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Abstract

Factor rotation is a crucial step in interpreting the results of exploratory factor analysis. Several rotation
methods have been developed for simple structure solutions, but their extensions to bi-factor analysis
are often not well established. In this article, we propose a mathematical framework that incorporates
customized factor structure as a regularization to produce the optimal orthogonal or oblique rotation. We
demonstrate the utility of the framework using examples of simple structure rotation and bi-factor rotation.
Through detailed simulations, we show that the new method is accurate and robust in recovering the factor
structures and latent correlations when bi-factor analysis is applied. The new method is applied to a test
data and a Quality of Life survey data. Results show that our method can reveal bi-factor structures that are
consistent with the theories.

Keywords: bi-factor analysis; oblique rotation; orthogonal rotation; proximal algorithm; simple structure

1. Introduction

Factor analysis is a popular technique for learning the underlying structure of multivariate data and
has wide applications in psychology and the social sciences. Factor analysis suffers from the rotational
indeterminacy issue where the loading matrix and the factors can be simultaneously rotated under
the same model. The rotation procedure is a crucial step in obtaining an interpretable structure.
The prevailing solution seeks the rotation that renders a simple structure (Thurstone, 1947). Roughly
speaking, Thurstone’s simple structure means that the loading matrix contains as many (approximately)
zero entries as possible, so that each observed variable can be explained by only a few factors.
Nevertheless, the simple structure is not the only desired solution, especially when the result does not
admit a perfect simple structure. The bi-factor analysis, for instance, has become a popular alternative
solution for exploring the factor structure (Reise, 2012). A classic approach to the bi-factor analysis
is the Schmid–Leiman (SL; Schmid & Leiman, 1957) transformation. However, the SL transformation
imposes an unnecessary proportionality constraint, making the loading matrix inevitably rank-deficient
(Waller, 2018). Moreover, the SL transformation only produces orthogonal factors, leaving the oblique
bi-factor analysis unsolved. Recently, some new strategies have been developed for bi-factor analysis

© The Author(s), 2025. Published by Cambridge University Press on behalf of Psychometric Society.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence
(https://creativecommons.org/licenses/by-nc-sa/4.0), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the same Creative Commons licence is used to distribute the re-used or adapted article and the original article is properly cited. The
written permission of Cambridge University Press must be obtained prior to any commercial use.

https://doi.org/10.1017/psy.2025.1 Published online by Cambridge University Press

www.doi.org/10.1017/psy.2025.1
https://orcid.org/0009-0006-7411-4256
https://orcid.org/0000-0001-8160-3660
mailto:yongfeng@amss.ac.cn
https://creativecommons.org/licenses/by-nc-sa/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/psy.2025.1&domain=pdf
https://doi.org/10.1017/psy.2025.1


2 Wu et al.

(Abad et al., 2017; Jennrich & Bentler, 2011, 2012), but their performance has not been thoroughly
discussed, and none of them has been accepted as the conventional approach.

This article attempts to shed some light on the bi-factor rotation problem, and more generally,
on the factor rotation problem. We provide a mathematical framework to formulate and solve the
rotation problem (both orthogonal and oblique) in factor analysis. Given any desired property of the
factor structure, our framework incorporates it as a penalty term or a constraint, and by solving an
optimization problem, it produces a rotation that rotates an initial loading matrix toward the desired
property. In the bi-factor analysis, for example, the rotated loading matrix is expected to have a bi-
factor structure. Accordingly, our framework takes the bi-factor structure as a constraint and produces
a rotation that rotates an initial loading matrix into a bi-factor matrix as much as possible. We also
provide a convergent algorithm to solve the optimization problem. Jennrich (2001, 2002) has devised
a gradient-based algorithm for optimizing a general rotation criterion function, which generates a
sequence of monotone iterates. However, the monotone iterates only guarantee the convergence of
some subsequence, and there might exist multiple limiting points. Indeed, the monotone iterates may
oscillate indefinitely and generate paths with infinite length (see Absil et al., 2005 for such an example).
In contrast, our algorithm guarantees the convergence of the whole iterates.

Although the problem of simple structure rotation has been extensively studied, we still demonstrate
the utilization of our framework in solving this problem, partly because it serves as an example of the
penalty-type formulation and partly because it provides a new perspective (and a new algorithm) on
solving this problem. Thurstone’s original concept of simple structure largely concerns the number of
zero loadings, but many existing methods maximize some dispersion of factor loadings so that the
loadings tend to be either very high or very low. As Nesselroade and Cattell (2013) note, “the position
that gives merely a lot of low loadings is different from the exact one that maximizes the number of
zero loadings.” Moreover, these dispersion-based methods raise the scaling issues, such as sensitivity to
outliers and the question of normalization. In contrast, our framework provides a solution on the basis
of the count of zero/nonzero loadings, agreeing with the very notion of simple structure.

