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1. Introduction

We consider the case of a genetic population for which the selective
advantages of the various genotypes are not constant but for each generation
depend linearly on the gene frequencies in the population in the previous
generation. For such populations, the effect of competition between similar
genotypes may be allowed for by suitable choice of the frequency-dependent
selective advantages, or, by a reversal of sign, the case where genotypes are
favoured by the presence of similar genotypes may also be considered. All
populations are finite and of constant size so that eventually only one type
of gene will survive. The probabilities of survival for each gene are found
and compared with the case where there are no frequency-dependent factors.
If a small amount of mutation is allowed, gene fixation will not occur and a
steady-state distribution of gene frequency will appear. The form of this
distribution may be derived simply from the survival probabilities in the
corresponding cases where there is no mutation. The main result is that in
some cases, frequency-dependent factors have a marked effect on survival
probabilities, while in other cases they can be completely ignored. The latter
will only occur in certain cases where there exists competition between
similar genotypes.

2. Infinite populations

Before considering finite populations it is interesting to examine the
behaviour of the gene frequencies for infinite populations, where completely
different behaviour is possible from that of the finite case. Suppose at the
loculs under consideration there are two possible alleles A and a, so that the
three possible genotypes are A A, Aa and aa, which are assumed to occur in
proportions given by the Hardy-Weinberg law. We are interested in the
proportion p of A genes. Consider first the case discussed by Wright [6]
and Moran [4] where the selective advantages of AA, A a and aa individuals
are proportional to 1 — s + tq, 1, 1 + s — tq, respectively, where s and t
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are both small and both positive, and q = 1 — p. Then the increase in p
from one generation to the next is

Ap = —

If s > t, p -»• 0, but if s < t, p -»• 1 — st-1 and this latter point is one of
stable equilibrium. On the other hand, if the selective advantages are
1 — s + tk, 1, 1 + s — tk, respectively, where k is any constant, then there
are no equilibrium points except at p = 0,1. Thus the introduction of fre-
quency-dependent selective advantages may lead to a non-trivial equilib-
rium point where no such point can exist for corresponding fixed selective
advantages. However, this will not necessarily happen, for instance in the
case where the selective advantages are 1 + s + tp, 1, 1 + s -f- tq, respec-
tively. In this case it is found that Ap = 0 for p = 0, ^, or 1, but that the
equilibrium at the point p = % is unstable.

3. Finite populations

We consider the case of a monoecious diploid population with non-
overlapping generations and of constant size N (N large). Suppose that in
generation i there are k(AA individuals and lt aa individuals, and put
at = kfN'1 and bt = /,2V-1. Suppose also that the selective advantages of
A A, Aa, and aa individuals are proportional to

1 — sx + hii> 1> 1 + S2 ~ Kii> respectively

where sx,siy tx and t2 are small (i.e. of order N-1) and qt is the proportion of a
genes in generation *'. Then if we make the usual assumption of Poisson
distribution of offspring conditioned by total population = N, we find that
the number of A genes in the next generation is a binomial variate with
index 2N and parameter

—««)} + i(1— ai—bi)

n( will be called the "effective" proportion of A genes in contrast to pt

= £(1 + a-i — bf), the actual proportion. nt is a Markovian variate whereas
Pi is not. However, consideration of the transition matrix of nt is impossible
and we proceed as follows. slf s2, tx and tz are 0(N~1) so that ignoring for
the moment terms of order N~2 we have
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and therefore, since E(ai+1) = 7%, E(bi+1) = (1 — J^)2,

V(ai+1),V(b(+1) are

we have, to the same order of accuracy

Thus if di+1 = 7ti+1 — jtt, to order A/"-1,

Also

to the same order of accuracy.
Suppose now we can find a function ^(TTJ) such that

(3.1) E*(ni+1) = *(*,).

Then since we are ignoring for the moment terms of order N~2, we have,
expanding the left-hand side of (3.1) about 3tt,

or

where

Oi = 2 ^ , a2 = 2Ns2, ^ = 2Ni1, /52 = 2Nta.

Since this equation is true for all 7t( we may solve it to get

= J= J"exp

Also, by iteration in (3.1), we have that if P is the probability that the whole
population eventually consists of A genes, then

where nQ is the initial value of n.
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Hence

P^P(*o)

(3.2) J"°exp [*1x
2-x2(l-x)2-2(i1(^ - | ) +f/?,(!-*)>] &

J'exp

It is worth noting that in the particular case & = /?2 = /? say, in which the
frequency-dependent selective advantages have the same coefficient for
both homozygotes,

(3.3) *>(* £
j o exp [axa;2 — oc2(l — x)2 + 0(1 - a;)2] <fo

so that in this case, P(TC0) is similar in form to the values of P found for
populations with selection and dominance where there are no frequency-
dependent factors, (c.f. Moran [3], Ewens [1]).

