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Abstract

Cryogenic electron tomography (cryoET) is capable of determining in situ biological structures ofmolecular complexes at
near-atomic resolution by averaging half amillion subtomograms.While abundant complexes/particles are often clustered
in arrays, precisely locating and seamlessly averaging such particles across many tomograms present major challenges.
Here, we developed TomoNet, a software packagewith amodern graphical user interface to carry out the entire pipeline of
cryoETand subtomogram averaging to achieve high resolution. TomoNet features built-in automatic particle picking and
three-dimensional (3D) classification functions and integrates commonly used packages to streamline high-resolution
subtomogram averaging for structures in 1D, 2D, or 3D arrays. Automatic particle picking is accomplished in two
complementary ways: one based on template matching and the other using deep learning. TomoNet’s hierarchical file
organization and visual display facilitate efficient data management as required for large cryoET datasets. Applications of
TomoNet to three types of datasets demonstrate its capability of efficient and accurate particle picking on flexible and
imperfect lattices to obtain high-resolution 3D biological structures: virus-like particles, bacterial surface layers within
cellular lamellae, andmembranes decoratedwith nuclear egress protein complexes. These results demonstrate TomoNet’s
potential for broad applications to various cryoET projects targeting high-resolution in situ structures.

Impact Statement
Cryogenic electron tomography (cryoET) has become a powerful approach to visualize the organization and
high-resolution structures of biological complexes in their native environment. Subtomogram averaging (STA)
of hundreds of thousands of particles (i.e., subtomograms) is necessary to obtain near-atomic resolution
structures for each such complex. While abundant biological complexes often cluster in arrays that manifest
as one to three-dimensional lattices, flexibility and imperfection of such lattices pose challenges for efficient and
accurate particle picking. To overcome these challenges and to meet the growing demand for efficient data
processing and management in the cryoET and STA workflow, we have developed TomoNet, a user-friendly
software package with a modern graphical user interface that allows users to execute the entire data processing
pipeline seamlessly with the integration of commonly used software packages. TomoNet addresses the particle-
picking challenge with two solutions, one based on geometric template matching and the other using artificial
intelligence. Applications of TomoNet to three representative datasets demonstrate its capability for high-
resolution structure determination of biological complexes on flexible and imperfect lattices.
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1. Introduction

Single-particle cryogenic electron microscopy (cryoEM) is used to elucidate atomic-level structures of
purified biological complexes. This methodology adheres to a standardized and well-established work-
flow supported by advanced software packages such as Relion1 and cryoSparc.2 In parallel, cryogenic
electron tomography (cryoET), coupled with subtomogram averaging (STA), expands the investigative
scope to encompass heterogeneous macromolecules in their native context.3–10 To enhance the resolution
of subunits within in situ macromolecules, subtomograms (i.e., particles) are extracted from each
tomogram and then subjected to three-dimensional (3D) alignment and averaging, thereby improving
signal-to-noise ratio. Notably, STA has achieved resolutions up to sub-3 Å for in situ structures of large
cellular complexes such as ribosomes, approaching the capabilities of single-particle cryoEM method-
ologies.11–14

The workflow for cryoET and STA typically involves five key components across specific software
packages. In cryoET preprocessing, dose-fractionated frames are collected from an electron microscope,
undergo motion correction, organized, and then assembled into individual tilt series. In tomogram
reconstruction, 3D reconstructions are generated from those tilt series. In particle picking, particles of
interest are identified and extracted from tomograms. Complexity varies based on the diverse and intricate
nature of in situ cellular samples and their unique configurations.Many packages include their own particle-
picking methods, such as oversampling using a supporting geometry in Dynamo,15 template matching in
emClarity16 andmachine learning in crYOLO.17 In 3D refinement and classification, particles are iteratively
classified and refined to obtain a final structure at subnanometer or near-atomic resolution, which has been
demonstrated by software packages such as Relion13,18, emClarity,16 EMAN2,4 and Warp.19 Finally, post-
processing activities include map sharpening, Fourier shell correlation (FSC) calculation, visualization by
placing averaged maps back into the original tomogram, and so forth users often need to navigate between
several specialized software packages for optimal results, which often demands a certain level of compu-
tational proficiency that poses a barrier for many.