We emphasize that our framework is not limited to the simple structure or bi-factor rotations. The
regularization term in our framework can be customized to represent any subjective or theoretical
assumptions about the factor structure, and our framework identifies the optimal rotation solution
corresponding to the given assumption. This is an attractive advantage because researchers may have
various demands on the exploratory factor analysis (EFA) across different applications. This regularized
formulation also provides a perspective to unify the rotation procedure and the penalized estimation.
We justify in Section 6.2 that these two seemingly competing procedures are mathematically almost
equivalent.

The remainder of this article is organized as follows. Section 2 and Section 3 describe our framework
for solving the orthogonal and oblique rotation problems, respectively. In each section, we demonstrate
both the simple structure rotation and the bi-factor rotation, along with their algorithms. In Section 4,
we conduct a simulation to compare the performance of our framework in the exploratory bi-factor
analysis with existing methods. The proposed method is applied to real datasets in Section 5. Section 6
discusses some connections between our framework and other methods. Section 7 concludes this article.
Technical derivations and proofs are postponed to the Appendix, which also includes supplementary
simulation studies.

2. Orthogonal rotation

2.1. Rotation to simple structure
Let A ∈ Rp×k be an initial loading matrix and T ∈ Rk×k an orthogonal matrix. The concept of simple
structure in factor analysis concerns the search of T such that AT is as simple as possible. If simplicity
is defined as the number of zero loadings, a natural choice is to minimize ∥AT∥0, where ∥ ⋅∥0 counts the
number of nonzero entries. Unfortunately, AT would not contain many exact zeros in general, especially
when the loading matrix is subject to sampling error. In practice, very small loadings are accepted as
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zeros. In other words, AT would be considered simple if it is close to some matrix with many zeros.
Thus, we formulate the objective function as

min
T,S

∥AT−S∥2
F +ρ∥S∥0,

s.t. T′T = Ik,
(2.1)

where ∥ ⋅ ∥F is the Frobenius norm, ρ > 0 is the tuning parameter, the prime denotes matrix transpose,
and Ik is the k-by-k identity matrix. In practice, we use ρ = 0.32, and this choice will be explained in
Section 6.1.

2.2. Algorithm
Our objective function (2.1) introduces a new parameter S and seems to be more difficult to optimize
than the usual criteria that involve only a rotation parameter T. However, we shall show that the
introduction of a new parameter not only simplifies the optimization but also broadens its applicability.
The key is the separation of the rotation constraint (on T) and the desired property (on S). The usual
approaches consider the desired sparsity or its surrogate criterion directly on the rotated loadings,
the interlock of which makes the factor rotation problem challenging. In (2.1) these two features
are individually applied to T and to S, and they are linked by a simple Frobenius distance function.
This makes the optimization with respect to each parameter very simple. While this might suggest
applying an alternating minimization algorithm to solve (2.1), this algorithm suffers from the same
drawback as the gradient-based algorithm: the sequence of parameters generated by the algorithm
is not guaranteed to converge (Powell, 1973). Therefore, a convergent algorithm called the proximal
alternating minimization (PAM) algorithm (Attouch et al., 2010) is employed to solve (2.1).

If X = UDV′ is the singular value decomposition of X, then T = UV′ minimizes ∥X −T∥2
F subject

to T′T = TT′ = Ik (Gower & Dijksterhuis, 2004). We denote this projection by Porth(X) = UV′. Let
H(X,κ) = X ○ I(∣X∣ > κ) be the entrywise hard-thresholding operator for a matrix X, where ○ is the
entrywise matrix product and I(∣X∣ > κ) is the entrywise indicator function for whether the absolute
value of X entries is greater than a scalar threshold κ. The algorithm is presented in Algorithm 1,
which updates T and S alternately using the above operators (see Appendix A.1 for the derivation).
The convergence result of this algorithm is summarized in Proposition 1, whose proof is given in
Appendix A.2. The algorithm converges to a stationary point1 for any bounded stepsizes γt and ηt . In
practice, we choose some small values, such as γt = ηt = 0.01. Also worth mentioning is the issue of local
minima. Like many other rotation methods, Algorithm 1 may converge to a local minimum because
the rotation problem is non-convex. Therefore, it is recommended to run the algorithm with multiple
random initializations and choose the one with the smallest objective value.