By giving the four constants <x1( oc2, &, /?2 appropriate values we may
derive values of P{n0) for any linear frequency-dependent selective advan-
tages.

4. Particular cases

Case 1.

The selective advantages

1 + tq, 1, 1 + tp

correspond to ax = 0, a2 = /?x = /S2 = /?. Inserting these values in (3.2) or
(3.3) we find

P(n0) = 7i0

so that survival probabilities are independent of t and are the same as for
the case where no selection operates. We may therefore say that if the selec-
tive advantages of both homozygotes approach zero at the same rate as the
proportion of the corresponding gene approaches unity, then we may ignore
all selective factors in calculating survival probabilities. This is a particular
example of a more general case considered later. If we are interested in the
survival probability of a single initial mutant we have na — (2N)-1 if we
take A to be the mutant, so that P{(2iV)-1} = (2N)~K

Case 2.
The case ax = — a, a2 = 0, ^ = — a, /32 = /? corresponds to selective

advantages
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l+sp,l,l+ tq

so that the presence of like genotypes favours like genotypes if s, t > 0.
Inserting these values in (3.2) we find

(4.1) Pfo) =
Jo

1exp[-f«s»-f/J(l

For the case « ^ | 5 a qualitative examination of (4.1) shows that if a > /?,
then P(n0) > n0 for all n0, while for the case a < /?, P(na) < n0 for all n0.
This is expected, since if the selective advantages are such that the coeffi-
cient of the density-dependent selective factor for A is higher than that of a,
one anticipates that the survival probability of A genes is higher than it
would be if there were no selection. In the case of a single initial mutant,
we have, to a close approximation,

Jo
1exp[-f«B»-*/?(l-a:)»]<&

The value of this expression depends not only on the relative values of «
and /S but also on their absolute values, and for fixed /S the expression in-
creases with a while for fixed a it decreases as /? increases.

The case a = /? corresponds to selective advantages of A A and aa in-
dividuals changing at equal rates as the proportion of the corresponding
gene varies. Equation (4.1) reduces to

"0exp2ax(l— x)dx
°

exp 2ttx (1 — x) dx

so that P( l - n0) = 1 - P{n0) and P{\) = \ for all a. Values of Pfa)
for various values of jr0 and a are given below (Table 1). Because of the
symmetry, only values of n0 S: J are considered.

It may be noted from Table 1 that the curve of P(TT0) against n0 tends to be
flat for intermediate values of n0 when a is negative. That is, when the selec-
tive advantage of a genotype decreases below unity as the proportion of the
corresponding gene increases, survival probabilities do not vary much for a
wide range of values of n0. On the other hand, for positive a, P(?r0) is very
sensitive to initial values of n0. For the particular case where there is only
one initial mutant, we have

(22V)-1

P{(2ZV)-1} = V ;

j exp[2aa;(l— x)]dx
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This is clearly less than (22V)-1 for positive a, and the rate at which P{(2iV)-1}
decreases as a increases is indicated by the fact that for a = 4, P{(2iV)-1} =
.226(22V)-1, while for a = 8, PK2N)-1} = .0.413(2ZV)-1. Thus even when
the selective advantages of the two homozygotes change at the same rate,
so that there is a symmetrical relationship between A and a, the survival
probability of a single initial mutant, being largely determined by the be-
haviour of the selective advantages for the low initial values of n, is less
than is the case for no selection.

TABLE 1

Values of P(n0) (Equation 4.2) for various jt0 and a

1.00
.95
.90

.85

.80

.75

.70

.65

.60

.55

.50

a = 16

1.0000

.9999

.9993

.9975

.9918

.9773

.9452

.8850

.7882

.6554

.5000

a = 8

1.0000

.9969

.9905

.9784

.9593

.9233

.8728

.8033

.7152

.6119

.5000

a = 4

1.0000
.9862
.9664

.9392

.9033

.8576

.8019

.7365

.6628

.5830

.5000

a = 2

1.0000
.9728

.9424

.9022

.8599

.8088

.7554

.6959

.6328

.5670

.5000

a = .5

1.0000
.9568

.9115

.8644

.8157

.7654

.7139

.6613

.6080

.5542

.5000

a=-.5

1.0000
.9425

.8875

.8347

.7838

.7342

.6860

.6386

.5920

.5459

.5000

a=-2

1.0000
.9154

.8449

.7848

.7326

.6863

.6444

.6057

.5693

.5343

.5000

a = - 4

1.0000
.8704

.7803

.7148

.6668

.6264

.5946

.5674

.5434

.5213

.5000

a=-8

1.0000
.7687
.6571

.5984

.5650

.5444

.5306

.5207

.5128

.5062

.5000

Case 3.
If tx = t2 = 0 there are no frequency-dependent selective advantages

and the case of selection with dominance is obtained. If we put sx = s(h — 1),
s2 = — s h, the selective advantages become

