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Abstract. We prove the following result of existence of graphs with constant
mean curvature in Euclidean space: given a convex bounded planar domain � of
area að�Þ and a real number H such that að�ÞH2 < �=2, there exists a graph on �
with constant mean curvature H and whose boundary is @�.

2000 Mathematics Subject Classification. 53A10, 53C42.

1. Introduction and statement of results. Let � be a smooth bounded domain in
R2 and let H be a given non-zero constant. We consider classical solutions
u 2 C2ð�Þ \ @C0ð�Þ of the constant mean curvature boundary value problem ðPHÞ:

div
ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jruj2
p þ 2H ¼ 0 in �; ð1Þ

u ¼ 0 on @�: ð2Þ

The geometric meaning of (1)–(2) is that the graph of a solution u describes a
nonparametric surface of R3 spanning @�	 f0g and with constant mean curvature
H with respect to the orientation N ¼ ðru;�1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruj2

p
. In variational terms, a

constant mean curvature surface is a critical point for area given the constraint of
fixed volume. From the physical viewpoint, a soap film in equilibrium between two
regions of different gas pressure—no gravity—is modelled mathematically by the
fact that the surface it defines has nonzero constant mean curvature and the con-
stant H is the pressure difference across the surface. We refer to [3] as a complete
guide to quasilinear elliptic equations. A suitable introduction to the properties of
the constant mean curvature equation (1) is [8]. We will use both references in our
proofs.

A few existence results are known of the Dirichlet problem (1)–(2), even if � is a
convex domain. Serrin established an existence result when the boundary condition
(2) is replaced by u ¼ �, where � is a function defined on @� that extends to a C2

function on �. In [10], he proved that given a constant H, there is solvability of (1)
for arbitrary continuous boundary data � if and only if 2jHj 
 �, where � denotes
the curvature of @� as a planar curve. In particular, � must be strictly convex.
However, when the boundary condition is u ¼ 0, it is natural to think that the Ser-
rin’s condition on H could be relaxed. Thus, if the curvature � of @� satisfies
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� > 1=jHj, the problem ðPHÞ has a solution. (See, for example, [4].) In this case,
spherical caps included in a halfsphere are used as barrier surfaces for searching the
new graphs.

Montiel and the present author used quarter-cylinders as barriers to obtain
estimates of the solutions of ðPHÞ. In this sense, the following result is proved in [7].

Theorem 1. Let � be a convex bounded domain whose boundary @� has length L.
If H is a given number such that

jHj <

ffiffiffi
3

p
�

L
; ð3Þ

then ðPHÞ has a unique solution.

Throughout this paper, for a convex bounded domain we assume that the cur-
vature � of @� satisfies � � 0. In this result (as well as in [4]), C 0 estimates of a
solution of the Dirichlet problem are used in order to obtain C1ð�Þ estimates. In
Theorem 1, we used an isoperimetric inequality together with a height estimate for a
compact constant mean curvature surface immersed in R3 measured from a plane P.
This estimate is done in terms of the value of the constant H and the area A of the
region of M above the plane P: if h denotes the height of the surface with respect to
P, then

h 

AjHj

2�
ð4Þ

and the equality holds if an only if M is a spherical cap. Using again quarter-cylin-
ders as barriers, it is proved in [5] that for each convex bounded or unbounded
domain � included in a strip of width 1=jHj there exists a graph on � bounded by
@� and with constant mean curvature H. Recently, the present author has given
results on existence for nonconvex domains that satisfy some R-sphere condition on
the boundary. See [6].

In this paper, we prove the following existence theorem for ðPHÞ.

Theorem 2. Let � be a convex bounded domain. Let H be a real number such that

að�ÞH2 <
�

2
; ð5Þ

where að�Þ denotes the area of �. Then (1)–(2) has a unique solution.

