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A Gap Principle for Subvarieties with
Finitely Many Periodic Points

Keping Huang

Abstract. Let f ∶ X → X be a quasi-ûnite endomorphism of an algebraic variety X deûned over a
number ûeld K and ûx an initial point a ∈ X. We consider a special case of the Dynamical Mordell–
Lang Conjecture, where the subvariety V contains only ûnitely many periodic points and does not
contain any positive-dimensional periodic subvariety. We show that the set {n ∈ Z⩾0 ∣ f n(a) ∈ V}
satisûes a strong gap principle.

1 Introduction

he Dynamical Mordell–Lang Conjecture predicts that given an endomorphism
f ∶X → X of a complex quasi-projective variety X, for any point a ∈ X and any sub-
variety V ⊆ X, the set SV ∶= {n ∈ Z≥0 ∣ f n(a) ∈ V} is a ûnite union of arithmetic
progressions (sets of the form {a, a+ d , a+ 2d , . . .} with a, d ∈ Z≥0). he Dynamical
Mordell–LangConjecturewas proposed in [16]. See also [1] and [10] for earlierworks.
In the case of étale maps we know that the Dynamical Mordell–Lang Conjecture is
true (see [5] and [8]). Xie proved in [22] the Dynamical Mordell–Lang Conjecture
for polynomial endomorphisms of the aõne plane.

he p-adic interpolationmethod is one of themost important tools for tackling the
Dynamical Mordell–Lang Conjecture. he basic idea is to construct a p-adic analytic
function G∶Zp → X such that G(n) = f n(a) (replacing f by an iterate if necessary).
his allows one to use the tools from p-analytic functions to calculate the set SV .

However, in general it is unknownwhether such an interpolation exists for any en-
domorphism f or any initial point a. For some evidence of its nonexistence see [2].
hen we might not be able to prove the Dynamical Mordell–Lang Conjecture using
the p-adic interpolation in those cases. However, by a discovery of Bell, Ghioca and
Tucker (see [8,heorem 11.11.3.1] or heorem 4.1 below), wemight expect an approx-
imating function G such that G(n) approximates f n(a) very closely. Suppose Q is a
polynomial vanishing on V . hen the roots of Q ○G givemuch restriction to those n
such that f n(a) ∈ V . his allows us to prove a weaker version of the Dynamical
Mordell–Lang Conjecture in certain cases.

To apply the approximation result, we need to exclude a case when the orbit con-
verges p-adically to a periodic point on V . Oneway to guarantee this is to ensure that
the residue class of the orbit does not meet the periodic point mod p a�er a certain
number of iterates. heorem 1 of [2] gives this kind of avoidance result for P1. In this
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paper,wewill generalize this result to quasi-ûnite endomorphisms of quasi-projective
varieties. his enables us to prove a strong gap principle under certain conditions.

hemain result of this paper is the following theorem. For the deûnition of non-
singular variety, see [19, Section 1.5].

heorem 1.1 Suppose f ∶X → X is a quasi-ûnite endomorphism of a nonsingular
variety X. Let V ⊆ X be a subvariety. Assume that X, V , and f are all deûned over
a number ûeld K. Assume that there are only ûnitely many periodic points in V(K)
and that V does not contain a positive-dimensional periodic subvariety. Assume that
a ∈ X(K) is not preperiodic under f . hen the set SV ∶= {n ∈ Z≥0 ∣ f n(a) ∈ V(K)}
has the property that

#{i ≤ n ∣ i ∈ SV} = o(log(m)(n))

for any ûxed m ∈ Z>0 (where log(m) is the m-th iterated logarithmic function).

his theorem is an analog ofheorem 1.4 of [3]. See also [7,heorem 1.4] for an-
other result along this line. In a broader sense, all these theorems can be thought of as
dynamical analogs of the gap principle in Diophantine geometry. In [11] the authors
showed that good approximations of algebraic numbers have heights growing rapidly.
Let C be a curve of genus at least 2. Mumford proved in [21] that ifwe order the ratio-
nal points of C according to Weil height, then their Weil height grows exponentially.
Faltings later proved in [13] that the number of rational points in C is actually ûnite.
In this article, by sparsity of SV we mean a large gap between consecutive numbers,
ordered increasingly. One diòerence is that in the results in dynamics the “gaps” are
much larger than in the Diophantine geometry. But our ultimate goal is also to show
that SV is ûnite in these cases.