Proposition 1. Assume that the sequences of stepsizes γt and ηt are bounded away from zero and infinity,
that is, there exists some positive numbers r+ > r− > 0 such that γt,ηt belong to (r−,r+) for all t ≥ 0. Then
the iterates (Tt,St) generated by Algorithm 1 converge to a stationary point of (2.1).

1For a smooth function, a stationary point is a point whose gradient is zero. For a non-smooth function, the concept of
gradient is generalized to the subdifferential set, and a stationary point becomes a point whose subdifferential set contains
zero. The subdifferential set ∂f (x) of f at x is defined by

∂f (x) = {u ∈Rd ∶ ∃xt → x,f (xt) → f (x) and ∃ut ∈ ∂̂f (xt),ut → u as t→∞},

where ∂̂f (x) is the Fréchet subdifferential, defined as

∂̂f (x) = {u ∈Rd ∶ lim
y≠x

inf
y→x

f (y)− f (x)−⟨u,y−x⟩
∥y−x∥

≥ 0}.

A local minimum must be a stationary point.
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2.3. Bi-factor rotation
In the simple structure rotation, we maximize the degree of simplicity for the loading matrix, so our
framework formulates the problem as a penalized optimization. When the loading matrix is desired to
satisfy certain restrictions, we formulate it as a constrained problem, which can also be efficiently solved
by the PAM algorithm. An example of such a problem is the exploratory bi-factor analysis.

Algorithm 1 PAM for orthogonal simple structure rotation problem (2.1).
Input: Initial loading matrix A, tuning parameter ρ.
Output: Rotation matrix T, sparse loading matrix S.

1: Initialize an orthogonal matrix T0 and let S0 =H(AT0,
√ρ).

2: for t = 0,1, . . . do
3: Take γt > 0 and compute

Tt+1 = Porth(A′St +γtTt). (2.2)

4: Take ηt > 0 and compute

St+1 =H(ATt+1 +ηtSt

1+ηt
,
√

ρ/(1+ηt)). (2.3)

5: end for

A bi-factor model has a loading matrix of the form

Λ =

⎛
⎜⎜⎜⎜⎜
⎝

* * 0
* * 0
* 0 *
* 0 *
* 0 *

⎞
⎟⎟⎟⎟⎟
⎠

.

Formally speaking, the loading matrix has a column of free parameters, and besides this column, it has
at most one free parameter in each row. The factor corresponding to the free column is called a general
factor, and the remaining factors are called group factors. Exploratory bi-factor analysis (Jennrich &
Bentler, 2011; Reise, 2012) can uncover the bi-factor structure and estimate the loadings simultaneously,
unlike the confirmatory bi-factor analysis that requires the bi-factor structure to be specified in advance.
Let Sbi denote the set of matrices with bi-factor structure. Our method performs exploratory bi-factor
analysis by solving

min
T,S

∥AT−S∥2
F,

s.t. T′T = Ik, S ∈ Sbi.
(2.4)

The algorithm for solving (2.4) is very similar to Algorithm 1 and is presented in Algorithm 2. It
involves the projection operator onto bi-factor matrices Pbi(X) ∶= argminS∈Sbi ∥S−X∥F. The evaluation
of this projection requires solving a simple combinatorial optimization to find the column of general
factor loadings and then keeping the largest (in absolute value) entry in each row of the remaining
columns as the group factor loadings (see Appendix A.3 for a detailed description).
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Algorithm 2 PAM for orthogonal bi-factor rotation problem (2.4).
Input: Initial loading matrix A.
Output: Rotation matrix T, bi-factor loading matrix S.

1: Initialize an orthogonal matrix T0 and let S0 = Pbi(AT0).
2: for t = 0,1, . . . do
3: Take γt > 0 and compute

Tt+1 = Porth(A′St +γtTt). (2.5)

4: Take ηt > 0 and compute

St+1 = Pbi(
ATt+1 +ηtSt

1+ηt
). (2.6)

5: end for

3. Oblique rotation

3.1. Rotation to simple structure
In the orthogonal rotation case, the factors are uncorrelated, and the rotation matrix is restricted to be an
orthogonal matrix. When the factors are allowed to be correlated, the oblique rotation problem arises.
This section provides a counterpart of our framework to solve the oblique rotation problem, which is
similar to the orthogonal case but has some subtle yet crucial differences.

