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Abstract

X-ray tomography has applications in various industrial fields such as sawmill industry, oil and gas industry, aswell as
chemical, biomedical, and geotechnical engineering. In this article, we study Bayesian methods for the X-ray
tomography reconstruction. In Bayesian methods, the inverse problem of tomographic reconstruction is solved with
the help of a statistical prior distribution which encodes the possible internal structures by assigning probabilities for
smoothness and edge distribution of the object. We compare Gaussian random field priors, that favor smoothness, to
non-Gaussian total variation (TV), Besov, and Cauchy priors which promote sharp edges and high- and low-contrast
areas in the object. We also present computational schemes for solving the resulting high-dimensional Bayesian
inverse problem with 100,000–1,000,000 unknowns. We study the applicability of a no-U-turn variant of Hamilto-
nian Monte Carlo (HMC) methods and of a more classical adaptive Metropolis-within-Gibbs (MwG) algorithm to
enable full uncertainty quantification of the reconstructions. We use maximum a posteriori (MAP) estimates with
limited-memory BFGS (Broyden–Fletcher–Goldfarb–Shanno) optimization algorithm. As the first industrial appli-
cation, we consider sawmill industry X-ray log tomography. The logs have knots, rotten parts, and even possibly
metallic pieces, making them good examples for non-Gaussian priors. Secondly, we study drill-core rock sample
tomography, an example from oil and gas industry. In that case, we compare the priors without uncertainty
quantification. We show that Cauchy priors produce smaller number of artefacts than other choices, especially with
sparse high-noise measurements, and choosingHMC enables systematic uncertainty quantification, provided that the
posterior is not pathologically multimodal or heavy-tailed.

Impact Statement

Industrial X-ray tomography reconstruction accuracy depends on various factors, like the equipment, measure-
ment geometry, and constraints of the target. For example, dynamical systems are harder targets than static ones.
The harder and noisier the setting becomes, the more emphasis goes on mathematical modeling of the targets.
Bayesian statistical inversion is a common choice for difficult measurement settings, and its limitations mainly
come from the choice of the a priori models. Gaussian models are widely studied, but they provide smooth
reconstructions. Total variation priors are not invariant under mesh changes, so doing systematic uncertainty
quantification, like data-centric sensor optimization, cannot be done with them. Besov and Cauchy priors
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however provide systematic non-Gaussian random field models, which can be used for contrast-boosting
tomography. The drawback is higher computational cost. Hence, the techniques developed here are useful for
non–time-critical applications with difficult measurement settings. In these cases, the methods developed may
provide significantly better reconstructions than the traditional methods, like filtered back-projection.

1. Introduction

X-ray tomography has applications in various industrial fields such as sawmill industry, where it can be
used for detecting knots, rotten parts, and foreign objects in logs (Shustrov et al., 2019; Zolotarev et al.,
2019). In oil and gas industry, X-ray tomography can be used to analyze drill-core rock samples for
identifying pore structures (Mendoza et al., 2019) and other structural properties of rock. In chemical
engineering, X-ray microtomography can be used to measure the internal structure of substances at the
micrometer level (Ou et al., 2017). In manufacturing, it can be used in nondestructive testing (Garcea
et al., 2018; Rotella et al., 2018), endurance testing (Piao et al., 2019), and dimensional metrology (Kruth
et al., 2011; Villarraga-Gómez et al., 2019). In geotechnical engineering, X-ray microtomography can be
used tomeasure soil properties in laboratories, while a closely related travel-time tomography can be used
to measure the structure of soil and rocks from cross-borehole measurements (Ernst et al., 2007). In
medical engineering, applications include dental imaging (Kolehmainen et al., 2006) and tumor tracking
in radiotherapy (Shieh et al., 2017).

The principle of X-ray tomography is that we transmit X-ray radiation to the object, which penetrates
the object of interest over a collection of propagation paths, and the attenuatedX-ray radiation ismeasured
in a detector system (Toft, 1996). This allows us to estimate internal properties of an unknown object
given the noise-perturbed indirect measurements. However, typically, we can transmit and measure the
X-rays only from a limited number of angles around the object which makes it harder to reconstruct the
internal structure of the object from the measurements. The reconstruction problem is thus an inverse
problem where the measurements give only a limited amount of information on the object of interest
(Siltanen et al., 2003).

In order to successfully reconstruct the internals of the object from the limited number of measure-
ments, we need to introduce additional information to the reconstruction process. In this article, we study
so-called Bayesian methods (Kaipio and Somersalo, 2005), where we introduce a statistical prior model
for the possible internal structures in form of a probability distribution. This prior model encodes the
information onwhat kind of structures aremore likely andwhich are less likely than others. For example, a
Gaussian random field prior puts higher probability for smoother structures, whereas total variation (TV),
Besov, and Cauchy priors favor structures that can have sharper edges between the substructures
(González, 2017). The advantage of the Bayesian formulation is that it provides uncertainty quantification
mechanism to the reconstruction problem, as it not only provides single reconstruction but also the error
bars for the reconstruction in the form of a probability distribution (Bardsley, 2012).

