ∞. Replacing x by m − 1 and
noting that (compare (3.6) with the first equation in (1.5)) (k ∗M f )(m − 1) = h(m) it follows
that h(m) ∼ 1/ log m as m → ∞.

Proof of Corollary 1.2. For m ∈ N and x, u ∈ (0, ∞), define fm(x, u) :=(1−e−xu)me−u/u.
We have (∂/∂x)fm(x, u) = m(1 − e−xu)m−1e−xue−u ≤ me−u =: dm(u) for all x, u ∈ (0, ∞)

and the dominating function dm is integrable with respect to Lebesgue measure on (0, ∞).
Hence, we can differentiate

∫ ∞
0 fm(x, u) du with respect to x under the integral. Therefore,

∂

∂x

∫ ∞

0
fm(x, u) du = m

∫ ∞

0
(1 − e−xu)m−1e−(x+1)u du

= m

∫ ∞

0

m∑
i=1

(
m − 1

i − 1

)
(−e−xu)i−1e−(x+1)u du

= m

m∑
i=1

(
m − 1

i − 1

)
(−1)i−1

∫ ∞

0
e−(ix+1)u du

= m

m∑
i=1

(
m − 1

i − 1

)
(−1)i−1 1

ix + 1
.

Integration yields

∫ ∞

0
fm(x, u) du = m

m∑
i=1

(
m − 1

i − 1

)
(−1)i−1 log(ix + 1)

i
=

m∑
i=1

(
m

i

)
(−1)i−1 log(ix + 1).

It remains to note that, by the second equation in (1.5), h(m) = (m−1)
∫ ∞

0 fm−1(1, u) du, and
(1.6) follows immediately.

Remark 3.2. It is readily checked that the hitting probabilities satisfy

h(n, m) = δnm +
n∑

k=m+1

h(n, k)pkm, 1 ≤ m ≤ n, (3.7)

where δnm denotes the Kronecker symbol. For the Bolthausen–Sznitman,
∑∞

k=m+1 pkm =∑∞
k=m+1 k/((k−1)(k−m)(k−m+1)) ≤ 2

∑∞
k=m+1 1/((k−m)(k−m+1)) = 2 < ∞ for all

m ∈ N, so the measure μm, defined via μm(k) := pkm for all k ∈ {m + 1, m + 2, . . .}, is finite.
Moreover, the hitting probabilities h(n, k) are dominated by 1 and converge as n → ∞ to h(k)

by Theorem 1.1. Letting n → ∞ on both sides of (3.7), it follows by dominated convergence
that the asymptotic hitting probabilities h(m), m ∈ N, satisfy the system of equations

h(m) =
∞∑

k=m+1

h(k)pkm, m ∈ N. (3.8)
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Iteration of (3.8) leads to

h(m) =
∞∑

k=m+r

h(k)p
(r)
km, m, r ∈ N,

where the p
(r)
km denote the r-step transition probabilities of the chain X. Note that

∑∞
m=1 h(m) =

∞, because otherwise one would obtain

∞ >

∞∑
m=1

h(m) =
∞∑

m=1

∞∑
k=m+1

h(k)pkm =
∞∑

k=2

h(k)

k−1∑
m=1

pkm =
∞∑

k=2

h(k),

and, hence, h(1) = 0, in contradiction to h(1) = 1.
It is unclear whether system (3.8) has only one bounded solution h = (h(m) : m ∈ N)

satisfying h(1) = 1. In other words, we do not know whether the vector space of all bounded
sequences h = (h(m) : m ∈ N) satisfying (3.8) has dimension 1 or larger. In order to give a
more functional analytic description of this dimension problem, let 
∞ denote the Banach space
of all bounded sequences x = (x(n) : n ∈ N) equipped with the norm ‖x‖ := supn∈N |x(n)|.
The operator T : 
∞ → 
∞, defined via

(T x)(m) :=
∞∑

k=m+1

x(k)pkm

for all x = (x(n) : n ∈ N) ∈ 
∞ and all m ∈ N, is clearly linear and also continuous, since
‖T x‖ ≤ ‖x‖supm∈N

∑∞
k=m+1 pkm ≤ 2‖x‖ for all x ∈ 
∞.

We verify that T is not compact. For i ∈ N, let ei denote the ith unit vector in 
∞. For all
i, j ∈ N with i < j, we have

‖T ej −T ei‖ ≥ |(T ej )(j −1)−(T ei)(j −1)| = |pj,j−1 −0| = pj,j−1 = j

2(j − 1)
≥ 1

2
.

Thus, the sequence (T ei)i∈N does not contain any Cauchy subsequences, implying that T

is not compact. We therefore cannot apply functional analytic results for compact operators
(such as the Riesz–Schauder theorem) in order to obtain further information on the kernel
ker(Id −T ) = {h ∈ 
∞ : T h = h} consisting of all h = (h(m) : m ∈ N) ∈ 
∞ satisfying (3.8).