If one is primarily interested in the loading matrix estimation, the oblique version of the simple
structure rotation problem might be formulated as

min
T,S

∥A(T′)−1 −S∥2
F +ρ∥S∥0,

s.t. diag(T′T) = Ik,
(3.1)

where diag(⋅) keeps the diagonal part of a matrix and assigns zeros to the off-diagonal part, as (3.1) finds
the rotated loading matrix A(T′)−1 that is closest to a hypothesized simple loading matrix S. However,
in the oblique factor analysis, the factor correlation matrix also needs to be estimated, and the rotation T
is responsible for both the loading matrix A(T′)−1 and the factor correlation matrix Φ = T′T. In order
to get an overall better estimation of the loading matrix and the factor correlation matrix, we propose
to formulate the oblique rotation problem as

min
T,S

∥A−ST′∥2
F +ρ∥S∥0,

s.t. diag(T′T) = Ik.
(3.2)

When ∥A− ST′∥F is minimized, the reproduced covariance matrix A(T′)−1ΦT−1A′ +Ψ2 = AA′ +Ψ2

will be close to the hypothesized covariance matrix ST′TS′ + Ψ2 with a simple loading matrix S,
where Ψ2 is a diagonal matrix of uniqueness. As the covariance matrix is governed by the loading
matrix and factor correlation matrix, achieving closeness in the covariance matrix facilitates a balanced
estimation of these two parameters. The rotated loading matrix A(T′)−1 will be approximately simple
since A(T′)−1 ≈ ST′(T′)−1 = S; the factor correlation matrix Φ = T′T is suitable for the hypothesized
simple structure since ST′TS′+Ψ2 is close to the optimal covariance matrix AA′+Ψ2. The advantages of
(3.2) in estimating the correlation matrix will be numerically illustrated in Section 4 and Appendix A.7.

This nuance does not appear in the orthogonal rotation problem because the orthogonal factor
correlation matrix is invariant and the rotation is only responsible for the loading matrix. In effect, for an
orthogonal matrix T, ∥A−ST′∥F = ∥(A−ST′)T∥F = ∥AT−S∥F, so the two formulations are equivalent.
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As for the algorithm, although the alternating minimization algorithm and the PAM algorithm
are conceptually applicable to (3.2), they do not lead to a practical algorithm because the iteration
steps for problem (3.2) do not bear explicit updating formulas with these algorithms. We employ the
proximal alternating linearized minimization (PALM) algorithm (Bolte et al., 2014) to solve (3.2).
The resulting algorithm is reported in Algorithm 3. The projection onto oblique rotation matrices
Poblq(X) = X{diag(X′X)}−1/2 rescales each column of matrix X to unit length. We use an orthogonal
matrix as initialization because, in general, it has empirically better performance than an oblique one. In
practice, we choose the values of γ and η slightly above one, such as γ = η = 1.01. This algorithm is also
convergent, as recorded in Proposition 2 with proof given in Appendix A.5. It is again recommended to
run the algorithm multiple times to alleviate the issue of local minima.

Algorithm 3 PALM for oblique simple structure rotation problem (3.2).
Input: Initial loading matrix A, tuning parameter ρ.
Output: Rotation matrix T, sparse loading matrix S.

1: Initialize an orthogonal matrix T0 and let S0 =H(A(T′0)−1,
√ρ).

2: for t = 0,1, . . . do
3: Take γ > 1 and compute

Tt+1 = Poblq(Tt +
(A′−TtS′t)St

γ∥S′tSt∥F
). (3.3)

4: Take η > 1 and compute

St+1 =H(St +
(A−StT′t+1)Tt+1

η∥T′t+1Tt+1∥F
,
√

ρ/(η∥T′t+1Tt+1∥F)). (3.4)

5: end for

Proposition 2. Assume inf t≥0 ∥St∥F > 0 and supt≥0 ∥St∥F < ∞, then the iterates (Tt,St) generated by
Algorithm 3 converge to a stationary point of (3.2).

3.2. Bi-factor rotation
As in the orthogonal case, formulation (3.2) and the PALM algorithm can be used for other purposes
in oblique rotation. We continue to demonstrate the exploratory bi-factor analysis because it highlights
some new issues in the oblique case. We shall show that the bi-factor model suffers from what we would
call group-factor indeterminacy when the factors are allowed to be correlated. This indeterminacy can
be suppressed if we restrict all the group factors to be uncorrelated with the general factor.