The Bayesian formulation of the X-ray tomography transforms the solution of the associated inverse
problem to a Bayesian inference problem, and we need to use computational methods from Bayesian
statistics to solve it. We use Markov chain Monte Carlo (MCMC) and optimization methods for
computing conditional mean (CM) and maximum a posteriori (MAP) estimates, respectively. We
consider a sawmill industry log tomography application for detecting knots, rotten parts, and foreign
objects in sawmills (Shustrov et al., 2019; Zolotarev et al., 2019). As an oil and gas industry application,
we have drill-core rock sample tomography for identifying pore structures (Mendoza et al., 2019).

1.1. X-ray tomography as a Bayesian statistical inverse problem

Reducing the number of measurements tends to add artefacts to the tomographic reconstruction. This
means that we need to carefully evaluate the accuracy of the reconstruction for different levels of sparsity.
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For this kind of problems, a typical approach is to deploy Bayesian statistical inversion techniques in the
sense of Kaipio and Somersalo (2005). Bayesian inversion is the theory and practical data analysis of
noisy indirect measurements within the Bayesian estimation framework. Following Toft (1996), X-ray
radiation measured at single detector pixel over a given propagation path is

yθ,s ¼
ðð

X x1,x2ð Þδ s� x1 cosθ� x2 sinθð Þdx1dx2þeθ,s≕ A θ,sXþ eθ,s, (1)

where yθ,s is measured value at angle θ with translation s and X is varying X-ray attenuation coefficient
field inside the object of interest. For practical computations, we discretize the operation A θ,sX by
approximating X with a piecewise defined function with constant values on square pixels and obtain
a finite-dimensional presentation y¼AX þ e, where y ∈ ℝn, A ∈ ℝn�m, e ∈ ℝn, and X ∈ ℝm represent
the approximated values of X on pixels.

In X-ray tomography, the noise process e is often modeled as a compound Poisson distributed noise
(Whiting, 2002; Thanh et al., 2019). We make a simplification and assume that e is zero-mean Gaussian
white noise with covariance C¼ σ2I. As our main aim is in contrast-boosting priors, we assume that this
simplification does not affect the generality of the results. The solution of the tomography problem is then
an a posteriori probability density via the Bayes formula

π Xjyð Þ¼ π Xð Þπ yjXð Þ
π yð Þ ∝π Xð Þπ yjXð Þ¼ π Xð Þexp �1

2
y�AXð ÞTC�1 y�AXð Þ

� �
, (2)

where π Xð Þ is the a priori density, that is, the probabilistic description of the unknownwe knowbefore any
measurements are taken, π yjXð Þ is the likelihood density, and π yð Þ is a normalization constant which we
can be omitted in computations.

1.2. Literature review

Sparse-angle tomography is an ill-posed inverse problem (Natterer, 2001), and thus in order to have stable
solutions, we need to set the prior π Xð Þ. A standard choice is to use Gaussian random field priors
(Bardsley, 2013). They are easy to use through their analytic properties, and they are fully defined by their
means and covariances. The drawback ofGaussian priors is that they are locally smoothing and thus cause
contrast artefacts near sharp edges. As our objective is in reconstructing unknown objects with sharp
edges, we need to choose a prior density that canmodel them. Such an edge-preserving, contrast-boosting
prior needs to be non-Gaussian.

When computing posterior estimates, the unavoidable non-Gaussianity of any contrast-boosting prior
leads to computational complexity and high computational cost. In two-dimensional industrial tomog-
raphy, with even small or moderate mesh sizes, a typical problem has around 100,000–1,000,000
unknown parameters. High dimensionality in industry poses problems, especially in time-critical appli-
cations, where speed is valued. Point estimates computed with optimization methods are natural starting
points as they are computationally light. For example, the MAP estimate is fast to compute but does not
unfortunately provide full uncertainty quantification.

To fully quantify uncertainty, we need to explore the whole posterior with MCMC techniques, such
as Metropolis-within-Gibbs, (MwG), (see, e.g., Markkanen et al., 2019). Alternatively, we could use
variational Bayesmethods (Tzikas et al., 2008) which aim to approximate a probability distribution with a
simpler one, and they are computationally cheaper than MCMC. However, variational Bayes methods
have inherent approximation errors in their estimates, whereasMCMCmethods theoretically do not. That
is why MCMC is often preferred for uncertainty quantification. There is a growing number of MCMC
algorithms for high-dimensional problems (Cotter et al., 2013; Law, 2014; Beskos et al., 2017).
Unfortunately, non-Gaussianity of the contrast-boosting priors breaks many of the assumptions of the
function-space MCMC methods. MwG is a simple choice, but its convergence can be slow, requiring
significantly long MCMC chains for accurate approximations. As an alternative, we use Hamiltonian
Monte Carlo (HMC), (Neal, 2011). It has been used for a wide range of applications, and it is well-suited
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for large-dimensional problems (Beskos et al., 2011). In particular, we use the HMC variant with
no-U-turn sampling (HMC-NUTS), (Hoffman and Gelman, 2014).

There are several priors which promote contrast-boosting or edge-preserving inversion. A standard
choice for edge-preserving inversion is the TV prior, which is based on using L1-norms. In statistics, this
method is called LASSO (least absolute shrinkage and selection operator). This method, however, has a
drawback, which arises from the finiteness of the prior moments.Whenwemake the discretization denser
and denser, the TV priors converge to Gaussian priors in the discretization limit. This behavior was
studied by Lassas and Siltanen (2004), and they showed that the estimators are not consistent under mesh
refinement for Bayesian statistical inverse problems. This, naturally, means that doing uncertainty
quantification under TV-prior assumption is not consistent with respect to the change of the mesh.