1 + s, 1 + sh, 1

and inserting these values in (3.3) we find

"° exp [ - 2«hx + OLDX2] dx
D = 2k-1

Jo exp [— 2oJtx + xDx*] dx

which agrees with a previous result (Kimura [2], Moran [3]).

Case 4.
The case of complete dominance is obtained if we put sx = tx = 0, for

which, using (3.2),
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P(«o) = jr
exp[- a2(l - xf + f &

f1

J 1—JT

where we put y = 1 — x, a2 = a, /?2 = /?, for convenience.
The nature of P(?z0) depends on the relative values of a and )S and is best

examined by examples.
Example (i): (a = 0)
In this case

I? exp [!/&•] rfy

and clearly P(n0) > n0 for yS > 0, while P(n0) < TI0 for 0 < 0. Also

which is greater than (less than) (2iV)-x for positive (negative) ft.
Example (ii): (a = -̂/S)
In this case

and it is fairly easy to show that P(n0) > n0 for /5 > 0 and P{n0) <
for )S < 0. Also

which is greater than (less than) (2N)-1 for positive (negative) /S.
Example (iii): (a = § /?)
In this case

J0
X e x p [ -

Here P(TT0) has the unusual property that for positive /?, P(JI0) is initially
greater than nQ, but eventually P{n0) is less than JT0. For negative /? the
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converse holds. Thus the selective factors have a marked effect on the curve.
We also have

P{(2N)~i} = ^ 1 -

which is greater than (less than) (22V)"1 for positive (negative) /?.
Example (iv): (a =/S)
In this case

and it is readily shown that P(JT0) < n0 for /? > 0, while P(n0) > nQ for
/3 < 0. This contrasts markedly with the behaviour of P(n0) in Examples
(i) and (ii), and clearly Example (iii) is one of transition between the two
types. We also have

(22V)-1 exp ( - | /3)

which is less than (greater than) (22V)-1 for positive (negative) /S. This is in
contrast with the behaviour in the previous examples and shows that if a
is made large enough compared with ft, the initial mutant has less chance
of survival than if there were no selection. We also note that survival
probabilities depend on the absolute values of <x and /S as well as their relative
values. The value of a (for fixed 0) for which P{(2AT)-1} = (22V)-1 is the
solution for a of the equation

exp ( - a + f/?) = J* exp ( - ay2 + f ftf) dy

which has been shown to lie in (§/S, /S). The case where the allele a is the
initial mutant may be found by putting n0 = 1 — (22V)~X and considering
1 — P{n0). In this case the value of a. (for fixed /?) for which 1 — P{1 —
(22V)"1} = (22V)"1 is the solution for « of the equation

o
a exp (-at/2 + $W

which has been shown to lie in (-|/?, §/S).

Case 5
If we put sx = s2 = tx = t2 = s, so that ax = a2 = & = /32 = a we have

selective advantages
1 - sp, 1, 1 + s£.
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Then

P(n) = f(4.3) f1
I exp cux2dx

Here we expect that if s is positive, that P(TI0) < nQ, since relatively the
more common gene is hindered. Similarly for s negative we expect P{n0) > n0.
Specific values of P{n0) may be easily found and are tabulated for typical
values of a and n0 below (Table 2).

TABLE 2

Values of -P(jio) (Equation 4.3) for various JI0 and a

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

.45

.40

.35

.30

.25

.20

.15

.10

.05

a= -4

.9975

.9937

.9884

.9809

.9706

.9568

.9384

.9146

.8843

.8467

.8007

.7456

.6810

.6067

.5230

.4304

.3302

.2238

.1130

a = -1

.9741

.9457

.9145

.8806

.8439

.8043

.7619

.7166

.6687

.6177

.5642

.5084

.4502

.3900

.3279

.2643

.1994

.1335

.0669

a = 1

.9104

.8308

.7573

.6897

.6274

.5696

.5757

.4651

.4176

.3725

.3297

.2887

.2494

.2113

.1745

.1386

.1033

.0685

.0342

a = 4

.7250

.5373

.4070

.3141

.2467

.1968

.1591

.1300

.1072

.0888

.0738

.0613

.0506

.0413

.0331

.0256

.0188

.0123

.0061

Examination of the values of P(n0) in Table 2 confirms the previous
arguments, as well as indicating that the effect of negative values of a
seems to be more marked than the effect of the corresponding positive
values. We also have

o exp (ox2) dx

which is less than (greater than) (2N)-1 for positive (negative) a.
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Case 6.
If we put — Si = s2 = s, tx = t2 = t, the selective advantages become

l+s + tq,l,l+s-tq.