In a recent paper and with different techniques, Montiel has proved the solva-
bility of ðPHÞ if að�ÞH2 < 
2�, where 
 ¼ ð

ffiffiffi
5

p
� 1Þ=2 is the golden ratio. Then


2 � 0:3819. Thus our estimate in Theorem 2 improves Montiel’s result. Note that
the constant 1=2 in (5) is not optimal, as it occurs when � is a round disc: there is a
family of spherical caps that are graphs on � with mean curvature varying in the
interval ½0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=að�Þ

p
Þ. From this example, one is led to the conjecture that it suffices

that að�ÞH2 < �, which is optimal in the case of a circle.
On the other hand, the classical isoperimetric inequality in the plane states that

L2 � 4�að�Þ. This inequality links Theorems 1 and 2 as follows. For the Dirichlet
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problem ðPHÞ, there exists a positive value Hmax such that ðPHÞ has a unique solution
if jHj 
 Hmax and ðPHÞ has no solution if jHj > Hmax. See [8]. Condition (3) implies
that Hmax �

ffiffiffi
3

p
�=L, but (5) gives a better estimate Hmax �

ffiffiffi
�

p
=

ffiffiffiffiffiffiffiffiffiffiffiffi
2að�Þ

p
. As we have

already stated, the examples of spherical caps that are graphs on round discs make
us think that Hmax ¼

ffiffiffi
�

p
=

ffiffiffiffiffiffiffiffiffiffi
að�Þ

p
.

Remark. It is worthwhile to point out that in the setting of the existence pro-
blem for parametric surfaces with prescribed mean curvature and given boundary
curve, there are some results of the same nature as Theorem 2. A theorem for-
mulated by Wente [12] and sharpened by Steffen [11] proves the existence of a disc
immersed in R3 of constant mean curvature H and spanning a closed Jordan curve 

provided that a
H2 < 2�=3, where a
 is the least spanning area of 
.

2. Proof of Theorem 2. In the proof of Theorem 2, we shall need two previous
results. The first one relates the algebraic volume of a constant mean curvature sur-
face with a certain L1-norm defined in terms of the coordinates of its Gauss map.
The second result is concerned with an estimate of the height of a graph with con-
stant mean curvature in terms of the area of the planar domain in which the graph is
defined.

First, recall some facts on solutions of (1). Firstly, a symmetry property holds
for solutions of ðPHÞ: if u is a solution of ðPHÞ, then �u solves the problem ðP�HÞ.
On the other hand, the maximum principle (or the comparison principle with hor-
izontal planes) ensures that either u � 0 and H � 0 or u 
 0 and H 
 0. Also, a
monotonicity principle holds for the family of Dirichlet problems ðPHÞ and that it is
again a consequence of the comparison principle [3, Theorem 10.1]: if H0 < H, then
uH0 < uH on �. Finally, the uniqueness of a given solution u of ðPHÞ follows from the
comparison principle.

Consider an immersion � : M ! R3 from an oriented compact surface M with
non-empty boundary @M into Euclidean space. The algebraic volume V is defined
as

V ¼ �
1

3

Z
M

hN; �idM;

where N stands for the Gauss map for the immersion � compatible with the orien-
tation of M. The starting point is the following result that was stated without proof
in [7, p. 597]. For the sake of completeness we present a proof of it.

Proposition 1. Let � : M ! R3 be an immersion of constant mean curvature H
and with boundary included in a plane P. Then

2HV ¼

Z
M

jrh�; ~aaij2dM; ð6Þ

where ~aa is a unit vector orthogonal to P.

Proof. Let N be the Gauss map of the immersion. We define on M two 1-forms

 and � by
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pðvÞ ¼ hðd�ÞpðvÞ; ~aaih�ðpÞ; ~aai;

�pðvÞ ¼ hðd�ÞpðvÞ ^ NðpÞ; �ðpÞ ^ ~aaih�ðpÞ; ~aai;

for each p 2 M and v 2 TpM. Compute their codifferentials 

 and 
�. Let p 2 M
and let fe1; e2g be an orthonormal basis of the tangent plane TpM. Then



ðpÞ ¼
X2
i¼1

�ðei; eiÞhNðpÞ; ~aai þ
X2
i¼1

h~aa; eii
2;


�ðpÞ ¼
X2
i¼1

hei ^ NðpÞ; ei ^ ~aaih�ðpÞ; ~aai þ
X2
i¼1

hei ^ NðpÞ; �ðpÞ ^ ~aaihei; ~aai;

where � stands for the second fundamental form of the immersion �. Then



 ¼ jrh�; ~aaij2 þ 2Hh�; ~aaihN; ~aai;


� ¼ 3h�; ~aaihN; ~aai � hN; �i:

Let us integrate these two inequalities overM. Because themean curvatureH is constant
and since 
 and � vanish on the boundary @M, we get the desired identity (6). 4

As a consequence of Proposition 1 and the height estimate (4), we obtain the
following result.