Recently, several hierarchical models, which promote more versatile behaviors, have been developed.
These include, for example, deep Gaussian processes (Dunlop et al., 2018; Emzir et al., 2020), level-set
methods (Dunlop et al., 2017), mixtures of compound Poisson processes andGaussians (Hosseini, 2017),
and stackedMatérn fields via stochastic partial differential equations (Roininen et al., 2019). The problem
with hierarchical priors is that in the posteriors, the parameters and hyperparameters may become strongly
coupled, which means that vanilla MCMC methods become problematic and, for example, reparameter-
izations are needed for sampling the posterior efficiently (Chada et al., 2019; Monterrubio-Gómez et al.,
2020). In level-set methods, the number of levels is usually low because experiments have shown that the
method deteriorates when the number of levels is increased.

Here, we utilize a different approach and make the prior non-Gaussian by construction without
hierarchical modeling or compromising on uncertainty quantification. The first choice is to utilize priors
based on Besov βsp,q norms (Lassas et al., 2009). These priors are constructed on wavelet basis, typically
Haar wavelets, and they have well-defined non-Gaussian discretization limit behavior. Besov priors have
been utilized in a number of studies for Bayesian inversion (see, e.g., Niinimäki, 2013). The problemwith
Besov priors is the structure of wavelets and the truncation of the wavelet series. The coefficients of the
wavelets are random but actually not interchangeable, since their decay is necessary for convergence of
the series. That typically means that we make an unnecessary and strong prior assumption for edge
locations based on wavelet properties, for example, consider a one-dimensional inverse problem on
domain (0,1), we prefer an edge at 1/4 over an edge at 1/3 for Haar wavelets.

One possibility is to use α-stable prior fields, see Samorodnitsky and Taqqu (1994). Another type of
α-stable priors can be constructed similarly to Besov priors. They use Karhunen-Loève (KL) type
expansions instead of wavelet expansions but replace Gaussian coefficients in KL expansions with
α-stable coefficients. For KL expansions, see Berlinet and Thomas-Agnan (2004), and for stable field
expansions, see Sullivan (2017). Third option is to use pixel-based approaches (Bolin, 2014; Markkanen
et al., 2019; Mendoza et al., 2019), which cover also some α-stable random walks. The family of α-stable
processes contains both KL expansions and pixel-based approaches, but one should note that the different
approaches lead to different statistical objects. We stress that both approaches lead to well-posedness of
the inverse problem. In this paper, we shall utilize certain pixel-based approaches and limit the discussion
to the Cauchy difference priors, which is a special case α¼ 1.

1.3. Contribution and organization of this work

The contributions of this paper are twofold, first of all, we make a large-scale numerical comparison for
the X-ray tomography problem with different Gaussian and non-Gaussian (TV, Besov, Cauchy) prior
assumptions. For the log and drill-core tomography applications, our paper shows the tomographic
imaging limits, that is, when building the actual industrial tomography systems, we know the minimum
number of measurements and noise levels with which we can attain reconstructions with predefined
accuracy. This minimizes the number of components, and thus the cost, needed in the imaging system but,
at the same time, ensures operational accuracy. Secondly, we apply a carefully designed HMC algorithm
to the high-dimensional non-Gaussian inverse problem. In particular, we show its applicability for the
sparse-angle tomography problem. Also, studying HMC chain mixing and sampling from over high-
dimensional non-Gaussian posteriors is a new contribution.
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The rest of this paper is organized as follows: In Section 2, we review Gaussian, TV, Besov, and
Cauchy priors. In Section 3, we introduce the necessary MwG and HMC tools. In Section 4, we have two
synthetic case studies: Three dimensional-imaging of logs in sawmills and drill-core tomography
problem. Finally, in Section 5, we conclude the study and make some notes on future developments.

2. Random field priors

ForGaussian, TV, andBesov priors, wewrite the priors as π Xð Þ∝exp �G Xð Þð Þ, whereG Xð Þ isL2-norm of
differences of X for the Gaussian case, L1-norm of differences for TV, and Besovℬs

p,q-norm for a wavelet
expansion with random coefficients X1,…,Xm for Besov case. We will describe these distributions below
and their respectiveG Xð Þ. In the following, we will describe separately the Cauchy prior, as it is based on
another type of construction.

2.1. Gaussian prior

Let us assume a zero-mean Gaussian prior, which is fully defined with one of the following choices,

G Xð Þ¼ 1
2
XTΣ�1X¼ 1

2
XTQX ¼ 1

2
XTLTLX ¼ 1

2
LXð ÞTLX ,

whereΣ is the covariancematrix,Q is the precisionmatrix, and L is a square-root (e.g., Cholesky factor) of
the precision matrix. Common choices are exponential and squared exponential covariances, Matérn
covariances, and Brownian motion covariance. Different choices lead to different kinds of presentations,
for example, squared exponential leads to full matrices for all Σ,Q,L, but with certain choices, the Matérn
covariances have sparse Q,L matrices due to the Markov property (Roininen et al., 2019).