For s > t > 0 the homozygotes are favoured, for 0 > t > s the heterozy-
gotes are favoured. Using (3.3) we obtain

f "°exp[2oa;(l -x) +0(1 -x)2]dx
P(*o) = TiJ exp [2as(l — x)+0(1 — a;)2] dx

For n0 = (2N)-1 we have

(2N)-1 exp 0

exp[2ocr(l — x

For 0 fixed, this expression decreases as a increases, while for a fixed the
expression increases with 0.

An interesting case is s = \t for which the selective advantages are

and for which
1 - exp(—

l - e x p ( - 0 )

which is remarkably similar to the probabilities obtained in haploid theory.
For the case s = t we have

In both cases the nature of the curve of P(n0) is evident. In the former,

and in the latter

7

If we put sx = — s — t, s2 = s, tt = t2 = — t we obtain selective advan-
tages

1 + s + tp, 1, 1 + s + tq
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so that each genotype is favoured by the presence of similar genotypes if
t > 0. Substituting in (3.3) we obtain

>[2(x + 8)x(l—x)]dx

I exp[2(a + jS)a;(l— x)]dx

If a = — /? we have P(n0) — n0 as in Case 1, as is otherwise obvious. We
note that P(n0) depends on a and ft only through their sum, so that if we
put a + p = y, or s + t = c, so that s = c — t we have selective advantages
of the type

\+c-tq,l,\+c-tfi

and for these selective advantages P{n0) is independent of t. This result ex-
tends that of Case 1 and enables a range of cases to be treated simultaneous-
ly. In particular by putting t = c we recover Case 2 and by putting t = 0
we obtain a particular case of non-frequency-dependent selection. In all
cases

(22V)-1

P{(22V)-i} =
I exp[2ya;(l — x)]dx

which is greater than (less than) {2N)'1 if y is negative (positive), as in
Case 2. This example shows how density-dependent selective advantages
may sometimes be ignored or treated as constant selective advantages.

Other Cases

A variety of other cases may be further obtained by suitable choice of
Sj^.s^.ti and t2, but the preceding cases seem to cover all situations of
practical interest.

5. Bounds

Since terms of order N~2 have been ignored, the previous results are only
very close approximations, and bounds must be found for the true probabil-
ities. The method of doing so is best typified by an example. The main
result is that bounds may be obtained by inserting a term of order TV"1

in the expressions for P(n0). As an example we consider Case 5 where we
suppose a > 0. Define

(5.1) 4*(ni)

where e is of order N'1.
Suppose we can choose e such that

(5.2) ^W<
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Then by iteration,

or

(5.3) P < 3 ~I*t

giving an upper bound for P. A lower bound may be found by similar argu-
ments. Now (5.2) may be rewritten

E r<+1exp{ex + ca:2)dx<0

or

(5.4) E J*'+1 exp {ey + ay2 + 2ajr,y) dy < 0.

Let

y>{8) = exp {ey -f- ay2 + 2ajcty)dy.

T h e n

ip'(<5) = exp(e(5 -\- a<52 -f- 2OTTJ(5)

ip"(^) = (e -)- 2a^ -)- 2a7Tj) e x p (e^ -(- a^2 -(- 2071^^)

+ 2a] exp(e<5 -f a62

' + 6a(e -

p( + aA2<52

so that

V»(0) = 0, v'(0) = 1, v"(0) = e + 2auio v'"(0) = (e +

The left-hand side in (5.4) may be written

(5.5) ^ ^ ^

where A is a function of <3i+1 and lies in (0,1).
Since e is O(N~1) we have

|f'(0)| < 8a2 + 2a
|y(W)(Mi+i)| < (72a3

By expanding out ni+x we find

where
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0 ( « m . bi+i)l < 4

and
E(<f>) = 0 for nt = 0, 1.

Hence
E{di+1) = - swj(l - 3i{) + Rini(l - nt)

where

the latter term in the bound for Rx arising from covariance terms when
expectations are taken in (5.6).

Similarly

V(Si+1) = »<(1 - ^)(22V)-1 + Rtnt{l - nt)
where

12?,| < 2o7V-2.
Thus

where
\R3

Also,

where
\Rt\

and

Thus (5.5) may be written

w 4 ( l - W i )
where

|i?5| < AT-2[2a3 + 10a2 + 2a + ^(3a3 + a.2)e3a].

