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1i. If F 1is the distribution function of a distribution
n

with moments up to order n equal to those of the standard
normal distribution, then from Kendall and Stuart [1,p.87],

lim F_(x) = §(x),
n

n=*= o

where ni is the distribution function of the standard normal dis-
tribution. It is of practical interest to provide some indication
of the possible deviation from normality of a distribution which
has a limited number of its moments equal to the corresponding
normal moments. This is of particular significance with respect
to the estimation of population parameters when a population is
assumed to be normally distributed.

2. Define a symmetric probability density function f2n

on the real numbers, Ri’ by f n(x) = pzn(x) @ (x) for

n=2~2,3..., Where Xx)=a +a.x +... +a, x ,
2,3 h pZn() o 22 ann

€ R1 for i=0,1,2,...,n, and @ is the standard normal

2

224

probability density function. Then

(1) pzn(x) >0 for all xe R,
and
[o0]
(@) J £ =) =1
-0
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We now impose the moment constraints:

) )
(3) f x rfzn(x) dx = f X r(J(X) dx = - ,
-00 -0

where r=14,2,..., k<n, and n=2,3,...

(2r)!

Then, since - is the Zrth central moment (uZI;I) of the

2 r!l
standard normal distribution, the moments of the distribution
with density function on are identical to the standard normal

moments up to order 2k. Equation (2) and the k simultaneous
equations given by (3) yield k + 1 simultaneous equations in the
n

icient .
coefficients {aZi} i=0

3. If k =n, we have the unique solution ao =141 and

I k =n-1, we have the following matrix form, where T
is defined by

z = r(r-2) ... 2, if r is an even integer,
" lr(r-2) ... 1, if r is an odd integer.
( 1 1—. cee 2n-3ﬂ ’-a. ) i 1 - n-1a
o 2n
1 3 2n-1 a = 1 - 2n#la
2
(4) 2n
2n-3 2n-1... 4n-5 -3 - -
] n ] _aZn-Zl_ _Zn 3 4n 3aZn
Let this array be designated by M A =B , where
n n n

An = (ao, a .,a ). Either by showing that

2’ 2n-2

IM l = (2n)'.IMn| (where [Al is the determinant of A) or

n+1
by considering the quadratic form

T 2n-1 .2
AnMnAn = E(ao+ a2X+. ‘e +a2n_2X ),

(where X is a standard normal random variable) it can be shown
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that Mn is non-singular.

the Hermite Polynomial of order k de-

(k)

Denoting by Hk

fined by G(x)Hk(x) = (-1)k¢ (x), we have the following
THEOREM 1. The probability density function
on(x) = pzn(x) @ (x) is given by

(5) £, (x)=0(x){1+a

2n MO

2n

where n=2,3,..., and a is chosen so that f_ (x)> 0 for
2n 2n -

11 R .
all x ¢ 1
Proof. Since M 1is non-singular, there exists a unique
-_— n
solution for (4) given by An = (Mn)-iB . This solution is in
n

terms of the parameter a, It is evident that (5) has the pro-
perties required by (1), (2) and (3) and hence (5) is the required
expression for on' q.e.d.

The condition in Theorem 1 that on(x) >0 for all x e R1

is fulfilled by choosing a such that 0< a s A where

2 2n’

1

(6) A2n= m for n=2,3,... .
x 2n

A more general equation than (5) may be obtained by con-
sidering the polynomial

MB

i
ax for n=14,2,...
i

qn(X) - i=0

1

0
Requiring fn(x) = qn(x) @ (x) to satisfy foo fn(x)dx =14, and
(= I
f xlf (x)dx = uN, i=1,2,...,n-1,
n n

-0
produces f (x) = @(x){1+ aan(x)} . The only equations of this

n

form which permit a non-zero a to be chosen so that fn(x) >0

for all x ¢ Ri are those where n is even, as is the case in (5)
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above,

4, Equation (5) may be used to characterize possible
deviation from normality when 2n-2 moments of a distribution
are identical to the normal moments (n=2,3,...). Itis note-
worthy that (5) is in fact the first two terms of the Hermite
Polynomial form of the Gram-Charlier expansion of a density
function with standard normal moments up to order 2n-2 and the
parameter a5 added.

THEOREM 2. For on defined by (5) and AZn defined

by (6),
A, uzN
(7) sup Ifz (x) - B(x) |« ===
X n NI

N th .
where uZn is the 2n central moment of the standardized

normal distribution, n=2,3,... .

Proof. Transforming an inequality given by Uspensky
— 2
[4,p.594], we obtain ,Hzn(x)l < (2n-1)e¥* /2 | Then, since

N —_
u, = {(2n-1) and [fzn(x) - Q(x)l < AZnQ’(x) ]Hzn(x)l, we obtain

2 “zN
sup‘fzn(x)— ¢(x)] < —=h=n q.e.d.
x NZ2n

THEOREM 3. Let an be the distribution function of

on as given by (5), and let AZn be defined by (6). Then if <}

is the distribution function of the standard normal distribution,

(8) sup [F, (%) - §(x)] < AZnsup{a(X)lHZn (%)},
x

X

-1
for n=2,3,...
Proof. Integrating (5), we obtain

X
F, (x)= $(x) + a, f_w @ (H, (1) dt< §(x)+A2n¢(x)H (x).

2n-1
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Hence

sup [an(x) - ri(x)l < Aznsup{ﬁ(x)fHZn_i(x)l} . q.e.d.
x x

5. The use of the result Hk‘(x) = ka—i(X) and the roots

of Hermite Polynomials given by Smith [3, p. 357] enable us to

determine AZn defined by (6). Similar analysis permits us to
evaluate sup{¢(x)|H2n 1(x) ]} in (8). Table 1 presents values
x

for AZn and for the inequalities (7) and (8) for n = 2, 3, 4.

TABLE 1
n AZn sup Ifzn(x) - ¢ (x), sup Ian(x) - § (x)l
2 L1667 .20000 .10
3 . 009686 .05812 .03
4 .0003298 .01385 . 005
6. If, in practice, we have a population whose standard-

ized density function is unimodal and bell-shaped (as are the
density functions fzn), it is commonly assumed that the popu-

lation is approximately normally distributed. Estimates of the
population mean and variance are then obtained and the resulting
normal distribution with this mean and variance is assumed to be
a satisfactory approximation to the true population distribution.

Utilizing the density function on which has been defined,

the data in Table 1 illustrate the discrepancy which may exist
between the true population distribution function and the normal
distribution function when only the first two moments are con-
sidered, that is for n = 2. To safely assume the population is
normally distributed, it appears necessary that additional infor-
mation about the population must be known. Table 1 indicates
that there is a significant decrease in possible deviation from
normality when the population central moment of order four is
identical to the fourth central normal moment. The decrease in
possible deviation when the sixth central moments are identical
is even more significant.
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It is well known that knowledge of higher moments streng-
thens an assumption made as to the form of the distribution of a
population. However, it is significant that deviations of the
magnitude of those in Table 1 have been produced using a poly-
nomial with only one free parameter. Permitting more than one
free parameter in this polynomial would only serve to increase
the maximum possible deviation shown in Table 1.
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