The method for particle picking varies on a case-by-case basis, dictated by the characteristics of
in situ cellular samples. In the early works of STA, manual particle picking was used, particularly
when aiming for resolutions between 20 and 50 Å with a maximum of several hundred particles.20–22

However, for biological samples exhibiting periodic structures, oversampling on specified geometry
was leveraged to significantly reduce the labor associated with acquiring enough particles for
improved resolutions. For instance, HIV virus-like particles (VLPs) adopt a hexagonal Gag protein
lattice in its sphere-like configuration.23 Other examples include the Marburg Virus,24 Herpes
simplex virus,25 and the Coat protein complex II,26 all of which contain lattice-like arrangements
with repeating subunits that could benefit from particle-picking automation when performing
cryoET data processing. With an increasing demand for automation to enhance efficiency with
minimal manual intervention, template matching has emerged as a popular method for automatic
particle picking, relying on a user-provided reference map.16,27 Simultaneously, convolutional neural
networks have shown promising results for cryoET automatic particle picking given its capacity to
analyze 3D feature maps and autonomously identify prominent features within specific samples.28–31

These machine-learning approaches typically operate template-free and often obviate the need for
human annotation.32

The expanding array of specialized software tools designed for specific tasks posts a critical need for
seamless software integration within the cryoET workflow. Transitioning between various software
packages can be a cumbersome process. Remarkably, recent initiatives have made notable progress in
tackling this integration challenge. For example, TomoBEAR33 offers an integrated solution, while
ScipionTomo34 and nextPYP35 provide a comprehensive web-based platform for managing various tasks
in the cryoET pipeline. Notably, none of these packages takes specific advantage of the fact that abundant
complexes exist in arrays of some sort, albeit with imperfections, variability, or flexibility.36–41

In this context, we have developed TomoNet, a software package designed for streamlining the cryoET
and STA data processing workflow, with a modern graphical user interface (GUI) (Figures 1 and 2). Our

e7-2 Hui Wang et al.

https://doi.org/10.1017/S2633903X24000060 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000060


methodology uses a geometric template matching approach rooted in the concept of “Auto Expansion”
which serves as a general particle-picking solution for biological complexes organized in flexible,
variable, or imperfect arrays. TomoNet is also powered by a deep learning-based solution to automate
particle picking, which only needs 1–3 tomograms with known particle locations as ground truth for
model training. Importantly, while TomoNet is particularly powerful for locating and averaging particles
arranged on flexible or imperfect lattices, it can be applied to a broader range of particle types, offering a
more generalizable trained model. These methods significantly diminish the need for manual inputs, and
their outcomes can be seamlessly imported into Relion for subsequent high-resolution 3D classifications
and refinements.We demonstrate the capabilities of TomoNet by applying it to three datasets with distinct
protein lattice types, highlighting its accuracy and efficiency in identifying particles across diverse
scenarios.

2. Results

2.1. Overall design of TomoNet

TomoNet is a Python-based software package that integrates commonly used cryoET packages to
streamline the cryoET and STA pipeline, with a particular emphasis on automating particle picking of
lattice-configured structures and cryoET project management. As shown in the main menu and the entire
TomoNet pipeline (Figures 1 and 2), after data collection from electron microscopy, TomoNet can
perform motion correction with integration of MotionCorr2;42 tilt series assembly and tomogram

Figure 1. Illustration of TomoNet’s comprehensive pipeline for cryoET and STA. The pink border
encloses the sequential functions implemented in TomoNet, and they can be subdivided into three

principal segments, delineated by the orange borders. These segments include tomogram preparation on
the left, template matching-based particle picking “Auto Expansion” in the center, and deep learning-

based automatic particle picking on the right.
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reconstruction with integration of IMOD;43 CTF estimation with integration of CTFFIND4;44 manual
particle picking with IMOD; particle picking using built-in geometric template matching-based algo-
rithms with integration of PEET;45 automatic particle picking using built-in deep learning-based algo-
rithms; 3D classification/particle cleaning and subtomograms placing back with built-in algorithms. This
design also allows on-the-fly tomogram reconstruction processing during data collection, which facili-
tates a quick quality check. TomoNet generates particle-picking results in STAR format,46 which can be
incorporated into Relion for high-resolution 3D refinement. It can also read Relion results in STAR format
for particle cleaning and subtomograms placing back (Figure 1).

2.2. Particle picking with “Auto Expansion”

The “Auto Expansion” module is based on template matching and uses cross-correlation coefficient as a
selection criterion, with a design to pick particles on flexible lattices with minimal manual inputs; its basic

Figure 2. A screenshot of TomoNetGUI. The TomoNet GUI contains threemain areas: themenu bar (top
left), the input and operate area (top right), and the logwindow (bottom). Bottom left: results generated by
the “3D Subtomogram Place Back” function can be visualized in ChimeraX. Bottom right: intermediate

results of picked particles viewed with IMOD.
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concept is elucidated in Figure 3. These particles exist in array-like configurations and manifest as flexible,
partial, and imperfect lattices in one, two, and three dimensions (1D–3D). Examples are abound: microtubule
doublets, ubiquitous in most cells, consist of 96 nm axonemal 1D translational repeat units21,47 (1D rotational
lattice); HIV VLPs40 and surface layer (S-layer) lattice of prokaryotic cells48,49 are composed of hexametric
subunits (2D lattice); paraflagellar rod of protozoan species is organized into para-crystalline arrays in its distal
zone20 (3D lattice). In TomoNet, each of these isolated lattice densities is called a patch, within which all
subunits of the complex are connected. For instance, Figure 3 shows two patches of different sizes.