The group-factor indeterminacy is illustrated as follows. Let Λ ∈ Rp×k be a bi-factor loading matrix
and F ∈Rk the corresponding factors. Without loss of generality, we let the first component in F be the
general factor. Let Φ = (ϕij) ∈Rk×k be the factor correlation matrix. Construct a transformation matrix
Γ ∈Rk×k as

Γ =

⎛
⎜⎜⎜⎜⎜
⎝

1
d2 c2
d3 c3
⋮ ⋱

dk ck

⎞
⎟⎟⎟⎟⎟
⎠

(3.5)

https://doi.org/10.1017/psy.2025.1 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.1


Psychometrika 7

that has zeros at locations other than the main diagonal and the first column. Matrix Γ has an inverse

Γ−1 =

⎛
⎜⎜⎜⎜⎜
⎝

1
−d2/c2 1/c2
−d3/c3 1/c3

⋮ ⋱
−dk/ck 1/ck

⎞
⎟⎟⎟⎟⎟
⎠

whenever it exists. The transformed factor F̃ = ΓF has a covariance matrix ΓΦΓ′, whose diagonal
elements are d2

r + 2crϕ1rdr + c2
r (except for the first one). We set dr = −crϕ1r ±

√
1− c2

r(1−ϕ2
1r) for all

2 ≤ r ≤ k, so that the transformed factor is standardized. The cr can be any nonzero number between
−1/

√
1−ϕ2

1r and 1/
√

1−ϕ2
1r . The transformed loading matrix Λ̃=ΛΓ−1 has the same bi-factor structure

as Λ. Thus, we have constructed a different oblique bi-factor representation Λ̃F̃ = ΛF. Intuitively, each
cluster of items indicated by the group factors forms a micro factor model with two common factors (the
general factor and the corresponding group factor). Under the oblique factor case, the group factor can
be rotated toward or against the general factor within this two-factor model (we should not rotate the
general factor because it is shared by other clusters). This explains how we construct the transformation
matrix Γ, and we call this phenomenon group-factor indeterminacy of the oblique bi-factor model.
This result is not new and has been disclosed by Jennrich and Bentler (2012). A natural yet putative
strategy to resolve this indeterminacy is to restrict the group factors to be uncorrelated with the general
factor. We call such a bi-factor representation a semi-oblique bi-factor model. A fully oblique bi-factor
representation can be transformed into a semi-oblique one using Γ with cr = 1/

√
1−ϕ2

1r and dr = −crϕ1r
for all 2 ≤ r ≤ k.

Even given the indeterminacy and the putative restriction, we can still formulate and solve the
oblique exploratory bi-factor analysis with

min
T,S

∥A−ST′∥2
F,

s.t. diag(T′T) = Ik, S ∈ Sbi.
(3.6)

It should be clarified that the fully oblique bi-factor models are not considered false or invalid. They are
different representations of the equivalent bi-factor models. In effect, this indeterminacy does not affect
the feasibility S ∈ Sbi and the objective value ∥A−ST′∥2

F. Consequently, (3.6) has a continuum of optimal
solutions that correspond to a single model, and we transform the final result into a semi-oblique one
to provide a unique representation.2 Hence, Algorithm 4 solves the oblique bi-factor problem with the
PALM algorithm, followed by a partial orthogonalization step.

2It is possible to formulate the optimization problem that constrains the rotation T to be semi-oblique, but the algorithm
would become impractical because the set of semi-oblique rotations does not have a simple projection solution.
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Algorithm 4 PALM for oblique bi-factor problem (3.6).
Input: Initial loading matrix A.
Output: Rotation matrix T, bi-factor loading matrix S.

1: Initialize an orthogonal matrix T0 and let S0 = Pbi(A(T′0)−1).
2: for t = 0,1, . . . do
3: Take γ > 1 and compute

Tt+1 = Poblq(Tt +
(A′−TtS′t)St

γ∥S′tSt∥F
). (3.7)

4: Take η > 1 and compute

St+1 = Pbi(St +
(A−StT′t+1)Tt+1

η∥T′t+1Tt+1∥F
). (3.8)

5: end for
6: Partially orthogonalize T∞ and S∞ to T∞Γ′ and S∞Γ−1 with Γ in (3.5), cr = 1/

√
1−ϕ2

1r , dr = −crϕ1r
for all 2 ≤ r ≤ k, and Φ = T′∞T∞, provided that the general factor is rearranged to the first column.