Two-dimensional difference priors can be obtained by choosing L to be a discretization of the
following operator equation ∇X¼W , where W ¼ W1,W2ð ÞT with two statistically independent white
noise random fieldsW1 andW2. Thus, we have LX ¼W for the discrete presentation, which we will solve
in the least-squares sense. We note that the precision matrix Q¼LTL is not invertible, thus this is an
improper prior, but if we impose zero-boundary conditions, we have a proper prior. For X-ray tomog-
raphy, zero-boundary conditions are natural choices, as typically the domain of interest is larger than the
object of interest, and thus putting zero-boundary is justified. Now, let us denote by Xi,j, the unknown at
pixel i, jð Þ. As a summation formula with zero-boundary conditions, we can write the prior then as

GGauss Xð Þ¼Gpr Xð ÞþGboundary Xð Þ¼
XI
i¼1

XJ
j¼1

Xi,j�Xi�1,j
� �2

σ2pr
þ Xi,j�Xi,j�1
� �2

σ2pr

 !
þ
X
i, j∈∂Ω

X2
i,j

σ2boundary
,

where by ∂Ω, we mean the boundary indices of the discretized domainΩ, σ2pr is regularization parameter,
and σ2boundary zero-boundary parameter.

2.2. Total variation prior

Similarly to the Gaussian prior, we can write a two-dimensional TV prior with

GTV Xð Þ¼Gpr Xð ÞþGboundary Xð Þ¼
XI
i¼1

XJ
j¼1

α Xi,j�Xi�1,j

�� ��þ Xi,j�Xi,j�1

�� ��� �þ X
i, j∈∂Ω

αboundary Xi,j

�� ��,
where α,αboundary are regularization parameters. We note that in statistics, these distribution are often
called Laplace distributions. This form of TV prior is anisotropic. According to González et al. (2017), it
can be shown that an isotropic form is obtained when we choose

Gpr Xð Þ¼
XI
i¼1

XJ
j¼1

α Xi,j�Xi�1,j
� �2þ Xi,j�Xi,j�1

� �2� �1=2
:
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Using higher-order TV priors would be possible (Liu et al., 2015), but often the basic first-order TV
prior is selected because it preserves sharp edges within the reconstruction much better. The major
drawback of TV prior is that due to its finite moments, the prior is not discretization-invariant, and it
resembles Gaussian difference prior on dense enoughmeshes. It is notable thatMAP estimate and the CM
estimate differ drastically of each other in the limit (Lassas and Siltanen, 2004).While the inconsistency is
not desirable, the prior is still used in many practical applications. In the numerical experiments, we use
anisotropic TV prior. We apply Charbonnier approximation to make the gradient of the posterior
differentiable everywhere (Charbonnier et al., 1997).

2.3. Besov prior

Gaussian and TV priors are based on Gaussian and Laplace distributions. Besov priors are based on the
wavelet coefficients of the reconstruction. The coefficients are calculated by discrete wavelet transform
(DWT) (Lassas et al., 2009). The discrete wavelet transform decomposes the reconstruction into
approximation and detail coefficients. For detailed treatise on Besov priors, see (Niinimäki, 2013). Besov
prior for X derives from wavelet expansion for function X

X ¼
X2k�1

d1¼0

X2k�1

d2¼0

〈X,ϕk,d1,d2〉ϕk,d1,d2 þ
X∞
r¼k

X2r�1

d1¼0

X2r�1

d2¼0

X3
t¼1

〈X,ψr,d1,d2,t〉ψr,d1,d2,t, (3)

and its Besov norm is

Xk kℬs
p,q
¼

X2k�1

d1¼0

X2k�1

d2¼0

〈X,ϕk,d1,d2〉
�� ��pþX∞

r¼k

2rq sþ1�2=pð ÞX2r�1

d1¼0

X2r�1

d2¼0

X3
t¼1

〈X,ψr,d1,d2,t〉
�� ��p !1=p

:

In Equation (3), ϕ is the father wavelet and ψ is the mother wavelet. The subindices refer to different
scales and translations of the functions (Meyer, 1992). We utilize the prior for Besov spaceℬ1

1,1, which
reduces the norm into absolute sum of wavelet coefficients. Other Besov spaces than ℬ1

1,1 would be
doable as well, but in those cases, the wavelet coefficients would have different weights or they would be
raised to other powers than one. We use Haar wavelets as our father and mother wavelets. Similarly to the
TV prior, we use Charbonnier approximation for the gradient.

In practise, we compute the two-dimensional DWTof X, which is now represented as a reconstruction
of size of 2n�2n, n∈ℕ square pixels. The Besov prior is defined by

GBesov Xð Þ¼
X2k�1

d1¼0

X2k�1

d2¼0

ak,d1,d2j jþ
Xkmax

r¼k

X2r�1

d1¼0

X2r�1

d2¼0

X3
t¼1

br,d1,d2,tj j:

Terms ak,d1,d2 refer to the approximation coefficients of the DWT of X and terms br,d1,d2,t to the
corresponding detail coefficients. As DWTalgorithm, we choose a matrix operator method described by
Wang and Vieira (2010). A more common and faster way to calculate the DWT would be to use fast
wavelet transform, but we want to keep track of how changing the value of an individual pixel alters the
wavelet coefficients and therefore the prior, too. This property is needed in the MwG algorithm because
we propose new samples for each component of X in a sequential manner and calculating the whole DWT
every time for all the components would be too time consuming.