We say that a morphism f ∶X → X of a normal variety X is polarizable if there is
an ample divisor L of X such that f ∗L ≅ L⊗d for some d > 1. Our result is related to
the following.

Conjecture 1.2 (Dynamical Manin–Mumford, [23]) Suppose f ∶X → X is a polariz-
able endomorphism of a variety X. If a subvariety V ⊆ X contains a Zariski dense set
of preperiodic points, then V is itself preperiodic.

In the casewhen f is a split rationalmapon (P1)n , theDynamicalManin–Mumford
Conjecture is proved in [14] (see also [15]). Unfortunately, there is a counterexample
in [18] to Conjecture 1.2. In the same paper, the authors also proposed a reûned con-
jecture in Conjecture 2.4 there.

If the Dynamical Manin–Mumford Conjecture is true for f ∶X → X and V ⊆ X,
then the condition that V does not contain a positive-dimensional subvariety would
imply that the set of preperiodic points onV is not Zariski dense. In particular, ifV is
a curve, then the condition that V is not periodic would imply that there are ûnitely
many periodic points on V . For more about the Dynamical Manin–Mumford Con-
jecture, see [24]. On the other hand, [12] shows that if f is polarizable, then the subset
of X(K) consisting of all periodic points of f is Zariski dense in X.
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By heorem 1.1 and the above discussion, we are able to prove the following theo-
rem, which is also a consequence of [3,heorem 1.4].

heorem 1.3 Let X = (P1)n . Suppose f ∶X → X is given by (x1 , . . . , xn) ↦ ( f1(x1),
. . . , fn(xn)) where each f i is one-variable rational function of degree at least 2. Let
V ⊆ X be a non-periodic curve. Suppose X, V , and f are all deûned over a number
ûeld K. hen the set SV ∶= {n ∈ Z≥0 ∣ f n(a) ∈ V(K)} has the property that

#{i ≤ n ∣ i ∈ SV} = o(log(m)(n))

for any ûxed m ∈ Z>0 (where log(m) is the m-th iterated logarithmic function).

he avoidance result below is a key step towards the proof of heorem 1.1. It is
useful in many other contexts. It is a generalization ofheorem 5 of [2] and its proof
goes parallel with that of the latter theorem, with simpliûcations in certain steps.

heorem 1.4 Suppose f ∶X → X is a quasi-ûnite endomorphism of a nonsingular
variety X. Let V ⊆ X be a subvariety. Assume that X, V , and f are all deûned over
a number ûeld K. Assume that there are only ûnitely many periodic points γ1 , . . . , γr

in V(K) and that V does not contain a positive-dimensional periodic subvariety. hen
there are a ûnite set of places S of K, a positive integer M, and a set P of primes of K
with positive density such that for all p′ ∈ P, for all m ≥ M, for all 1 ≤ i ≤ r, and for all
a ∈ X(OS ,K) not preperiodic, we have f mp′ (ap′) ≠ (γ i)p′ .

A precursor of this kind of avoidance result can be found in [4, Section 4]. We
follow the idea of the proof in [2] to proveheorem 1.4. First, we ûnd a single prime
p at which the reduction of a does not hit γ i a�er the M-th iteration. Note that p
might ramify, but in contrast with the treatment in [2] we use Corollary 3.6 to obtain
a uniûed way to ûnd a Frobenius “coset” in both ramiûed and unramiûed case, and
then we use the Chebotarev density theorem to ûnd a family of primes with the same
Frobenius conjugacy class, and hence prove the avoidance theorem.
For the proof of heorem 1.1, a�er some reductions we use heorem 4.1 to ûnd

an approximate interpolating function G. his allows us to use the zeros of G to ob-
tain information about the set SV . We need heorem 1.4 to avoid one case in which
we cannot say much about SV . A key technical result is Proposition 4.2, which is a
modiûcation ofheorem 11.11.3.1 of [8].

he organization of this paper is as follows. Section 2 gives the basic notation and
deûnitions, as well as some simple reductions. In Section 3, we prove the avoidance
result. In Section 4, we apply the approximate p-adic interpolation to demonstrate
heorem 1.1.

