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Abstract

We provide a simple and direct proof of the completeness of the L' -space of any vector measure taking
its values in the class of Frechet spaces which do not contain a copy of the sequence space a).

1991 Mathematics subject classification (Amer. Math. Soc): primary 28B05.

Bartle, Dunford and Schwartz [1] (respectively Kluvanek and Knowles [6], and
Lewis [7]) developed integration theories in Banach (respectively locally convex)
spaces in order to integrate scalar functions with respect to a vector measure. Kluvanek
and Knowles in [6] and, more recently Curbera in [2,3] and Okada in [8], among others,
have studied topological and order properties of the L1-space of an X -valued vector
measure m, with X a vector space over IR. From the point of view of analysis it is
most important to be able to decide when L' (m) is complete for its natural topology of
uniform convergence of indefinite integrals. This question is intimately related to the
theory of closed vector measures and forms a major part of the monograph [6]. Under
mild completeness assumptions on the real space X it is shown that Lx (m) is complete
if and only if m is a closed measure. The method of proof is based on a careful and
detailed analysis of various topologies induced on L' (m) by certain families of scalar
measures and the restriction of these topologies to certain subsets of L](m); see [6].
Nevertheless, as attractive and general as these completeness results of L](m) are, it
certainly cannot be claimed that the proofs are particularly transparent.

The aim of this note is to give a short, direct and transparent proof of the com-
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pleteness of L1 (m) for any vector measure m taking its values in the class of Frechet
spaces which do not contain an isomorphic copy of the sequence space u> = <CN.
This is possible due to a recent result of Fernandez and Naranjo [4] characterizing
such (real) Frechet spaces as precisely those in which Rybakov's theorem holds. This
class of spaces contains all Banach spaces and so, in particular, we provide a simple
and transparent proof of the completeness of the L' -space for Banach space-valued
measures. As far as the author is aware there does not seem to be such a 'simple'
proof explicitly available in the literature even in this special case when m is Banach
space-valued (other than the general results in [6]).

In what follows we denote by X a Frechet space over C and by {q(r) }%x an increasing
sequence of seminorms defining the topology of X. Consider a countably additive
measure m : E —»• X defined on a cr-algebra E of subsets of some set Q. For each
x' e X' (the continuous dual space of X), let (m, x') : E —>• C denote the complex
measure E i->- (m(E), x') for E e E. The q{r)-semivariation of m is defined to be the
function qir){m) : E —*• [0, oo) given by

(1) q(r)(m)(E) = s\xv{\(m,x')\{E):x' e ( / ; ) , £ e E ,

for each r e N, where U° is the polar of [x e X : <7(r)(-v) < 1} and \{m, x')\ is the
total variation measure of (m, x'). Then

p { ^ ( ( ) ) f e E , F c E) < q{r)(m)(E)

< 4sup{qin(m(F)) : F e L, F C £}

for each £ € S and r € N; see [7].
Let /rz : E —> X be a vector measure and /it : E —» [0, oo) be a finite measure.

Then we say that m is absolutely continuous with respect to fi, denoted by m <£ M» if
and only if m{E) = 0 whenever ^u(£) = 0. This is equivalent to qir){m){E) = 0, for
all r € N, if and only if /x(E) = 0 which, in turn, is equivalent to m{E) —> 0 in X if
and only if ix(E) -*• 0, E e E. A Frechet space X is said to have Rybakov's property
[4] if for every X-valued vector measure m there is x' € X' such that m <3C |(/n, * ' ) | .
The classical theorem of Rybakov [9] states that Banach spaces have the Rybakov
property. The following result is an extension of Rybakov's theorem to a class of
Frechet spaces; it was established (amongst other interesting results) in [4] for all real
Frechet spaces not containing a copy of CDR = RN. The argument is based on the
existence of exposed points in the range of m. The usual 'complexification argument'
can be applied to extend this result to complex Frechet spaces. However, we prefer
here to give an alternate proof which applies directly in both real and complex spaces.

PROPOSITION 1. A Frechet space X has Rybakov's property if and only if it does
not contain an isomorphic copy ofco.
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PROOF. If X contains a copy of to, then it contains a complemented copy of to [5;
Theorem 7.2.7]. It is then straightforward to exhibit an X-valued measure for which
no Rybakov functional x' e X' exists; see Examples 1.1 and 1.2 in [4].

Conversely, suppose that X does not contain a copy of co. Then X admits a
continuous norm || • || : X —>• [0, oo), [5; Theorem 7.2.7]. Let m : £ -> X be any
vector measure. If Xy.fl denotes X equipped with the norm topology induced by || • ||,
then m : £ —»• XN „ is also cr-additive. Let XH be the (Banach space) completion
of X|;n in which case m is still a -additive when considered as being X|M| -valued.
By the classical Rybakov theorem for Banach spaces there is S G (Xyy)' such that
m <<c \{m,l-)\, that is, m(E) = 0 in X|M| whenever | (m,f) | (E) = 0. Of course, the
restriction So of S to X is an element of (X|MI)'. Since

|(jr. So)I < C , | | J T | | <C2q
{r)(x), x G X,

for some ;• e N and constants C, > 0 it is clear that So £ X'. But, m(E) = 0 in
^n u ^ îi-ii if a r |d o n ly if w(£ ) = 0 in X (as || • || is a norm in X) and so also
m <£ \(m, So)I when m is considered as X-valued. Hence, So is Rybakov functional
for m.

The following technical result [7; Lemma 2.3] will be needed later; it is a con-
sequence of the Vitali-Hahn-Saks theorem.