Besov priors are discretization-invariant and therefore should remain consistent if the resolution is
increased (Lassas et al., 2009). Their drawback is the tendency to produce block artefacts into the point
estimates: the wavelet coefficients at certain low scale are different, even though they are adjacent to each
other. This makes Besov priors location-dependent, that is, they are not translation-invariant.

2.4. Cauchy prior

While the previous three priors were constructed based on different types of norms, Cauchy priors are
constructed based on Cauchy walk or more profoundly general α-stable random walk. These one-
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dimensional objects have well-defined limits, and the generalization in (Markkanen et al., 2019) to two-
dimensional setting is given as a prior density

π Xð Þ ∝
YI
i¼1

YJ
j¼1

hλ

hλð Þ2þ Xi,j�Xi�1,j
� �2 hλ

hλð Þ2þ Xi,j�Xi,j�1
� �2 ,

where h is discretization step in both coordinate directions, and λ is the regularization parameter. These
priors have been used for X-ray tomography in oil and gas industry (Mendoza et al., 2019) and subsurface
imaging (Muhumuza et al., 2020).

A second formulation of the Cauchy difference prior was derived in (Chada et al., 2019). In that, the
starting point was α-stable sheets, which lead to difference approximations of the form

π Xð Þ ∝
YI
i¼1

YJ
j¼1

h2λ

h2λ
� �2þ Xi,j�Xi�1,j�Xi,j�1þXi�1,j�1

� �2 :
Wenote that Cauchy difference prior is theoretically justified in the discretization limit, which is not the

casewith TVprior. UnlikeGaussian difference prior, Cauchy difference prior favors small increments and
steep transitions relatively much more. This means that Cauchy difference prior preserves edges within
the lattice and does not smooth them out. A disadvantage of Cauchy difference prior is its anisotropic
nature.

3. Posterior estimates

The two most common estimators drawn from the posterior density (Equation 2) are the MAP and CM
estimates. For MAP estimation, we will use limited-memory BFGS (L-BFGS) optimization algorithm,
which belongs to the family of quasi-Newtonian methods. For CM estimation, we use MCMC methods,
as they also enable uncertainty quantification of the estimators by generating samples from the target
distribution Kaipio and Somersalo (2005). For a detailed MCMC review, see Luengo et al. (2020).

3.1. Adaptive Metropolis-within-Gibbs

We use single-component adaptive Metropolis-Hastings (SCAM) (Haario et al., 2005), an adaptive
variant of the MwG, (Brooks et al., 2011) algorithm, to generate samples from the posterior distribution.
At each iteration, each component of the target distribution is treated as a univariate probability
distribution, while all the other component values of the distribution are kept constant. After a new value
for the component is proposed, for example, using a Gaussian distributed transition from the previous
value of the component, the new value is either accepted or rejected according to theMetropolis-Hastings
rule. A new sample is added to the chain after all the components have been looped over. The process then
continues until a fixed number of samples have been generated.

Adaptive MwG uses a Gaussian proposal distribution and adapts its proposal covariance by using
previous samples. In high-dimensional distributions, it is more efficient than a Metropolis-Hastings
algorithm which proposes the new values for all components at once (Raftery et al., 2001).

3.2. Hamiltonian Monte Carlo

In Hamiltonian, or Hybrid, Monte Carlo (HMC), the negative logarithm of the probability density
function of the target distribution is interpreted as a potential energy function of a physical system
(Neal, 2011; Betancourt, 2017; Barp et al., 2018) with the target variable being the position variable of the
system. Samples are generated by simulating trajectories from the physical system defined by the
potential energy function and an additional momentum variable. The energy of the physical system is
the sum of the potential energy and kinetic energy which is proportional to the square of the momentum.
One initializes a random momentum vector, sets the position to be the last sample in the chain, and
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simulates a trajectory of the system using so-called symplectic integrator (Barp et al., 2018). The final
position of the trajectory is then accepted or rejected into the chain using a Metropolis-Hastings rule.

An advantage of HMC is that if trajectory simulation parameters are suitable, it can sample from the
posterior distribution efficiently. It also takes the correlations of the distribution components into account.
Its computational complexity also scales better with the dimensionality than that of a simple Metropolis-
Hastings (Neal, 2011; Beskos et al., 2013) algorithm.

The trajectory simulation of HMC requires manually specifying a set of parameters, which greatly
affect the efficiency of the sample generation. To cope with this problem, there is an automatic HMC
algorithm called no-U-turn (NUTS) HMC (Hoffman and Gelman, 2014), which eliminates the need for
manual tuning. For these reasons, we use NUTS as an alternative to MwG in our numerical experiments.
However, even with automatic tuning, HMC may still struggle at sampling from multimodal (Mangoubi
et al., 2018) or heavy-tailed distributions (Livingstone et al., 2017). To cope with these problems, it would
be possible to use methods such as Riemannian manifold HMC (Girolami and Calderhead, 2011) or
continuously tempered HMC (Graham and Storkey, 2017) instead of the plain NUTS HMC.