4. Simulation

We have proposed a general framework to formulate and solve the rotation problem in factor analysis
and demonstrated it through the examples of simple structure rotation and exploratory bi-factor
analysis. Because the simple structure rotation problem has been extensively studied and mature
solutions have been developed, our simulation experience shows considerable similarity between our
method and the existing popular methods in terms of numerical performance (see Appendix A.6 for the
simulation results). Here, we exhibit the simulation results for the exploratory bi-factor analysis. The R
code for running the simulations and conducting the analyses are available in the online supplemental
materials.

We compare our proposed method with eight existing methods: (a) the SL (the Schmid-Leiman
procedure; Schmid & Leiman, 1957); (b) the SLt (the SL followed by a partially specified target rotation;
Reise et al., 2010); (c) the SLi (the SL followed by iterated target rotations; Abad et al., 2017); (d) the
DSL (the Direct Schmid-Leiman method; Waller, 2018); (e) the DBF (the Direct Bi-Factor method;
Waller, 2018); (f) the PEBI (the orthogonal or oblique Pure Exploratory BI-factor analysis; Lorenzo-Seva
& Ferrando, 2019); (g) the BQ.orth (the orthogonal Bi-Quartimin method; Jennrich & Bentler, 2011);
and (h) the BQ.oblq (the oblique Bi-Quartimin method; Jennrich & Bentler, 2012). We basically follow
the simulation settings from Abad et al. (2017) and Giordano and Waller (2020). Specifically, we
consider a total of 22 items clustered into four groups, with four, five, six, and seven items in each
group. We examine four types of bi-factor structures: (a) the independent cluster (IC) structure that is
a perfect bi-factor loading matrix; (b) the independent cluster basis (ICB) structure that contains cross-
loadings; (c) the independent cluster pure (ICP) structure where some items have nonzero loadings
only on the general factor; and (d) the independent cluster basis pure (ICBP) structure that contains
both cross-loadings and pure items. In our simulation, the group factor loadings take either high or low
values. When they take high values, they are randomly selected from the interval [0.6,0.9]; for the low
value case, they are selected from the range [0.3,0.6]. When cross-loadings are present, the last item in
each cluster has a cross-loading of 0.4 on the next group factor. For pure items, the item in the middle
position of each cluster has a loading of 0.01 on the corresponding group factor. The loadings on the
general factor are randomly selected so that every item has communality no greater than 0.81. When
necessary, some rows of loading vector are rescaled to prevent excessively large communality caused
by the cross-loadings. Finally, every loading entry is randomly assigned a positive or negative sign. An
example of simulated loading matrices is presented in Table 1.
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Table 1. Examples of the loading matrix under the four types of bi-factor structure

Independent cluster (IC) Independent cluster basis (ICB) Independent cluster pure (ICP) Independent cluster basis pure (ICBP)

.21 .68 −.31 −.69 −.25 −.73 −.14 .82

.23 −.60 .41 −.74 −.32 .01 −.44 .01

−.03 .75 −.23 .85 .49 .75 .11 .75

.32 −.60 .29 .75 −.39 −.24 −.85 −.10 −.75 .39

.26 −.62 −.15 .84 −.19 .84 .16 −.61

.01 −.85 .38 −.82 −.17 .76 .49 −.64

.08 −.63 −.09 −.78 .68 −.01 −.32 −.01

−.23 .69 −.08 −.82 .15 −.70 .53 −.62

.16 −.85 −.06 −.73 −.40 −.33 .60 .28 −.63 −.40

−.21 −.64 .14 −.71 .51 .64 .40 .73

−.26 −.65 −.24 −.85 .18 −.81 .61 −.63

−.11 −.73 .07 .78 −.30 .01 −.10 .01

.25 .85 −.50 −.74 −.38 .67 −.03 −.84

.20 −.84 −.01 −.84 −.08 .70 −.37 .64

−.10 −.82 .28 −.73 −.40 .18 −.83 .34 .73 −.40

.05 .77 −.03 .62 −.29 .84 −.21 .65

.13 .74 .03 .73 −.09 −.83 .58 −.62

−.03 .70 −.32 −.65 −.50 −.72 .25 −.73

−.15 −.65 −.12 −.79 .30 .01 −.47 −.01

.11 −.74 .24 .71 −.04 −.85 .18 −.69

.30 .66 −.30 −.67 .29 −.77 .28 −.79

.26 .80 .01 .40 −.71 −.25 −.61 .10 .40 .72
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high, IC

high, IC
B
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Figure 1. Boxplot of the estimation error for loading matrix under orthogonal bi-factor models.