“AutoExpansion” is an iterative process; each iteration expands the particle set by addingmore unpicked
ones. To initiate “Auto Expansion”, users need to prepare a few “seed” particles that sparsely distribute
across all observed patches. Typically, the numbers of such “seed” particles per tomogram range from 20 to
200, which depends on the number and size of patches in the input tomogram. Then, “Auto Expansion”
iteratively expands the “seed” particle set to a final particle set that contains all particles on given flexible
lattices, following three steps for each iteration (Figure 3). First, potential particles adjacent to each “seed”
particle are calculated and selected as “candidate” particles. Second, these “candidate” particles undergo
alignments to a user-provided reference and are evaluated based on cross-correlation coefficient, such that
“wrong” particles with low cross-correlations are excluded. Third, qualified “candidate” particles are added
to the particle set and become “seed” particles for the next iteration. During this process, only unpicked ones
can be considered as “candidate” particles, and “AutoExpansion” stops eitherwhen no “candidate”particles
are detected or when the user-defined maximum iteration number is reached. Doing this allows for an
exhaustive exploration of particles on given lattices following their assembly topologywith no restriction on
geometry and outputs a final particle-picking result (Figure 2).

Compared with conventional template matching methods, “Auto Expansion” incorporates prior
knowledge of lattice configuration to iteratively guide the search for “candidate” particles, i.e., unpicked
particles following user-defined paths, as detailed in the Method section and TomoNet’s user manual.
Thus, “Auto Expansion” significantly reduces computational complexity by searching in the regions of

Figure 3. Illustration of the first two iterations of “Auto Expansion” particle picking. There are two
patches of a hexagonal lattice with individual particles represented by solid hexagons. At iteration 0, 18
“candidate” particles (dashed blue) were selected from the neighbors of 3 “seed” particles (orange). 14
good particles remained and will serve as “seed” particles in iteration 1, and 3 “seed” particles in
iteration 0 were saved in the final particle set (green). At iteration 1, 35 “candidate” particles were

selected from the neighbors of 14 “seed” particles. 29 good particles remained and will serve as “seed”
particles in iteration 2, and 14 “seed” particles were saved in the final particle set. “Auto Expansion” is

an iterative process and will stop when no “candidate” can be detected.
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interest only, with restricted angular and translational search ranges defined by users. As a result, it
reduces the number of incorrectly picked particles. Notably, “Auto Expansion” potentially works for any
flexible, imperfect, or variable lattices in 1D, 2D, and 3D and has no intrinsic size limit of subunits.

2.3. Automatic particle picking by deep learning

The “AI AutoPicking” module is designed for automatic particle picking using supervised machine
learning, which uses a U-net convolutional neural network for model training. There are three main steps
in “AI AutoPicking”: training data preparation, neural network training, and particle coordinate predic-
tion, as detailed in theMethod section (Figure 4). It only requires an input training dataset consisting of 1–
3 tomograms paired with their corresponding particle coordinate files. The trained model can then be
applied to the entire tomography dataset and output predicted particles for each tomogram.

Essentially, the neural network in “AI AutoPicking” is trained as a voxel-wise binary classifier, which
determines whether a voxel in density maps is part of a particle (Figure 4b). To prepare for training, data
pairs (ground truth) consist of extracted subtomograms coupled with their associated segmentation maps,
within which each particle is labeled by a cube near its center (Figure 4a). The trained neural network
model can be applied to other tomograms to perform particle segmentation. Finally, the particle coordinate
information can be retrieved from the predicted segmentation maps (Figure 4c).

2.4. 3D classification using TomoNet

In addition to the above two commentary modules for particle picking, TomoNet allows users to eliminate
“bad” particles based on user-defined geometric constraints, which could serve as 3D classification during
high-resolution particle refinements. Lattice variation in cryoET data has multiple plausible causes.
Biologically, particles may be incomplete near the lattice edge due to paused biology assembly process.50

Experimentally, lattices tend to become flattened near the air-water interface of the sample during
imaging. These variabilities pose challenges for 3D classification in the process of high-resolution
STA, making it difficult to exclude “bad” particles that exhibit unexpected coordinates and orientations
assignment as subunits of lattices (Supplementary Material S1).

Removing these “bad” particles is necessary for achieving better resolutions.51 To accomplish this,
TomoNet assesses each particle by counting its neighboring particles and calculating the averaged tilt angle
to these neighbors to represent the local surface curvature of a lattice. TomoNet identifies particles with too
few neighbors or large tilt angles to their neighbors as “bad” particles since they potentially deviate from the
lattice configuration. This step can be integrated into high-resolution refinement in Relion, providing an
alternative 3D classification method based on analyzing spatial relationships between particles.