4. Numerical experiments

We have two numerical experiments, the log tomography and the drill-core tomography. In log tomog-
raphy, we have a foreign object inside, thus it is a high-contrast target. The second experiment is a lower-
contrast target with lots of distinct regions with different attenuation coefficient. Themeasurement setting
is the same for both test cases: We shall use X-ray tomography with parallel beam geometry. The
computational grid is 512�512, so we have 262,144-dimensional posterior distributions. We have
additive white noise models, according to Equation (1), we fix the standard deviation of the noise to
1.5% of the maximum value of the line integrals. The parameters of each prior distribution at each
measurement scenario are set using a grid search. For each prior, we select the parameter value, which
gives approximately a minimum L2-error between the MAP estimate and the ground truth. In the log
tomography case, we use a different log slice without a high attenuation object to select the parameters. In
real-life applications, we should select the parameters other means, such as setting a hyperprior
distribution for the prior parameter—this will naturally introduce computational burden especially due
to coupling of the unknown (Chada et al., 2019;Monterrubio-Gómez et al., 2020). For Besov prior, we use
eight levels in the DWT.

In simulations, we shall use the four priors, and utilise L-BFGS, adaptiveMwG, andHMC-NUTS. The
initial points of MCMC chains are set to be the MAP estimate obtained with L-BFGS. As MCMC chain
lengths, we use 500,000 samples in MwG to adapt proposal variances for each component and use those
variances to generate 400,000 samples. To save memory, we thin the MwG chains by storing every 300th
sample. For HMC-NUTS, we run 100 times for the dual averaging algorithm to tune the Störmer–Verlet
symplectic integrator, and then we generate 4,000 samples for uncertainty quantification. For MCMC
convergence analysis, we use Geweke z-score test for measuring stationarity of the chain and autocor-
relation function and time τ for checking chain mixing (Geweke, 1992; Roy, 2020). We also convert the
z-score into a two-sided p-value, for certain significance level comparisons. For good MCMC conver-
gence, τ should be small and p-value close to 1.

Depending on the prior, and because in log tomography, we have a high-contrast target, the marginal
and conditional posteriors turn out to be wide or even multimodal. The low-contrast drill-core tomog-
raphy is in this sense an easier target, hencewe quantify uncertainty only the log tomography as it is amore
demanding test scenario. Thus for the drill-core tomography phantom, we only compute MAP estimators
as the log tomography already showcases the capabilities of the uncertainty quantification.

4.1. Log tomography

Our test case is visualized in Figure 1, with metallic piece in black and knots in light color, and a small
rotten part in near white with more smooth behavior. Besides the ground truth, we have also plotted the
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three-dimensional estimates, obtained by stacking two-dimensional MAP estimate slices computed with
L-BFGS. We have all the four different priors, and the number of equispaced measurement angles is
10, 30, or 90. We have tabulated the peak signal-to-noise ratio (PSNR) of the reconstructions in Table 1.
While all the methods seem to capture the main features in densest-data case, reducing the number of
measurement causes severe artefacts with Gaussian and TV priors, and the Besov prior promotes blocky
estimate. Cauchy prior captures the metallic piece even in the most difficult case, but it struggles with
knots. The parameters used in the reconstructions are: For Gaussian prior, σ¼ 10 for all test cases; for TV,
α¼ 0:72 for the 10 angle case, 1.40 in 30 angle case, and 2.68 in 90 angle case; for Besov, α¼ 1:40 in the

(a) 3D ground truth. (b) 2D slice.
0

2

4

6

8

10

(c) Gaussian, 90 (d) TV, 90 (e) Besov, 90 (f) Cauchy, 90

(g) Gaussian, 30 (h) TV, 30 (i) Besov, 30 (j) Cauchy, 30

(k) Gaussian, 10 (l) TV, 10 (m) Besov, 10 (n) Cauchy, 10

Figure 1. Log tomography: Three-dimensional and two-dimensional ground truths with knots
(light material) and metallic piece (black). Three-dimensional reconstructions obtained by stacking

two-dimensional maximum a posteriori (MAP) estimates with different angles and priors.
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10 and 30 angle cases and 3.16 in the 90 angle case; for Cauchy, λhð Þ2 ¼ 0:0014 in the 10 angle case,
0.0040 in the 30 angle case, and 0.0317 in the 90 angle case.

It is easier to see the effects of different priors in the two-dimensional slices in Figure 2. The densest
scenario, with 90 angles, TV, and Cauchy priors produce very goodMAP estimates recovering the edges.
MAP estimate with Besov prior looks blocky. In the MAP estimate with Gaussian prior, the edges of the
metallic object are smoothed. Reducing the number of measurement angles causes visible artefacts into
MAP estimates with TVand Gaussian priors, but TV prior preserves the edges much better. Meanwhile,
the rotation-dependency of Cauchy difference prior becomes apparent with coordinate-axis-aligned sharp
artefacts. The Besov prior MAP estimate remains more or less consistent even if the number of angles is
decreased. However, in practice, the block artefacts will spoil the MAP estimates and that is not useful in
practical applications. We could decrease the number of wavelet transform levels in order to reduce
blockiness or use another wavelet family.