Given the simulated loading matrix Λ, we generate the population correlation matrix

R = ΛΦΛ′+Ψ2,

where Φ is the factor correlation matrix and Ψ2 is a diagonal matrix of uniqueness, chosen to constrain
the diagonal elements of R to one. In the orthogonal bi-factor case, Φ will be an identity matrix. In
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Figure 2. Boxplot of the estimation error for loading matrix under semi-oblique bi-factor models.

the semi-oblique case, the correlations among group factors are randomly selected from the interval
[0.2,0.6]. If the generated correlation matrix is not positive definite, we re-generate a new one until it
is positive definite. The final step generates the data from a multivariate normal distribution with zero
mean and covariance matrix R, with a sample size N ∈ {200,500,2000}. The simulation is replicated 50
times for each scenario.
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Figure 3. Boxplot of the estimation error for factor correlation matrix under semi-oblique bi-factor models.

The accuracy of the rotation methods is evaluated by the root mean squared error (RMSE) between
the population and estimated bi-factor loading matrices:

RMSE(Λ,Λ̂) = 1√
pk

∥Λ− Λ̂∥F, (4.1)

after the estimated factors are aligned and orientated with respect to the population factors. The initial
loading matrix is extracted using the maximum likelihood method. The results of our regularized
rotation methods (REGL.orth and REGL.oblq) and the competitors are shown in Figures 1, 2, and 3. We
also include an oracle method that rotates (orthogonally or obliquely) the initial loading matrix toward
the true loading matrix Λ, that is, the oracle orthogonal rotation minimizes ∥AT −Λ∥F and the oracle
oblique rotation minimizes ∥A(T′)−1−Λ∥F. This oracle method can be considered the optimal rotation
for loading estimation and is used as a reference.

Under the orthogonal bi-factor models (Figure 1), our methods and the Bi-Quartimin methods
perform best, but our methods are slightly better at recovering the ICB and ICBP structures. Since the
orthogonal model is a special case of the oblique model, the oblique versions of these two methods have
almost the same performance as their orthogonal counterparts. The SLi method has comparable results
to the best ones. We contend that the success of SLi should attribute to the iterating steps. To illustrate
this, we replace the SL initialization in the SLi procedure with a random bi-factor loading initialization,
and the resultant RANDi method remains successful. Note also the similarity between its iterative spirit
and the PAM algorithm. All the other SL-based methods fail to recover the loading matrix.

As for the oblique bi-factor models (Figure 2), our proposed oblique rotation method and the oblique
Bi-Quartimin method are the only successful methods, while the oblique PEBI method and all other
orthogonal methods fail to provide reasonable estimates. Compared to the Bi-Quartimin method, our
method again has an advantage in recovering the ICB and ICBP structures, indicating its robustness.
This superiority is more evident when the group loadings take high values. Moreover, our method
provides better estimation of the factor correlation matrix than the Bi-Quartimin method, as shown
in Figure 3. The accuracy of factor correlation estimation is measured by

RMSE(Φ,Φ̂) = 1√
k2
∥Φ− Φ̂∥F.
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Interestingly, our method can even outperform the oracle method when the underlying model is strictly
a bi-factor model. This is because the oracle method minimizes ∥A(T′)−1 −Λ∥F which emphasizes the
discrepancy of the loading matrix, and the estimated rotation does not necessarily produce an optimal
factor correlation matrix. In contrast, our method minimizes ∥A − ST′∥F which is compatible with
the discrepancy of the covariance matrix, resulting in a rotation that balances the estimation of the
loading matrix and the factor correlation matrix. Hence, our method can better estimate the factor
correlation matrix even though it does not use the true loading matrix Λ. A detailed comparison of
the two formulations in estimating the loading matrix and the factor correlation matrix is given in
Appendix A.7.

5. Real data examples

5.1. Holzinger’s fourteen tests data
We now apply the proposed exploratory bi-factor analysis approach to Holzinger’s fourteen tests data.
This data were used by Holzinger and Swineford (1937) to illustrate bi-factor analysis. The correlation
matrix was provided in Holzinger and Swineford (1937), and their preliminary analysis divided the
fourteen tests into four groups to reflect spatial, mental speed, motor speed, and verbal factors (see Table
IV in Holzinger & Swineford, 1937). This bi-factor structure is consistently recovered by our orthogonal
and oblique bi-factor analyses, as shown in Table 2, except that the oblique bi-factor model has two
crossing loadings. The estimated factor correlation matrix in the oblique model is

Φ =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0
0 1 .77 .37 .67
0 .77 1 .46 .36
0 .37 .46 1 .17
0 .67 .36 .17 1

⎞
⎟⎟⎟⎟⎟
⎠

.