2 Definitions and Preliminaries

Deûnition 2.1 Suppose ϕ∶X → Y is amorphismof algebraic varieties. We say that ϕ
is quasi-ûnite if each point y ∈ Y has ûnitely many preimages.

We need the following simple observation.
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Lemma 2.2 Ifheorem 1.1holds for f k with initial points a, f (a), f 2(a), . . . , f k−1(a),
then heorem 1.1 holds for f with initial point a.

Proof he number k is independent ofm and n. hen the result is clear as a sum of
k numbers of size o(log(m)(n)) is still of size o(log(m)(n)). ∎

Suppose f ∶X → X is a quasi-ûnite endomorphism of a variety X. Let V ⊆ X be a
subvariety. Assume that X, V , and f are all deûned over a number ûeld K. Suppose
γ1 , . . . , γr are all the periodic points of f on V . Replacing f by an iterate we may
assume that all γ i are ûxed points. Note that by Lemma 2.2 this does not aòect the
gap property in heorem 1.1. Extending K if necessary wemay assume that all γ i are
deûned over K. Suppose S is a ûnite set containing all the inûnity places of K and all
the ûnite placeswhere the reduction of X is not a nonsingular variety or the reduction
of f is not well-deûned. Choose an S-integral model X of X, that is, a scheme X
�at over the ring OS ,K of S-integers in K, such that the generic ûber X ×OS ,K K is
isomorphic to X.
At the expense of expanding the size of S by a ûnite number, we may do several

simpliûcations. We may assume that f can be extended to a morphism of schemes
f ∶X→ X deûned overOS ,K . Wemay also assume that the points γ1 , . . . , γr are deûned
over OS ,K . Furthermore assume that no element in f −1(γ i) ∖ {γ i} hits γ i modulo
p for any p ∉ S and for any 1 ≤ i ≤ r. For a prime p of K outside S, denote by
(γ1)p , . . . , (γr)p, the extendedpointsof γ1 , . . . , γr on the specialûber Xp ∶= κ(p)×OS ,K

X, and denote by fp the reduction of f at p.
For any prime p ofK such that the reduction Xp is nonsingular,we use the notation

as below. Let p be the prime number such that pZ is the contraction of p in Z. Let ov
be the completion of the local ring (OK)p and suppose π is a uniformization element
of ov . For f ∈ ov[x1 , . . . , xm] we let ∥ f ∥ be the supremum of the absolute values of
the coeõcients of f . We let ov⟨x1 , . . . , xm⟩ be the completion of ov[x1 , . . . , xm] with
respect to ∥ ⋅ ∥; it consists of all power series in x1 , . . . , xm with the property that the
absolute values of its coeõcients tend to 0.

3 The Proof of Theorem 1.4

We follow the idea of the proof in [2]. We need some lemmas.

Lemma 3.1 With f , X ,X, S as in Section 2, choose a prime p ofOK̄ such that p∩OK ∉
S. Assume that γp is not a periodic point modulo p. hen for each ûnite extension L/K,
there is an integer M such that for all m ≥ M and for all β ∈ X(K) with f m(β) = γ, we
have [OL(β)/τ ∶ OL/q] > 1 where τ = p ∩OL(β) and q = p ∩OL .

Proof Since γ is not periodicmodulo p and the set Xp(OL/q) is ûnite,we know that
there exists an M such that for all m ≥ M, the set {x ∈ Xp(OL/q) ∣ f mp (x) = γp} is
empty. It follows that [OL(β)/τ ∶ OL/q] > 1. ∎

Assume that γ is a ûxed point modulo p. Suppose η j ∈ f −1(γ) ∖ {γ} are all the
preimages of γ other than γ itself. Let E be the compositum of K with all the deûning
ûelds of η j .
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Lemma 3.2 Let f , X ,X, S be the same as in Section 2 and in the above paragraph.
Choose a prime p of OK̄ such that p ∩ OS ,K ∉ S. hen for each ûnite extension L/E,
there is an integer M such that for all m ≥ M and for all β ∈ X(K) with f m(β) = γ and
f t(β) ≠ γ for t < m, we have [OL(β)/τ ∶ OL/q] > 1where τ = p∩OL(β) and q = p∩OL .