In Figure 3, we have plotted the CM estimates computed withMwG andHMC.Here we skip Gaussian
priors, as the CM andMAP estimates with Gaussian priors are the same. The PSNRvalues are tabulated in
Table 1. It is notable that the CM estimate with TV prior differs noticeably from its MAP estimate
(Figures 1 and 2). For high-dimensional inverse problems, it has been demonstrated by Lassas and
Siltanen (2004, figure 4) that CM estimates might be wildly oscillatory, even though the same prior
produces reasonableMAP estimates. Also, the great number of scanning artefacts is notable. On the other
hand, CM estimates with Cauchy difference prior have less coordinate-axis-related artefacts, and CM
estimates of Besov prior are less blocky than their corresponding MAP estimates.

In Figure 4, we have logarithmic pixel-wise variances estimated fromMwG and HMC-NUTSMCMC
chains. In Table 2, we have tabulated MCMC chain convergence statistics for two different pixel
locations, and the autocorrelation functions are plotted in Figure 5. For pixel 256,256ð Þ, MwG has good
convergence in all cases. HMC performs otherwise well, with the exception of a poor autocorrelation for
the 30-angle case with Cauchy prior. The Geweke test p-values are good in all cases. Pixel 343,237ð Þ is
located at the edge of the high-attenuation object and the wood. For the 90-angle case with Cauchy prior,
the marginal distribution of the posterior of that pixel is bimodal, and HMC cannot jump between the
modes efficiently. This causes bad autocorrelation and p-values, that is, we have serious convergence
issues. 30-angle case is better in the sense of convergence of the chain, as HMC does not explore the other
mode at all. In general, MwG chains with Cauchy prior mix better and have better autocorrelation values
than HMC chains. However, MwG may not find all the posterior modes. This is because some of the
pixels at the boundary of the high-attenuation object have much higher variance than the other boundary
pixels, as seen from the variance estimates.

The posteriors with Cauchy prior lead to multimodal and heavy-tailed distributions, and this induces
mixing issues for bothmethods, but particularly for HMCas it is known to underperform at sampling from

Table 1. PSNR values in decibels for the MAP and CM estimates with different priors in log tomography.

Estimator Number of angles Gaussian TV Besov Cauchy

MAP 90 33.7 36.6 35.0 36.0

MAP 30 31.2 35.7 34.2 33.5

MAP 10 26.6 32.4 31.1 31.0

CM (MwG) 90 — 36.3 34.6 35.8

CM (MwG) 30 — 33.2 32.5 34.8

CM (HMC) 90 — 36.2 34.6 35.6

CM (HMC) 30 — 33.0 32.5 34.2

Abbreviations: CM, conditional mean; HMC, Hamiltonian Monte Carlo; MAP, maximum a posteriori; MwG, Metropolis-within-
Gibbs; PSNR, peak signal-to-noise ratio; TV, total variation.
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such distributions (Livingstone et al., 2017; Mangoubi et al., 2018). HMC-NUTS is an almost plug-and-
play alternative for MwG for all other cases, except Cauchy, for which special HMC methods should be
considered. HMC chain mixing can be improved by adapting a global mass matrix for the momentum by
running a preliminary run for posterior variance estimation. For our high-dimensional case, local mass
matrix is computationally infeasible. Tempered HMC may also enhance the algorithm (Graham and
Storkey, 2017). For MwG tuning, we have limited chances for improvement, but, that is, robust adaptive
Metropolis-Hastings could provide some further enhancements (Vihola, 2011).

4.2. Drill-core tomography

Here we take a simpler setting for a lower-contrast target, and we detect pores and mineralized soil within
a core sample. Unlike in the log tomography experiment, the objects do not have drastically different
absorption coefficient levels. However, the drill-core sample has lots of pores and soil cobs and their sizes
also vary.

We demonstrate only MAP estimation, and the results are in Figure 6. At the first glance, there are no
significant differences within the MAP estimates if we compare TV, Cauchy, and Gaussian difference
priors to each other at 90 measurement angle scenario. Nevertheless, we consider the Cauchy and TV
priors as the best ones, since they have the best PSNR values and least amount of noise, and they preserve
the edges of the pores with low-and high-attenuation regions of the core sample well. If we wanted to

(a) Gaussian, 90 (b) TV, 90 (c) Besov, 90 (d) Cauchy, 90

(e) Gaussian, 30 (f) TV, 30 (g) Besov, 30 (h) Cauchy, 30
0

2

4

6

8

10

(i) Gaussian, 10 (j) TV, 10 (k) Besov, 10 (l) Cauchy, 10

Figure 2. Log tomography: Two-dimensional maximum a posteriori (MAP) estimates with different
measurement angles and prior assumptions.
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(a) MwG, TV, 90 (b) MwG, TV, 30 (c) HMC, TV, 90 (d) HMC, TV, 30