2.5. Application to in situ viral protein arrays: The matrix protein lattice in HIV VLPs

To validate TomoNet as an integrated high-resolution cryoET and STA pipeline and an efficient particle-
picking tool, four tomograms were processed from the HIV-1 Gag dataset which resolved the Gag
hexamer structure at 3.2 Å resolution. Motion-corrected images underwent tilt series assembly, CTF
estimation, and tomographic reconstruction using TomoNet. Within these tomograms, the VLP hex-
agonal lattice and its building blocks were observed, and some of these observed VLPs showed sphere-
like geometry (Figure 5a).

As detailed in the Method section, a combination of “Auto Expansion” and “AI AutoPicking” was
applied to the above four tomograms. The result shows that particles were readily picked on all the
observed lattice patches (Figure 5b,c). Then, these picked particles were imported to Relion to perform
high-resolution particle refinements, the resulting reconstruction of the Gag hexamer structure (Figure 6)
looks identical to the published high-resolution structure,11,13, demonstrating particle-picking accuracy
and efficiency of TomoNet –capable of obtaining more particles from fewer tomograms.

Using the “3D subtomogram place back” function in TomoNet, 3D visualizations were generated to
illustrate the in situ assembly of the VLP lattices (Figures 5d and 7). All VLP lattices with various sizes and
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Figure 4. Illustration of “AI AutoPicking” process consisting of three steps. The HIV dataset was used
for this illustration, and the particles refer to Gag hexamers. (a) Training dataset preparation. Using the
user-provided tomograms with associated particle coordinate files, subtomograms containing particle
densities were extracted. For each subtomogram, TomoNet generated a segmentation map based on the
coordinates of particles, where the voxels near a particle’s center are shown as white and the others as
black. (b) Neural network training. The generated subtomograms and segmentation maps were used as
the input and output to train the convolutional neural network in learning how to segment out particle
densities. (c) Particle coordinate prediction. Firstly, TomoNet applied the trained neural network model

to unseen tomograms and generated associated predicted segmentation maps. Then, the particle
coordinate information was obtained from the segmentation maps using clustering algorithms.
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shapeswere captured evenwith irregular shapes (Figure 7e and SupplementaryMaterial S2), demonstrating
TomoNet’s particle-picking ability on flexible lattices. Lattice defects on each VLP were also identified
consistent with previous studies,52 enhancing the understanding of lattice assembly mechanisms.53

2.6. Application to cellular organelle sample: Eukaryotic axoneme

We validated TomoNet’s particle-picking capability for 1D lattices by processing one tomogram of
extracted flagellum of Trypanosoma brucei. The axoneme consists of 9 outer doublet microtubules
(DMTs) and a pair of central singlet microtubules, where each DMT is a 1D polymer of 96 nm axonemal
building blocks (Figure 8a). This typical 1-D lattice often exhibits imperfections like bends and twists,
posing challenges for precise particle picking (Figure 8a). Using “Auto Expansion”, TomoNet accurately
picked the 96 nm-spaced axonemal subunits from all DMTs, effectively adapting to lattice imperfections
(Figure 8b).

2.7. Application to focused ion beam (FIB)-milled cellular sample: The S-layer lattice of prokaryotic cell

We validated TomoNet’s particle-picking capability by processing one tomogram of FIB-milled Caulo-
bacter crescentus cells from EMD-23622.54 The S-layer functions as a component of the cell wall

Figure 5. TomoNet application to arrays of matrix protein in HIV VLPs. (a) Illustration of picked
“seed” particles on a spherical VLP. Green segments represent the particles’ Y-axis. Scale bar is 20 nm.
(b) “Auto Expansion” result on three VLPs within tomogram TS_01, with yellow dots representing the
center of the hexamer subunits. (c) “AI AutoPicking” particle prediction result of tomogramTS_45 shows
its ability to pick particles on all lattices of different sizes and shapes. (d) Visualization of three different
variations of the HIV Gag lattices generated by placing back averaged structures, two exhibiting a

spherical shape, and one presented as a fragment. Blue arrows indicate defects in the lattice.

e7-8 Hui Wang et al.

https://doi.org/10.1017/S2633903X24000060 Published online by Cambridge University Press

http://doi.org/10.1017/S2633903X24000060
https://doi.org/10.1017/S2633903X24000060


covering the cell body. Thus, its lattice geometry is typically defined by the shape of cells (Figure 9a). The
pleomorphic shape of C. crescentus cell in variable sizes, with the low contrast shown in this tomogram,
hindered locating subunits on the S-layer lattice and raised difficulty for efficient particle picking on its S-
layer lattice (Figure 9a).