Proof his is a slight generalization of the proof of Proposition 1 of [2]. We apply
Lemma 3.1 to each η j . he assumption about S implies that η j /≡ γ (mod p). here-
fore none of (η j)p is periodic under fp. We can ûnd M j such that for all m ≥ M j , if
β ∈ X(K) satisûes f m(β) = η j and f t(β) ≠ η j for t < m, then we have [OL(β)/τ ∶
OL/q] > 1. Since there are ûnitely many η j , we can set M ∶= maxM j + 1. Now for all
m ≥ M, if β ∈ X(K) satisûes f m(β) = γ and f t(β) ≠ γ for t < m, then f m−1(β) = η j
for some j. Hence we have [OL(β)/τ ∶ OL/q] > 1. ∎

he lemma below shows that passing to integral closures aòects only ûnitelymany
primes.

Lemma 3.3 Suppose B′ ⊆ B′′ are both integral subrings with ûeld of fraction E, a
number ûeld. Assume that B′′ is integral over B′. hen there is a prime q of B′′ lying
above p, and furthermore for all but ûnitely many prime p ∈ B′, the prime q is unique
and we have κ(q) = κ(p).

Proof he ûrst conclusion holds by the going-up theorem. he ring B′p is a discrete
valuation ring for all but ûnitely many p. For these p the integral closure of B′p in its
ûeld of fraction is still B′p. Hence κ(q) = κ(p). ∎

he advantage of passing to the integral closures is thatwe have the same automor-
phism group at the level of ûelds and at the level of rings. Clearly R is normal over R i

and OS ,K . Let G = Gal(F/K) and let H i = Gal(F/Frac(R i)). hen RG = OS ,K and
RH i = R i as R and R i are integrally closed. Let Ti be the set of le� cosets of H i in G.
For each prime q′ of F, suppose p′ = q′ ∩ K. Let Dq′ = D(q′/p′) and Iq′ = I(q′/p′)
denote the decomposition and inertia groups of q′. Wemay viewG as a group of per-
mutations of the set Ti . he following lemma is part of Lemmas 3.1 and 3.2 of [17].
his lemma gives a uniûed approach of treating ramiûed and unramiûed primes.

Lemma 3.4 here is a group isomorphism Dq′/Iq′ ≅ Gal(κ(q′)/κ(p′)), and the
number of primes q′i ⊂ R i lying over p′ such that κ(q′i) = κ(p′) is thenumber of common
orbits of Dq′ and Iq′ on Ti . ∎

We then have the following.

Lemma 3.5 If there is no q′i lying over p′ with residue degree 1, then for all x̄ ∈
Xp(O/p), the orbit under fp does not hit γp for the ûrst time at the M-th iterate. ∎

he above corollary applies to any p′, but we will apply it to p.
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Figure 1: he Diagram.

Corollary 3.6 Use notation as in the paragraph before Lemma 3.4. Suppose there is
no 1 ≤ i ≤ s such that κ(q′i) = κ(p′). hen there is an element σ ∈ G such that σ has no
ûxed point on any of Ti .

Proof By Lemma 3.4, Dq′/Iq′ ≅ Gal(κ(q′)/κ(p′)) is cyclic. Choose σ ∈ G such that
σ̄ ∈ Dq′/Iq′ is a generator ofDq′/Iq′ . Assume by contradiction that some t ∈ Ti is ûxed
by σ and write Dq′ = ⋃m

j=1 Iq′σ j where m = ∣Dq′/Iq′ ∣. Now Dq′(t) = ⋃m
j=1 Iq′σ j(t) =

Iq′(t). Hence by Lemma 3.4 this is a contradiction. ∎

Example 3.7 he converse of Corollary 3.6 is not true. Let K = Q, s = 1, p′ = (2)
and let Frac(R1) = F = Q(

√
−1). hen the generator σ of G lies in Iq′ , has no ûxed

point on T1, and yet κ(q′1) = κ(p′).

From now onwe replace K by E as in the paragraph before Lemma 3.2. Our goal is
to apply theChebotarev density theorem to obtain inûnitelymany primes p′ satisfying
Lemma 3.2. However, the prime pwe foundmight be ramiûed. So, a priori, wemight
need a diòerentway of ûnding a conjugacy class of a certain Galois group to apply the
Chebotarev density theorem. ByCorollary 3.6, there is a uniûedway to treat the cases
when the inertia group is identity or not.