Finally, we show that T is not a Krein operator. It is known (see, e.g. [1, p. 170]) that 
∞ is
a Krein space with closed cone K := {x ∈ 
∞ : x ≥ 0}. Note that x = (x(n) : n ∈ N) ∈ K

is an order unit (internal point) if and only if inf{x(n) : n ∈ N} > 0. By Corollary 1.1,
h(n) ∼ 1/ log n → 0 as n → ∞, so h cannot be an order unit. Thus, T cannot be a Krein
operator in the sense of [1, Definition 4.1], since h > 0 but T nh = h is not an order unit for
all n ∈ N. We therefore cannot apply results for Krein operators (such as [1, Lemma 4.10]) in
order to conclude that ker(Id − T ) is one dimensional. The fact that T is neither compact nor
a Krein operator illustrates the complexity of the operator T .

Proof of Proposition 2.1. From (2.1), it readily follows by induction on N ∈ N that

an = a1p
(N)
n1 +

n∑
m=2

N−1∑
j=0

p
(j)
nmrm +

n∑
m=2

p(N)
nm am, n ≥ 2, (3.9)
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where the p
(j)
nm denote the j -step transition probabilities of the Markov chain X. For N = 1,

(3.9) reduces to (2.1) since pnn = 0 for all n ≥ 2. The induction step from N to N + 1 is
performed by making use of the Chapman–Kolmogorov equations.

Now note that p
(N)
nm → δm1 as N → ∞, since the state 1 is absorbing and all other states

are transient. Thus, taking the limit N → ∞ on both sides of (3.9) yields

an = a1 +
n∑

m=2

∞∑
j=0

p
(j)
nmrm = a1 +

n∑
m=2

h(n, m)rm, n ≥ 2, (3.10)

since pnn = 0 for all n ≥ 2 and, hence,

h(n, m) = P(the chain X ever visits m | X0 = n)

= P

( ∞⋃
j=0

{Xj = m}
∣∣∣∣ X0 = n

)

=
∞∑

j=0

P(Xj = m | X0 = n)

=
∞∑

j=0

p
(j)
nm, 2 ≤ m ≤ n.

By assumption,
∑∞

m=2 |rm| < ∞ and h(n, m) → h(m) as n → ∞ for all m ≥ 2. Since
0 ≤ h(n, m) ≤ 1, the last sum in (3.10) converges to

∑∞
m=2 h(m)rm as n → ∞ by dominated

convergence.

Acknowledgement

The author thanks Anton Deitmar for helpful hints concerning the Bernoulli numbers of the
second kind and the series expansion in Lemma 3.1.

References

[1] Aliprantis, C. D. and Tourky, R. (2007). Cones and Duality (Graduate Studies Math. 84). American
Mathematical Society, Providence, RI.

[2] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge University Press.
[3] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method.

Commun. Math. Phys. 197, 247–276.
[4] Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2007). Asymptotic results concerning the total branch

length of the Bolthausen–Sznitman coalescent. Stoch. Process. Appl. 117, 1404–1421.
[5] Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2009). A limiting distribution for the number of cuts

needed to isolate the root of a random recursive tree. Random Structures Algorithms 34, 319–336.
[6] Flajolet, P. and Sedgewick, R. (2009). Analytic Combinatorics. Cambridge University Press.
[7] Gnedin, A. (2004). The Bernoulli sieve. Bernoulli 10, 79–96.
[8] Gnedin, A., Iksanov, A. and Marynych, A. (2011). On �-coalescents with dust component. J. Appl. Prob.

48, 1133–1151.
[9] Meir, A. and Moon, J. W. (1970). Cutting down random trees. J. Austral. Math. Soc. 11, 313–324.

[10] Meir, A. and Moon, J. W. (1974). Cutting down recursive trees. Math. Biosci. 21, 173–181.
[11] Möhle, M. (2005). Convergence results for compound Poisson distributions and applications to the standard

Luria–Delbrück distribution. J. Appl. Prob. 42, 620–631.
[12] Norris, J. R. (1997). Markov Chains. Cambridge University Press.
[13] Panholzer, A. (2004). Destruction of recursive trees. In Mathematics and Computer Science III, Birkhäuser,

Basel, pp. 267–280.

https://doi.org/10.1239/jap/1417528469 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1417528469


Asymptotic hitting probabilities for the Bolthausen–Sznitman coalescent 97

[14] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27, 1870–1902.
[15] Roman, S. (1984). The Umbral Calculus. Academic Press.
[16] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36,

1116–1125.

MARTIN MÖHLE, Eberhard Karls Universität Tübingen

Mathematisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
Email address: martin.moehle@uni-tuebingen.de

https://doi.org/10.1239/jap/1417528469 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1417528469

	1 Introduction and main results
	2 An application: linear recursions
	3 Proofs
	Acknowledgement
	References