Theorem 3. Let u be a solution of the Dirichlet problem for the prescribed con-
stant mean curvature ðPHÞ. Let h ¼ sup� juj. Then

h 

að�ÞjHj

2ð�� að�ÞH2Þ
; ð7Þ

where að�Þ denotes the area of the domain �.

Proof. Let ~aa ¼ ð0; 0; 1Þ. Without loss of generality we assume that u � 0. Since
the orientation N of M ¼ graphðuÞ is chosen pointing downwards, the mean curva-
ture H is positive. A straightforward computation yields jrhx; ~aaij2 ¼ 1� hN; ~aai2,
where x denotes a point of M. Let A be the area of M. Then (6) gives

2H

Z
�

u dx dy ¼ A �

Z
M

hN; ~aai2dM:

Using (4), we obtain

2�h

H

 A 
 2H

Z
�

u dx dy þ

Z
M

hN; ~aai2dM 
 2hað�ÞH þ

Z
M

jhN; ~aaij

¼ 2h að�ÞH þ

Z
�

1 dx dy ¼ ð2Hh þ 1Það�Þ;

yielding the desired inequality (7). 4
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We are now prepared to prove Theorem 2. The reasoning below follows the
work in [7]. We give a more detailed exposition. We shall apply the method of con-
tinuity to solve the Dirichlet problem (1)–(2). We refer the reader to the discussion in
[3] for a modern treatment of the theory of the Dirichlet problem for the prescribed
mean curvature equation. As usual, the proof is based on the establishment of global
C1;
ð�Þ a priori estimates for prospective solutions of ðPHÞ. Let c be a positive
number with að�Þc2 < �=2. Consider the set S defined as

S ¼ fH 2 ½0; c�; there exists a solution uH of ðPHÞg:

Since u0 ¼ 0 solves the minimal case, the set S is not empty.
Now we show that S is open. This is accomplished by using the Implicit Func-

tion Theorem for Banach spaces. Let � : � ! R3 be an isometric immersion, where
N denotes a unit normal vector field along � in R3. For each u 2 C2;


0 ð�Þ, the maps
�t : � ! R3 defined as �tðpÞ ¼ �ðpÞ þ tuðpÞNðpÞ; ðp 2 �Þ, are immersions for t near
zero. Consider on � the metric induced by �t and let H be the mean curvature. The
linearized operator (up to a factor) L : C2;


0 ð�Þ ! C
ð�Þ, defined by

LðuÞðpÞ ¼
d

dt

�����
t¼0

Hð�tðpÞÞÞ;

turns out to be L ¼ �þ j�j2, where � denotes the Laplacian operator on � with the
induced metric from � and � is its second fundamental form. Here LðuÞ is a self-
adjoint linear elliptic operator. We claim that the kernel of L is trivial. This is proved
as follows. Assume that H 2 S and denote GH ¼ graphðuHÞ. Because the mean cur-
vature is constant, the function hN; ~aai defined on GH satisfies

�hN; ~aai ¼ �j�j2hN; ~aai; ð8Þ

so that

LhN; ~aai ¼ 0 and hN; ~aai < 0:

Hence, if v 2 C2;
ð�Þ satisfies LðuÞv ¼ 0 and v ¼ 0 on @�, then v ¼ 0. (See, for
example, [2, Theorem 1].) Then L is a Fredholm operator of index zero. Hence we
use the Riesz spectral theory of compact operators to assert that the Fredholm
alternative applies and the invertibility of (1)–(2) is assured. (See [1].) The Implicit
Function Theorem in Banach spaces guarantees an interval of solutions of ðPHÞ

around the value H.
Finally, to prove that S is a closed set, the Schauder approach reduces the

question to establishing apriori C1;
ð�Þ bounds for any solution uH with 0 
 H 
 c
[3, Theorem 13.8]. In our situation, it suffices to prove that there is a fixed constant
M independent of H such that

juHjC1ð�Þ
¼ sup

�
juHj þ sup

�
jruHj < M

holds for any uH 2 C2;

0 ð�Þ and H 2 ½0; c�.