Proof of Theorem 1.4 Use S as in Section 2. Fix a prime p of OK̄ as in Lemma 3.2.
Let F/K be obtained by composing the deûning ûeld of all β ∈ X(K) such that the
orbit of β hits the set {γ1 , . . . , γr} for the ûrst time at the M-th iterate. Denote by B
the set of all such β. Suppose B = {β1 , . . . , βs}. Suppose A i and A are the smallest
OS ,K-algebras over which β i and B are deûned. By our assumption in Section 2, A i
and A are all ûnitely generatedmodules over OS ,K . hen we have inclusions of rings
OS ,K ⊆ A i ⊆ A. Let R be the integral closure of A in its ûeld of fraction and let R i be
the integral closure ofA i in its ûeld of fraction. hen the primes of R i can be identiûed
with the primes of Frac(R i) whose intersection with K is not in S. See Figure 1 for
the relationship among these rings and ûelds.
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By Lemma 3.2, there is no primes qi ∈ R i lying over p such that κ(qi) = κ(p).
hen we ûnd a σ ∈ G as in the proof of Corollary 3.6. Look at the nonzero prime
ideals of K. By the Chebotarev density theorem, there exists a set of primes P ⊆ MK
of positive density,which consists of unramiûed primes p′ not in the ûnite set given by
Lemma 3.3 such that the Frobenius conjugacy class Frp′ ∈ Gal(F/K) coincides with
the conjugacy class of σ . In this case we have Ip′ = 1. By the above paragraph and
Lemma 3.4, for all such p′ there is no prime q′i ⊆ R i lying over p′ such that κ(q′i) =
κ(p′). It follows that none of q′i has residue degree 1 over κ(p′). By Lemma 3.5, there is
no xp ∈ Xp(O/p) whose orbit under fp hits γp for the ûrst time at theM-th iteration.
On the other hand, if xp hits (γ i)p for the ûrst time at the m-th iteration with some
m > M, then the forward image f m−M

p (xp) hits (γ i)p for the ûrst time at the M-th
iteration. his is a contradiction as p ∈ P.

herefore, for all m ≥ M and for all p′ ∈ P there is no ηp′ ∈ Xp′(κ(p′)) such that
f mp′ (ηp′) ∈ {(γ1)p′ , . . . , (γr)p′}. ∎

4 Applying the Approximate p-adic Interpolation

We need the following theorem.

heorem 4.1 ([8,heorem 11.11.3.1]) Let E be an N-by-N matrix with entries in ov .
Suppose E2 = E. If f ∈ ov⟨x1 , . . . , xN⟩N satisûes f (x) ≡ Ex (mod pc) for some c >
1/(p − 1), then there exists g ∈ ov⟨x1 , . . . , xN , z⟩N such that ∥g(x , n) − f n(x)∥ ≤ p−nc

for each n ∈ Z≥0.

For each point a ∈ X(ov), let Uā be the set {β ∈ X(ov) ∣ βp = ap}. By the
argument in [6], the completed local ring Ôā is isomorphic to a formal power series
ring ov[[x1 , . . . , xN]]. For completeness, we include that proof here. Since a ∈ X is
smooth, the quotient Ôā/(π) is regular. By the Cohen structure theorem for regular
local rings (see [9, heorem 9] or [20, heorem 29.7]), the quotient ring Ôā/(π) is
isomorphic to a formal power series ring of the form κp[[y1 , . . . , yN]]. Choosing
x i ∈ m̂v for i = 1, . . . ,N such that the residue class of each x i is equal to y i , we obtain
aminimal basis π, x1 , . . . , xN for themaximal ideal m̂v of Ôā (see [9]).
By the basic theory of ideals, there is a one-to-one correspondence between the

points inX(ov) that reduces to ā and the primes q inOā such thatOā/q ≅ ov . Passing
to completion, we have a one-to-one correspondence between the points in X(ov)
that reduces to ā and the primes q of ÔX, ā such that q of ÔX, ā/q ≅ ov .