TomoNet overcame the above challenges by utilizing the hexagonal configuration of S-layer lattices.
With minimal manual input, “Auto Expansion” picked over a thousand hexamer S-layer subunits.
The binned STA result clearly reveals the S-layer inner domain, and docking previously resolved high-
resolution structure55 (EMD-10388) into it confirms the correct hexagonal distribution with well-fitted
major domains (Figure 9b,c). Visualization of S-layer lattices also shows that the picked particles were
arranged in the expected hexagonal pattern, confirming the reliability and applicability of TomoNet as a
particle-picking tool (Figure 9d) and its broad application to structure determination of prokaryotic and
archaeal cell walls.49,56

Figure 6. Final map resolution of HIV Gag hexamer. (a) Final reconstruction of Gag hexamer (grey)
fitted with the atomic model (PDB: 5l93). (b) One segmented Gag monomer structure, inset shows a
closer view of carboxy-terminal domain overlay with the atomic model. (c) Directional Fourier shell
correlation (FSC) curves for the STA of Gag hexamer structure, with a global resolution at 3.2 Å.
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2.8. Application to in vitro assembled arrays: Nuclear egress complex (NEC) lattice

We further validated TomoNet as an integrated high-resolution STA pipeline and an efficient particle-
picking tool by processing samples containing NEC lattices within budded vehicles. Nuclear egress is a
pivotal step in herpes virus replication, driven by NEC and responsible for translocating nascent viral
particles from nucleus to cytoplasm. In our reported dataset,57 NEC heterodimers budded into large

Figure 7. Comparative visualization of lattices obtained from TomoNet and Relion tutorial. (a, b)
Visualized comparison of particles used in TomoNet and Relion tutorial within tomogram TS_01.

TomoNet can pick particles not only on a sphere-like lattice but also on others with random shapes. (c, d)
A comparison of particle picking results on two sphere-like shape VLPs from TomoNet and Relion

tutorial. (e) A zoom-in view of an irregularly shaped lattice. Coloring is based on surface curvatures at the
point of each subunit.
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vesicles with diameters ranging from 100 nm to 500 nm, forming beehive-like lattices on the inner surface
of these vesicles (Figure 10a,b). Because of their large sizes, noticeable compressions were observed
during the sample freezing, reshaping the vesicles andNEC lattices from spherical to flattened disk shapes
(Figure 10a,b). This conformational change was a consequence of the limitation in ice thickness imposed
by cryoET, which restricts the sample thickness to approximately 250 nm, consequently posing chal-
lenges for particle picking.

TomoNet successfully picked NEC hexamer subunits following the topology of lattices. The inter-
mediate STA result generated in TomoNet already showed the six heterodimers within one hexamer
subunit (Figure 10c).With these picked particles, high-resolution 3D classifications and refinements were
carried out to obtain a final reconstruction of NEC hexamer subunit at 5.4 Å resolution, without preferred
orientation bias (Figure 10c,d), and all the helices were well resolved (Figure 10e). Visualization of
subtomograms placing back shows that the large vesicle was compressed during sample freezing which
stretched the NEC lattice, making it appear flat and split at the air-water interface, while the middle part of
the lattice appears to be more curved.

2.9. Application to other types of arrays and free-floating particles

The above examples show how TomoNet’s ability to locate particles arrays arranged on flexible spheres
(HIV), cell surfaces (S-layer), and nuclear membranes (NEC), which can be considered as topologically
2D lattices. In our published work of various cryoET structures, TomoNet has also been used to locate
subtomograms arranged on flexible filaments (i.e., 1D arrays) such as the flagella of T. brucei21,47 and the
amyloid-like sheath protein on β-hoops of the prototypical archaeon,Methanospirillum hungatei.58 In the
case of 3D lattices, TomoNet has been also used to obtain the paraflagellar rod structure of T. brucei.20

Figure 8. TomoNet application to eukaryotic axoneme. (a) Orthogonal slice views of axoneme structure
ofT. brucei, showing eachDMTis a one-dimensional lattice. (b) Subtomogram placing back according to

TomoNet “Auto Expansion” picking result with each DMT colored differently.
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Since TomoNet has integrated packages and is designed for the entire cryoET and STA data processing
pipeline, it can also be used as a general-purpose package for STA toward high resolution when particles
are free floating and without local order. In the latter case, TomoNet would have the same limitation
recognized for all other cryoET software packages, that is, high resolution is currently only achieved for
large complexes, such as ribosomes.

3. Discussion

In this paper, we report the implementation and application of TomoNet and demonstrate its efficacy in
particle picking across three distinct datasets featuring particles with varying lattice configurations.
TomoNet stands out as the first software to exhaustively trace lattices following its inherent topology.
This unique approach ensures that the particle-picking results faithfully reflect in situ or in vitro lattice
shape, providing valuable insights into how these lattices are formed by their constituent subunits. For
HIV VLPs, TomoNet application enabled us to directly visualize the VLPs lattices and their defects
potentially caused by the absence of pentamer subunits. Similarly, for the NEC dataset, TomoNet
facilitated a more direct observation of lattice conformation changes resulting from the sample freezing
process. Since vesicles in this dataset were too large to be compressed from a sphere into a disk-like shape,
the lattice regions near the air-water interface became stretched and subsequently divided into smaller