LEMMA 1. Let v : £ —> C be a complex measure on a a-algebra £ . Let f, :
£2 —»• C, n = 1, 2, . . . , be a sequence of v-integrable functions and f : Q —> C be a
function such that

(i) lim,,^^ f,,(w) = f (w), for each w € Q, and
(ii) {fE /„ d v } ^ , ;s Cauchy in C,for each E e £ .

77/en / e Ll(v) and f, —» / /'« L'(^)-

DEFINITION 1. Let m : £ —>• X be a vector measure. A £-measurable function
/ : SI —> C is called m-integrable if

(i) / G L\{m,x')), for each JC' G X', and
(ii) for each £ G £ there exists an (necessarily unique) element of X, denoted by

fE f dm, which satisfies

= ( fd(m,x'), x G X'.
JE

The Orlicz-Pettis theorem ensures that if / is /rz-integrable, then the set function
mf : £ —> X defined by mf(E) = fE f dm, for each £ G £ , is again a vector
measure; it is called the indefinite integral of / with respect torn. If mf happens to
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be the zero vector measure, then / is said to be an w-null function. In particular,
if / = XE is an /w-null function, then we say E is an w-null set. Two w-integrable
functions / and g are called m-equivalent if \f — g\ is w-null. In the usual way
L'(w) then denotes the space of all equivalence classes (modulo w-equivalence) of
w-integrable functions. It becomes a (metrizable) locally convex Hausdorff space
equipped with the sequence of seminorms

(3) \\f\\r=qir)(mf)(Q), f G L\m),

for each r € N. As noted above the following result is known for real Frechet spaces;
see IV.4 Theorem 1 and IV.7 Theorem 1 in [6].

PROPOSITION 2. Let X be a Frechet space and w : £ —• X be a vector measure.
Then L' (w) is complete and hence, in particular, is again a Frechet space.

As mentioned before our aim is to give a simple and direct proof of Proposition 2
in the case when the complex Frechet space X does not contain a copy of co.

So, suppose that this is the case. By Proposition 1 there is x' e X' with w <£
\(m,x'}\. Let {/n}^l, be a Cauchy sequence in Lx{m). Since x' : X —• C is
continuous there is a constant a > 0 and r(0) € N such that | (x, x') | < ar<7(r(0))(.v), for
each A' e X. By considering a~lx' and noting that m <JC \{m,a~lx')\ we may suppose
that a = 1. Hence, \{x, x')\ < q°'m(x) for x e X and so .v' e U°m. Accordingly, by
(1) and (3) we have that

I |/, - fn\d\(m,x')\ < \\fk - / J | , , 0 ) , k , n e N ,
In

which shows that {/n}^, is Cauchy in L[((m,x')). Hence, there is / e L'((w,.v'))
suchthat/,, —>• / i n L ' ( ( w , x')). Then there is a subsequence {/,,a)}^i, with/,, a , —> /
pointwise |(w, ;r')| - a.e. on Q, and hence also w - a.e. on £2. That is, there is an
w-null set A e S such that /n(*)(iu) -» / ( i f ) for all u> e ^ \ A. If necessary redefine
/ and each fn{k), k e N, to be zero on this w-null set so that fn{k) —>• / pointwise
everywhere on Q.

Fix y' e X'. Then there is ft > 0 and j € N such that |(.v, >'')| < Pq(j)(x) for all
i e X. In particular, / ? " ' / £ t/°. So, for any fixed E € E we have

fn(k)d(m,y')- f fMI)d(m,y') < 0 (' \fMt) - fnll>\d\(m, ^y')\
JE JE

forall^,/ € N, which shows that [fE fn(k)d(m, y')}k
yt] is Cauchy in C. ThenLemmal

implies that / e Ll({m, y')) and

(4) lim / | / - /„(*) | of | (w, ) ' ' ) | = 0./* 1/ - /«(

https://doi.org/10.1017/S1446788700001737 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001737


[5] Rybakov's theorem in Frechet spaces and completeness of L1-spaces

Fix r 6 N. Then for each fixed £ e E w e have

251

(" ( / f,Ht)dm - / fni = sup

< sup

( / (fn(k) — fn(l))dm,z : z e Ul

\fn{k)-f,m\d\(m,z')\:z'£U°

— II/#!<*) — fnU ) \ \ r ,

for all k, I e N. Since {/,,u-,}*i| is Cauchy in V (m) it follows that {/£ /„<*, dm}f=l is
Cauchy in X and so there exists xE e X such that fE f,,^ dm —> A:£ (in X) as k —>• oo.
Define / £ / Jw := ,v£. Then

/ f \ I f \ f f
/ fdm,y)=hm{ flHk)dm, y ) = hm / f,md{m, y) = I fd{m, y ) ,

\JE I k~*x\JE I k^™JE JE
where the last equality follows from (4). Since E e E and y' e X' are arbitrary we
see that the requirements of Definition 1 are satisfied, that is / e L\m).

Since [fn}^=[ is Cauchy in Ll(m) to show that /„ —>• / in L'(m) it suffices to show
that the subsequence {/,,«))^i converges to / in L\m). So, fix e > 0. Given /• € N
there exists K e N such that

(5) 11/,,,;, - /„

Fix E s E. If k > K then the left-hand inequality in (2) with mifnk^fn[h) in place of
m, together with (5) implies that

(6) qir) (J f dm - j /„,,, dm\ = limq" (j /n(/) dm - j f,m,dm I < e/4.

But then the right-hand inequality in (2), now with m{f _yJM(l) in place of m, together
with (6) implies that | | / — /,,(A)||, < e, for all k > K. Accordingly, | | / — /,,<A)||, -> 0
as k -> oo. Since r e N is arbitrary we see that fn{k) —>• / in L\m) and the proof is
complete.
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