Replacing f by an iterate and replacing a by a forward image under f , wemay as-
sume that f mapsUã to itself. hen there is a p-adic analytic isomorphism ι∶Uã → oN

v ,
and the restriction of f ∣Uã can be conjugated to an analytic endomorphism deûned
over ov . Denote by F = (F1 , . . . , FN) this function. Moreover, for each i we have

Fi(x1 , . . . , xN) =
1
π
H i(πx1 , . . . , πxN)

withH i ∈ ov[[x1 , . . . , xN]]. he advantageof conjugatingby (x1 , . . . , xN)↦ (πx1 , . . . ,
πxN) is that the coordinates of the initial point are mapped to the maximal ideal p.
he reader might refer to [5, pp. 1658–1659] and [6, pp. 9–11] for more details.
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We need the following theorem, which is a modiûcation to the analytic case of
heorem 4.1.

Proposition 4.2 Let p ≥ 3 be a prime number, and let N ≥ 2 be an integer. Suppose Y
be the N-dimensional unit disk oN

v over Kp and suppose F∶Y → Y is an algebraic endo-
morphism deûned over Kp. Suppose V ′ ⊆ Y is an analytic subvariety deûned over Kp,
and let a ∈ Y(ov) be a point. Assume the following conditions are veriûed:
(i) a = (a1 , . . . , aN) and each a i ∈ p.
(ii) he endomorphism F is given by

(x1 , . . . , xN)↦ (F1(x), . . . , FN(x))
for analytic functions Fi ∈ ov⟨x1 , . . . , xn⟩, and furthermore for each i = 1, . . . ,N
we have

Fi(x1 , . . . , xn) ≡
N

∑
j=1
a i jx j (mod p)

with a i j ∈ ov , and thematrix A ∶= (a i j) satisûes that A2 = A.
(iii) Deûne G∶ ov → oN

v such that G(n) = g(a, n) where g is the function deûned in
heorem 4.1. here we have ∥G(n) − f n(a)∥ ≤ p−nc . Assume that there is no
M ∈ Z≥0 such that the function G satisûes that G(n) ∈ V ′ for all n ≥ M; note
that such a G exists because of condition (ii).

(iv) For any n ∈ Z>0, the orbit OFn(a) does not converge p-adically to a periodic point
of F lying on V ′.

hen the set SV ′ ∶= {n ∈ Z≥0 ∣ Fn(a) ∈ V ′(Kp)} has the property that

#{i ≤ n ∣ i ∈ SV ′} = o(log(m)(n))

for any ûxed m ∈ Z>0 (where log(m) is the m-th iterated logarithmic function).

Remark We need condition (iii) to apply heorem 4.1. It can be satisûed under
certain reductions. For more details, see the proof ofheorem 1.1.

Proof As in [8], we may assume that V ′ is irreducible, SV ′ is inûnite, and the orbit
OF(a) does not converge p-adically to a point in Y .
By heorem 4.1 the function G∶ ov → oN

v satisûes that for each n ∈ Z≥0, we have

∥Fn(a) −G(n)∥ ≤ p−nc

where ∥(x1 , . . . , xn)∥ = max{∣x1∣p , . . . , ∣xn ∣p}. We also have

(4.1) F(G(n)) = G(n + 1)
for all n. here are two cases.

Case 1. G is not constant. Consider the sets

SV ′ , i ∶= {n ∈ SV ′ ∶ n ≡ i (mod pk)}.
By condition (ii), there is no M ∈ Z≥0 such that for all n ≥ M we haveG(n) ∈ V(Kp).
It follows that there exists an Q vanishing on V such that L ∶= Q ○ G∶ ov → ov is not
identically zero. Since Q ○ Fn(a) = 0 for all n ∈ SV , i , by equation (4.1) we then have
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∣L(n)∣p ≤ p−nc . By the discreteness of the zeros of p-adic nonzero analytic functions
we can cover ov by disks D̄(i , p−k) with ûnitelymany i ∈ ov for some k > 0 such that
there is at most one zero of L in each of these disks.