Figure 9. TomoNet application to S-layer structure in FIB-milled cellular sample. (a) A tomographic
slice view shows two C. crescentus cells in a FIB-milled lamella. (b) Orthogonal slice views of the
averaged density map generated in TomoNet, showing the hexagonal distribution of S-layer inner

domains. Scale bar is 20 nm. (c) Our binned averaged map (transparent) docked with 7 copies of EMD-
10388 (colored). (d) Visualization of S-layer lattices generated by placing back hexamer subunit maps
simulated from PDB: 6P5T. Coloring is based on surface curvatures at the center of each subunit.
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Figure 10. TomoNet application to in vitro assembled NEC-boundmembrane. (a, b) Tomographic slice
views show a large NEC lattice; the insets show different views of NEC hexamer subunits. Scale bar is 20

nm. (c) Orthogonal slice views of an averaged density map generated in TomoNet show that NEC
hexamer subunits consist of UL31/UL34 heterodimers. Scale bar is 10 nm. (d) Visualization of an NEC
lattice generated by placing back averaged maps shows that the large vesicle is compressed into a disk-
like shape. The compression caused by sample freezing stretched the lattice, making it flat and split at the
air-water surface. Coloring is based on surface curvatures at the center of each subunit. (e) Atomic model

of the UL31/UL34 heterodimers fits into the final averaged map, with all helices well resolved.
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fragments. Moreover, TomoNet demonstrated its exceptional performance, even when dealing with
datasets characterized by extremely low contrast. For instance, in the cellular S-layer tomogram of a
lamella, S-layer subunits were nearly imperceptible to human observations. Therefore, “Auto Expansion”
excelled in particle picking without requiring denoising or contrast-enhancement algorithms.

Additionally, “AI AutoPicking”, the deep learning-based module, demonstrated excellent performance
on automatic particle picking, showing potential in handling a wide range of particle types even beyond
those with lattice-like arrangements. Compared to the template matching-based “Auto Expansion”, “AI
AutoPicking” has several advantages in particle picking. First, it applies to particles situated on flexible
lattices and those arranged in scattered patterns, such as cellular ribosomes. The neural network learns to
pick by discerning 3D features of individual particles, and it does not require prior knowledge about lattice
configuration. Second, it utilizes GPUs for fast convolution operations, enabling particle prediction in just
severalminutes for each tomogram.Third, it does not require the “seed” particles used in “AutoExpansion”,
which further reduces human efforts by approximately 5–15 minutes per tomogram. This is especially
beneficial for processing extensive tomography datasetswith hundreds of tomograms.However, comparing
their final output particles, “AIAutoPicking” typically picks fewer particles than “AutoExpansion” because
it misses certain particles on the flexible lattices. Thus, these two modules are complementary to each other
and can be incorporated to further explore these missing particles.

Regarding the pipeline design, each module within TomoNet is designed to be highly independent,
ensuring flexibility for integrating future methods and third-party packages. This adaptable framework
positions TomoNet as a platform of choice for other developers to build their own innovations. At present,
TomoNet is primarily tailored for integration with the Relion-related pipeline. However, it can accom-
modate specific demands and can be extended to integrate other pipelines, including emClarity,16

EMAN2,4 M,59 and others in the future. In summary, TomoNet significantly simplifies the overall
process for users in managing and monitoring every step of the complete cryoET and STA pipeline. Its
user-friendly GUI design notably reduces the entry barrier for newcomers to the fast-emerging cryoET
field. The particle-picking modules of TomoNet provide a general solution for particles organized in
lattice-like arrangements, ensuring both accuracy and efficiency, thereby facilitating the high-resolution
STA pipeline.

4. Methods

TomoNet is an open-source software package developed using Python. It follows a highly modularized
architecture with each module responsible for specific tasks in a typical cryoET and STA data processing
pipeline. Modules in TomoNet mainly cover the upper stream of the cryoET and STA pipeline including
procedures of motion correction, tilt series generation, tomogram reconstruction, CTF estimation, and
particle picking, while leaving the high-resolution 3D refinement to established software package like
Relion (Figure 1). The design of a modern GUI, established with PyQt5 platform, enhances user-
friendliness, and helps with tracking the processing progress (Figure 2). With table views, users can
obtain a comprehensive overview of the entire dataset, facilitating direct and intuitive management for
each tomogram (Figure 2).

4.1. Implementation of modules for motion correction, tomogram reconstruction and CTF estimation

Motion correction, tomogram reconstruction, and CTF estimation related functions are organized into
individual modules in TomoNet, with the integration of corresponding external software packages
including MotionCorr2,42, IMOD43 or AreTomo,60 and CTFFIND4,44 respectively. Since their codes
are not rewritten in TomoNet, users have to install each of them before using the corresponding modules.

The “Motion Correction” module is used to correct bean-induced sample motion. It requires an input
folder path that contains all the dose fractionated frames, then user can specify their MotionCorr2
parameters in the GUI. After clicking the “RUN” button, TomoNet will perform motion correction for
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all the input images and save the results in a separated directory. This module also allows on-the-fly
motion correction during data collection.