(e) MwG, Besov, 90 (f) MwG, Besov, 30 (g) HMC, Besov, 90 (h) HMC, Besov, 30
0

2

4

6

8

10

(i) MwG, Cauchy, 90 (j) MwG, Cauchy, 30 (k) HMC, Cauchy, 90 (l) HMC, Cauchy, 30

Figure 3. Log tomography: Two-dimensional conditional mean (CM) estimates with different
measurement angles, prior assumptions, and samplers.
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Figure 4. Log tomography pixel-wise variance estimates.
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achieve the same level of noise with Gaussian difference prior, we would end up having clearly over-
smoothed MAP estimates. The PSNR values are in Table 3. Again, we use grid search to set the
parameters: For Gaussian prior σ¼ 0:37 and Besov prior α¼ 0:61 in all cases; for 10-angle case with
TV prior α¼ 0:1 and 0.37 in 30-angle case and 0.72 in 90-angle case; for 10-angle case with Cauchy prior
λhð Þ2 ¼ 1:66 and 0.18 in the 30-angle case and 0.55 in the 90-angle case.
In the 10-angle and 30-angle scenarios,MAP estimates with Besov prior are severely ruinedwith block

artefacts—the phantom consists of many spherical objects which are close to each other, but the wavelet
coefficients of Haar family do not approximate well such details. Unlike in the log tomography, there are
not so many artefacts present in the MAP estimates with Gaussian prior. In the 10-angle case, MAP
estimates calculated with Gaussian, TV, and Cauchy priors are very close to each other, and neither of
them can be considered superior over the others. We could try to fix the coordinate-axis dependency of
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Figure 5. Log tomography Markov chain Monte Carlo (MCMC) chain autocorrelation functions for
pixels 256,256ð Þ (top row) and 343,237ð Þ (bottom row).

Table 2. Log tomography chain convergence estimators for two pixels with different priors and varying number of angles.

Estimator Pixel TV 90 TV 30 Besov 90 Besov 30 Cauchy 90 Cauchy 30

MwG, τ 256,256ð Þ 1.246 1.140 1.091 1.495 1.271 1.385

MwG, Geweke p 256,256ð Þ 0.958 0.995 0.977 0.992 0.996 0.999

HMC, τ 256,256ð Þ 2.414 4.200 1.061 0.566 3.436 26.65

HMC, Geweke p 256,256ð Þ 0.988 0.991 0.944 0.972 0.994 0.991

MwG, τ 343,237ð Þ 1.046 1.082 1.605 1.102 1.545 5.229

MwG, Geweke p 343,237ð Þ 0.958 0.998 0.976 0.999 0.925 0.884

HMC, τ 343,237ð Þ 34.56 3.596 3.907 1.288 1371 35.67

HMC, Geweke p 343,237ð Þ 0.973 0.995 0.985 0.970 0.066 0.962

Abbreviations: HMC, Hamiltonian Monte Carlo; MwG, Metropolis-within-Gibbs; TV, total variation.
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Cauchy prior by introducing isotropic Cauchy prior so that we set a bivariate Cauchy distribution for
differences of each pixel to their neighbors.

5. Conclusion

We have made a Bayesian inversion industrial tomography comparison study with four different priors.
The targets have different contrasts, that is, sharp edges were to be reconstructed. This is a classical
problem, where one needs either hierarchical or non-Gaussian models, and hence inherently computa-
tional complexity becomes a problem. The chosen methods, to use optimization or MCMC, is a balance
between fast computations and uncertainty quantification. It should be noted that for many industrial
applications, the computational cost is still too high, like for many dynamical systems. However, for static
objects and case studies where computational time is not critical, the correctly chosen methods can
significantly enhance the reconstruction results for difficult measurement geometries and targets.

(a) Gaussian, 90 (b) TV, 90 (c) Besov, 90 (d) Cauchy, 90

(e) Gaussian, 30 (f) TV, 30 (g) Besov, 30 (h) Cauchy, 30
0

1

2

3

4

5

6

(i) Gaussian, 10 (j) TV, 10 (k) Besov, 10 (l) Cauchy, 10

Figure 6. Drill-core maximum a posteriori (MAP) estimates for the with different measurement angles
and prior assumptions.

Table 3. Drill-core tomography PSNR values in decibels for the MAP estimates with different priors.

No. of angles/Prior Gaussian TV Besov Cauchy

90 25.0 26.8 24.3 26.0

30 23.2 25.6 22.0 23.6

10 18.4 20.8 17.5 18.5

Abbreviations: MAP, maximum a posteriori; PSNR, peak signal-to-noise ratio; TV, total variation.
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Systematic choice of different parameters, including mesh refinement parameters, dictate the reconstruc-
tion accuracy. In order to show the maximum possible reconstruction capabilities, we have used simple
grid searches. In reality, parameter choice requires implementing some kind of a hierarchical model. This
would naturally further increase computational complexity.

In all the scenarios considered, MAP estimates with Cauchy and TV priors were the best—their
artefacts were mild in general and edge-preserving performance excellent. The estimates using Besov
prior with Haar wavelets underperformed compared to the other priors in most cases due to the major
block artefacts it tends to produce.We could decrease the block artefacts by reducing the number of DWT
levels or using another wavelet family but even that cannot fix the location dependency of the prior.
Likewise, we could try replacing the Cauchy prior with a bivariate Cauchy distribution to make it
isotropic. For further development, applying acceptance-ratio-based adaptation in MwG and using
tempered HMCwould improve sampling. Other prior distributions, like general α-stable priors and using
hierarchical priors with possiblymany layers might potentially improve the edge-preserving properties. A
future avenue is also in reducing the instability by combining non-Gaussian priors to the machine-
learning-based priors Adler and Öktem (2018), hence possibly providing more robust methods against
noise and difficult measurement geometries.
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