If there is no η ∈ D̄(i , p−k) with L(η) = 0, then SV ′ , i is a ûnite set, as (4.1) implies
that an accumulation point of SV ′ , i will result in a zero of L in SV ′ , i . If SV ′ , i is an
inûnite set,we list the elements in SV ′ , i in increasing order as {n j} j≥1. Suppose L(η) =
0 with η ∈ SV ′ , i . Let d be the order of vanishing of L at η. Suppose

L(n) = ad(n − η)d + ad+1(n − η)d+1 + ⋅ ⋅ ⋅ .

hen ∣L(n j)∣ ≤ p−n j implies that

∣n j − η∣p ≤ p−n j/d+O(1) .

Suppose SV ′ , i = {n1 , n2 , . . . }. hen we also have

∣n j+1 − η∣p ≤ p−n j+1/d+O(1) .

Combining them, and by the triangle inequality, we have

∣n j − n j+1∣p ≤ p−n j/d+O(1) .

Hence there exists C > 1 such that for all suõciently large j, we have n j+1 − n j ≥ Cn j .
Case 2. G is constant. Suppose G(n) = β identically. By (4.1) we know that Fn(a)

converges to β, and by equation (4.1), β is ûxed under F. his contradicts condi-
tion (iv) above. ∎

Proof of Theorem 1.1 As in Section 2, replacing f by an iteratewemay assume that
all the periodic points γ1 , . . . , γr are ûxed points. Let P be as in heorem 1.4. Fix a
prime p ∈ P. We may assume further that the reduction ap is ûxed under fp. Fix
an analytic isomorphism ι∶Uâ → Y where Uā = {β ∈ X(ov) ∶ β̄ = ā} as under the
statement ofheorem 4.1 and Y is the N-dimensional unit disk oN

v . hen we obtain a
map F∶Y → Y as in Proposition 4.2.
By aõne changes of coordinate and replacing f by an iterate, we can assume that

conditions (i) and (ii) of Proposition 4.2 are veriûed. More precisely, suppose

Fi(x) = b0 +
N

∑
j=1
b jx j + ∑

∣n∣∶=n1+⋅⋅⋅+nN≥2
bn1 , . . . ,nN x

n1
1 ⋅ ⋅ ⋅ xnN

N

where we omit the subindex i. Look at the orbit of any η ∈ oN
v under F modulo π2:

η, f (η), f 2(η), . . . . Replacing η by a forward imagewemay assume that η is periodic.
Replacing F by an iterate we may assume that η is ûxed. Choose any η such that its
residue class modulo π2 is η. Under the assumptions above, if we do the translation
σ1∶ x ↦ x−η, the constant terms of σ−1

1 ○F○σ1 will be divisible by π2, and all coeõcients
of σ−1

1 ○ F ○ σ1 will still belong to ov . Replacing F by σ−1
1 ○ F ○ σ1, wemay assume that

the constant terms of F are divisible by π2 and all the coeõcients of F belong to ov .
A�er that wemake a change a variable of the form

σ ∶ (a1 , . . . , aN)↦ (πa1 , . . . , πaN),
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and then the conjugatedmap is

σ−1 ○ Fi ○ σ(x) = b0
π
+

N

∑
j=1
b jx j + ∑

∣n∣=n1+⋅⋅⋅+nN≥2
π∣n∣−1 ⋅ bn1 , . . . ,nN x

n1
1 ⋅ ⋅ ⋅ xnN

N .

his conjugation makes the terms of F with degree at least 2 divisible by π, and yet
the constant term is still divisible by π. Now, again replacing F by an iterate, wemay
assume that the matrix A of the linear part of F satisûes A2 = A. his enables us to
apply Proposition 4.2.
Furthermore as we have observed, a�er the transformation

(a1 , . . . , aN)↦ (πa1 , . . . , πaN),
our conûguration will meet the requirement of condition (i).
By heorem 1.4 we know that p-adically any subsequence of { f n(a)}n≥0 is not

convergent to any of the periodic points on V . It is equivalent to the statement that
Fn(ι(a)) does not converge to any of the periodic points on V ′. In other words,
condition (iv) of Proposition 4.2 is satisûed. Condition (iii) is satisûed, as otherwise
the Zariski closure of {ι−1(G(n)) ∣ n ≥ M}would be a positive-dimensional periodic
subvariety of V . hen we can apply Proposition 4.2 to conclude the requested gap
principle. ∎
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