The “3D Reconstruction” module comprises two sub-functions: “TS Generation” and
“Reconstruction.” Within “TS Generation,” users can readily assemble tilt series for each tomogram
from the previously generated motion corrected images. It provides advanced options for data cleaning,
such as setting aminimum acceptable number of tilt images for a tomogram, removing duplicate images at
the same tilt angle by excluding images with older time stamps. The “Reconstruction” tab automatically
reads and lists all tomograms in a table view, with essential information, such as tilt image number and
alignment errors, and action buttons for restarting, continuing, and deleting individual tomogram
reconstruction processes. This simplifies the assessment of reconstruction results and facilitating tomo-
gram reconstruction management.

The “CTF Estimation” module is used for the tilt series defocus estimation, with support of parallel
processing using multiple CPUs. Its outcomes are also listed in a table view with visualization features,
such as displaying defocus at 0 degree and plotting the defocus distribution across all tilt angles.

4.2. Implementation of the “Manual Picking” module

The “Manual Picking”module is designed for general management of manual particle picking, especially
for the preparation of “seed” particles required in “Auto Expansion.” IMOD stalkInit picking criteria is
implemented to define the Y-axis for each particle with 2 points, and the center in between them. In the
example of HIV dataset, 5–10 particles were manually picked as the “seed” particles for each VLP lattice,
which only takes several minutes per tomogram (Figure 5a).

4.3. Design and implementation of the “Auto Expansion” module

“Auto Expansion” consists of three steps as shown in Figure 2. “Generate tomograms.star” is used to
generate a STAR format file thatmaintains information of tomograms and their associated “seed” particles
to be applied in “Auto Expansion.” “Generate Picking Parameter” is used to set up parameters required for
particle set expansion through the described iterative process. The parameters include angular search
ranges and steps, translational search ranges and steps, a “transition list” (explained later), box size used in
particle alignment, distance between neighboring repeating subunits, reference and mask map, cross-
correlation threshold, and so forth The “transition list” is customized by users to describe the targeting
lattice configuration, with each transition denoted by [sx, sy, sz], where sx, sy and sz are translational shifts
from the center of “seed” particle to one of its neighbors along X, Yand Z-axis, respectively. Thus, “Auto
Expansion” can use it to guide the search of “candidate” particles. These user-defined parameters will then
be saved into a JSON format file. “Run Particle Expansion” takes the above STAR and JSON format files
as inputs to perform the iterative particle set expansion.

During the “Auto Expansion” processing, three directories will be generated for each tomogram. They
are “TomoName” as the working directory for carrying out the current iteration, “TomoName_cache” that
stores intermediate results from finished iterations, and “TomoName_final” that stores the final particle-
picking results. The iteration number of “Auto Expansion” is typically greater than one. However, “Auto
Expansion” allows for some special usage cases. For example, in the scenario when users need to modify
the particle-picking setting such as a different cross-correlation threshold, user can generate the new
picking parameter file, then execute “Run Particle Expansion” by setting the iteration number as 0. This
prompts the program to skip the “candidate” searching steps, but just gather all intermediate results saved
in “TomoName_cache” directories, then generate a new “TomoName_final” result.

4.4. Design and implementation of the “AI AutoPicking” module

The “AI AutoPicking” module comprises three main steps, “Prepare Training Dataset”, “Train Neural
Network” and “Predict Particles coordinates.” It uses supervised machine learning that requires users to
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provide ground truth, i.e., tomogram with the associated particle coordinates files, for the model training.
In this study, the ground truth data were prepared by “Auto Expansion.”

In “Prepare Training Dataset,” extracted subtomograms are used as inputs to the network training
model for two reasons. First, the size of the tomogram used for picking is typically around
1000x1000x1000 voxels, which is not applicable to be loaded in the GPU memory, but the size of
extracted subtomograms is under 100x100x100 voxels. Second, it helps with increasing the number of
training data pairs to avoid over-fitting during the network training. For the model output, the particle
coordinates information was embedded into 3D binary segmentation maps, where the voxels associated
with particles were set to 1, otherwise set to 0 (Figure 4a).

In “Train Neural Network,” the above-extracted subtomograms paired with their associated segmen-
tation maps are used to train a neural network model to be a binary classifier that predicts whether a voxel
is near the center of a particle. The network architecture used is derived from the one used in IsoNet 50 as it
is well-suited for capturing generalized features of 3D objects (Figure 4b). Since the learning task is voxel-
wisely binary classification, cross-entropy loss function is used instead of minimum squared error (MSE).
Equipped with one RTX 3080Ti graphic card, the training process can be completed swiftly within 1–
2 hours if using the default parameters.

In “Predict Particles coordinates”, users can apply the trained model on the entire tomography dataset
for particle coordinate prediction (Figure 4c). For each tomogram, TomoNet generates a predicted
segmentation map first, then its particle coordinates information can be retrieved from the segmentation
map by utilizing the hierarchical clustering algorithm from scipy module in Python.