The apriori C0 bounds for uH is obtained as follows. The monotonicity principle
ensures that 0 
 uH 
 uc, for 0 
 H 
 c. On the other hand, the hypothesis on að�Þ

and inequality (7) imply that uc < 1=ð2cÞ and, consequently, 0 
 uH < 1=ð2cÞ.
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Now, we seek apriori estimates for jruHj. By the expression of N in terms of
ruH we obtain

hN; ~aai ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jruHj
2

p :

Then we have apriori estimates of jruHj provided that hN; ~aai remains bounded away
from zero. But equation (8) tells us that �hN; ~aai � 0 and so the maximum hN; ~aai on
� is attained at some boundary point. This proves the well-known maximum prin-
ciple sup� jruHj ¼ sup@� jruHj for the constant mean curvature equation (1). The
above bound 1=ð2cÞ on the height of our graphs provides barriers which serve to
estimate jruHj on @�. The reasoning that follows is based on the use of appropriate
pieces of quarter-cylinders as barriers. (See [5], [7] and [9] for examples in the same
context.)

Let �H denote the inner conormal of GH along its boundary. Since 0 
 uH, we
have 0 
 h�H; ~aai. The boundary condition uH ¼ 0 on @� yields hN; ~aai2 þ h�H; ~aai

2 ¼ 1.
According to the orientation N chosen on GH, we have

h�H; ~aai ¼
jruHjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jruHj
2

p :

As a consequence of the reasoning above, we shall obtain estimates for jruHj on � if
we are able to establish a constant C0ð�; cÞ, depending only on � and c, such that
h�H; ~aai 
 C0ð�; cÞ. This estimate will be accomplished by the technique of barriers.
We define K the quarter-cylinder by

K ¼ fðx; y; zÞ; 0 
 y 

1

2c
; z ¼

1

2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4c2y2

p
g:

The surface K is a graph on the strip f0 < y < 1=ð2cÞg and its mean curvature is c
with the downwards orientation. Moreover, K � fx 2 R3; hx; ~aai � 0g and its
boundary @K is formed by two parallel straight-lines; one of them lies on the ðx; yÞ-
plane and the other one lies at height 1=ð2cÞ over this plane. Consider � > 0 such
hc þ � < 1=ð2cÞ. We move down K an amount � (with respect to the ~aa-direction), and
call K� ¼ K \ fx 2 R3; hx; ~aai � 0g.

Consider the circle of horizontal directions

S1 ¼ f~vv 2 R3;j~vvj ¼ 1; h~vv; ~aai ¼ 0g:

Let ~vv 2 S1. After a horizontal translation and a rotation with respect to a vertical
axis, we assume that the axis of rotation of K� is orthogonal to ~vv, its concave side lies
in front of GH and that K� does not intersect GH. If hH ¼ sup� uH denotes the height
of GH, then

hH 
 hc <
1

2c
� � ¼ height of K�:

Call C0 ¼ h�K�
; ~aai, where �K�

denotes the inner conormal of K� along the component
boundary that lies in the ðx; yÞ-plane. Notice that C0 is a constant and C0 < 1. Move
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K� towards GH and parallel to ~aa until the first contact point occurs between K� and
GH. Since the height of GH is strictly less than the K� and because the mean curva-
ture H of GH is strictly less than K�, the maximum principle ensures that this
touching point is some boundary point p 2 @�. At this point p, we have

0 
 h�HðpÞ; ~aai < C0: ð9Þ

Now, let us repeat the same argument varying ~vv on S1. Because @� is a convex curve,
the successive straight-lines on the ðx; yÞ-plane that are boundary to K� go touching
each point of @�. Hence, inequality (9) holds for each p 2 @�. This gives the uniform
bound of jruHj along @� and it concludes the proof of Theorem 2.
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