Thus if we choose e equal to

N-1^3 + 40a2 + 8a + (3a3 + a2)e3a] = £*

the term in e dominates the remaining terms in (5.5).
By putting e = e* we have E[y>(di+1)] > 0 and by putting e = —e*

we have E[y>(di+1)] < 0. Thus an upper bound for P is

r<r°exp(— e*x

I exp (—e*x + <xx2)dx

and a lower bound is
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"" exp (e* x -f- a#2) dx

exp(e*x -f- 0iX2)dx
J 0

These bounds could be greatly sharpened by more elaborate calculation, the
point here being only to indicate a method for finding bounds. Bounds may
be found in the other cases by similar methods, but the calculation will
usually be more involved.

6. Stationary distributions

If mutation in both directions is allowed there will be no absorption but a
steady-state distribution depending on the rates of mutation. Suppose the
effect of the mutation is such that the probability that a gene chosen at
random in the (i + l)th generation is found by replacing the effective
proportion nt of A genes in generation i by 7rt- — hii + fi(l — 7t{), (A, fi of
order 2V-1). This corresponds to proportionate mutation at rate A from A
to a and /J, from a to A. We may find the stationary distribution of effective
gene frequency by applying the method of Wright [5] for such stationary
distributions. Since we approximate a discrete distribution by a continuous
distribution, this distribution will serve equally well as the distribution of f,
the true frequency of A, since p and n differ only by terms of order 2V-1,
Applying Wright's formula, we have for the stationary distribution of n,

where A is the increase in n from one generation to the next. Thus

/(„, = ^ exp U \E6(n)Kd, + 4N { <L=»^
<*A L J J 7i[l — n)

where d(n) is the increase in n without mutation.
Therefore

(6.1) f{n) = const c ^ - ^ l - it)***-1 exp[- f (:*)]

where £(71) is the function used previously for which

(6-2) P{na) = •£

From this it may be noted immediately that if P(JZ0) is independent of fre-
quency-dependent factors, then so is f{n). Also, if ±NX = 1 =
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P W = 71 —

It follows easily from this relation that if the proportion of A genes in the
stationary distribution tends to be small, the probability of absorption of
the A gene in the case without mutation tends to be high, and vice-versa.
If we apply (6.1) and (6.2) to the various cases discussed in Section 4 we
obtain the following stationary distributions:

Case 1 f{n) = const ^ ^ ( 1 - TI)*"^1

Case 2 f(n) = const n*#*-i(l - w)

Case 3 f{n) = const «***-! (1 - «)

Case 4 f{n) = const

Case 5 /(») = const

Case 6 f(n) = const

Case 1 f(n) = const

The condition that the exponent be a quadratic only is that tt = tz,
as before for absorption probabilities (c.f. Equations (3.2) and (3.3)). In
this case the curves are very similar to curves found where there is no
frequency-dependent selection. In the case 4.ZVA = 1 = 4N/i, where muta-
tion is kept as low as possible consistent with bounded (continuous) distri-
butions, the curves are readily sketched, and generally exhibit the feature
that if the presence of like genes favours like genes the curves tend to
concentrate in the extremities, whereas if the presence of like genes hinders
like genes there is a tendency towards a maximum of f{n) near the mid-range.
In the case where 4iVA ^ 1, 4JSffi ^ 1, bimodal distributions may appear.

7. Extension

It is easy to extend the methods considered previously to find survival
probabilities in the case where the selective advantages for AA, A a, and
aa individuals are 1 + S(f>(P)> 1» and 1 + sg(p), respectively, where <f>(p) and
£{p) are functions of p for which we require only that <f>(p) and £(p) and their
second derivatives with respect to p are all 0(1). Then it follows that the
probability P of survival of the A genes is given by

f* exp [ - 2a jX {t<f>{t) - (1 - t)i{t)}dt]dx

to the order of accuracy considered previously. From this it follows imme-
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diately that if there exists a function 0(p) such that <f>(p) = (1 — p)Q{p) and
£(p) = p8(p), then P(n0) = n0. This extends the result of Case 1 in Section 4
for which d(p) = constant.

In the case where mutation is allowed it again follows easily that the
stationary distribution of n is given by

f{n) = const 7i4iV/'-1(l— 7r)4iVA-1exp [2a j"t<f>(t) - (1 —t)g(t)dt].

In this case the stationary distribution could be multimodal even though
42VA = 4N/i = 1.

I should like to thank the referee for some useful criticisms.
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