4.5. Implementation of tools within the “Other Utilities” module

The “Other Utilities”module consists of two sub-functions: “Recenter | Rotate | Assemble to. star file” and
“3D Subtomogram Place Back” as useful tools for post-particle-picking processing. The first one allows
users to assemble and convert the particle-picking results into a STAR format file following the Relion4
convention, reset particle center to its symmetric center, and align the rotation axis to Relion Z-axis. The
secondone takes a user-provided STAR format file that contains particle information as input, then generates
a ChimeraX61 session file for 3D subtomograms placing back and a clean version of STAR format file with
“bad” particles removed. This not only allows users to validate the accuracy of particle picking before
importing into Relion but also enables direct observation of the distribution and configuration of subunits
after the high-resolution 3D refinements, providing overall in situ lattice observations (Figure 7).

4.6. Processing tomograms of HIV VLP dataset

The HIV VLP dataset was downloaded from the Electron Microscopy Public Image Archive (EMPIAR)
with the accession code EMPIAR-10164.40 Four tilt series, TS_01, TS_43, TS_45, and TS_54, were used
in this study. Downloaded micrographs were loaded into the TomoNet pipeline to perform tilt series
assembly, CTF estimation, and tomogram reconstruction using the WBP algorithm.

Four-time binned tomograms with 5.4 Å pixel size were used for further particle picking. First,
tomograms TS_01 and TS_43were used for “seed” particles preparation on 3 selectedVLPs per tomogram,
and an initial reference map was generated by averaging them in PEET. Second, one run of “Auto
Expansion”was applied on the above two tomograms to get more particles, such as to refine the reference.
Third, with an improved reference, a new run of “Auto Expansion” was applied on the selected 3 VLPs in
both tomogram (Figure 5b), then the particle-picking result was used for neural network training in “AI
AutoPicking.” Fourth, after the particle prediction on all four tomograms with a trained model, “AI
AutoPicking” produced 4,860, 3,704, 4,550 and 2,101 particles for tomograms TS_01, TS_43, TS_45,
and TS_54, as shown in Figure 5c. Lastly, the predicted particles were input as “seed” particles for the final
run of “Auto Expansion”, resulting in 5,765, 4,043, 5,006, and 2,838 particles for tomograms TS_01,
TS_43, TS_45 and TS_54, which were imported into Relion to perform high-resolution refinements.
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Following the same procedure carried out in the Relion4 tutorial together with TomoNet 3D classifica-
tion, theGaghexamer structurewas resolved at 3.2Å resolutionwith 13,558 particles from four tomograms.
Resolution was calculated in Relion and on 3DFSC Processing Server.62 The global resolution reported is
based on the “gold standard” refinement procedures and the 0.143 FSC criterion (Figure 6c).

4.7. Processing one tomogram of T. brucei Axoneme

The tomogram of T. brucei axoneme is from our previous work.21 Initially, one “seed” particle was
manually picked for each DMT, followed by four iterations of “Auto Expansion” applied to 9 “seed”
particles, resulting in a total of 75 particles. EMD-20012 was used for subtomogram placing back to
validate our picking results and visualize the entire axoneme architecture.

4.8. Processing one tomogram of C. Crescentus S-layer

The FIB-milled C. crescentus data of one reconstructed tomogram was downloaded from Electron
Microscopy Data Bank (EMDB) with the accession code EMD-23622.54 This tomogram was directly
used for “seed” particles preparation on two of the cells. Around 30 “seed” particles weremanually picked
and averaged using PEET to generate an initial reference map. “Auto Expansion” was applied on the
“seed” particles for 5 iterations to get more particles such as to refine the reference map. With the
improved reference map, another run of “Auto Expansion” was applied to the same “seed” particles for
15 iterations to search all particles on the outer surface of the cells, and finally yielded ~1,500 S-layer
particles of hexamer subunits (Figure 9d).

4.9. Processing tomograms of NEC budding in vitro

The cryoET grid preparation and data collection were previously described.57 Motion correction,
tomogram reconstruction, and CTF estimation were performed using TomoNet. Around 50–150 “seed”
particles were manually picked for each tomogram. “Auto Expansion” was applied on a total of
35 tomograms and yielded the ~48,000 particles besfore Relion refinements. Following one round of
3D auto-refine jobs under four-binned pixel size and several rounds of 3D auto-refine jobs under two-
binned pixel size and one round of 3D auto-refine under unbinned pixel size, together with TomoNet 3D
classifications, the NEC hexamer structure was resolved at 5.4 Å resolution with totally 35,039 particles.

4.10. 3D visualization

IMOD43 was used to visualize the 2D tomographic and segmentation map slices. UCSF ChimeraX61 was
used to visualize the STA results and the lattices generated by the 3D subtomogram place back. The
atomic models were fitted into the density map using the “fit in map” tool in ChimeraX.

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/
S2633903X24000060.
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