Since both orthogonal and oblique bi-factor analyses recover the desired structure, determining which
model is more appropriate may depend on domain knowledge.

5.2. Quality of life data
When applied to another data set, our methods demonstrate the necessity of oblique bi-factor analysis.
Chen et al. (2006) have applied a confirmatory bi-factor analysis to a Quality of Life data set. This data
set contained 403 observations for 17 items answered on a 5-point Likert scale from 1 (all of the time) to
5 (never), with high scores on the scale indicating a high quality of life. These items were hypothesized
to reflect a common general factor (Quality of Life) and four group factors (Cognition, Vitality, Mental
Health, and Disease Worry). We apply both the proposed orthogonal and oblique exploratory bi-factor
analyses to this data set, with results shown in Table 3. In the orthogonal bi-factor case, not all loadings
on the group factor are significant for the third hypothesized cluster (Mental Health), consistent with
the published studies (Abad et al., 2017; Chen et al., 2006; Jennrich & Bentler, 2011). Additionally,
we identify a possible cross-loading for the “pep” item, which is also reported by Abad et al. (2017).
The results become promising in the oblique case, where our method produces a bi-factor structure
consistent with the hypothesized structure, except for a potential cross-loading for the “nerv” item. The
estimated factor correlation matrix is

Φ =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0
0 1 .51 .65 .45
0 .51 1 .64 .51
0 .65 .64 1 .65
0 .45 .51 .65 1

⎞
⎟⎟⎟⎟⎟
⎠

,
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Table 2. Exploratory bi-factor rotation results of the proposed methods applied to the fourteen tests data

(loadings ≥ .20 in absolute value are bolded)

Item Orthogonal bi-factor loadings Oblique bi-factor loadings

T1 .56 .28 .17 .03 −.08 .21 .38 .33 .01 −.11

T2 .80 .33 −.10 −.04 .07 .37 .94 −.12 .01 −.08

T3.4 .59 .56 .04 .01 .14 .05 .68 .12 −.01 .08

T6 .64 .04 .39 .14 −.01 .41 −.19 .69 .11 .10

T28 .51 .10 .35 .00 −.12 .29 −.04 .64 −.05 −.07

T29 .61 −.05 .35 −.05 −.00 .47 −.15 .64 −.09 .08

T32 .12 .15 −.12 .41 .13 −.06 .13 −.25 .47 .15

T34 .41 −.09 .02 .60 −.14 .29 .04 −.02 .69 −.13

T35 .12 .12 .13 .49 −.12 −.06 −.14 .18 .50 −.05

T36a .54 −.16 .04 .37 .05 .46 −.02 .06 .45 .10

T13 .62 .06 −.05 .03 .53 .42 .13 −.05 .07 .61

T18 .63 −.13 −.09 −.04 .56 .56 .05 −.11 .03 .65

T25b .43 .14 .02 −.04 .61 .24 −.08 .08 −.04 .76

T77 .45 .07 .02 −.07 .58 .31 −.10 .08 −.06 .72

and the group factors have moderate correlations. This might explain the failure of the orthogonal bi-
factor models to recover the hypothesized structure.

6. Discussion

6.1. Relation to other methods
The rotation to simple structure has been a classic problem in factor analysis, and a number of methods
have been proposed in the literature. Although we develop the solution from a different perspective,
it is mathematically related to some existing methods. We discuss the connection to Jennrich’s (2004)
component loss function (CLF) method and Kiers’s (1994) simplimax method.

Jennrich (2004) has investigated a class of rotation criteria based on the CLF including the family of
right constant CLF, to which we now demonstrate our method is equivalent. Let Λ = AT be the rotated
loading matrix with entries λir . The CLF method finds the rotation T that minimizes the component
loss criterion Q(Λ), defined as

Q(Λ) =∑
i
∑

r
h(λ2

ir)

with some component loss function h(⋅). One particular CLF is the right constant function

h(λ2) =
⎧⎪⎪⎨⎪⎪⎩

(λ/b)2, if ∣λ∣ ≤ b,
1, if ∣λ∣ > b.

The component loss criterion with this right constant function is equivalent to (2.1) for ρ = b2. To see
this, we rewrite (2.1) as a partial minimization problem

min
T

{min
S

(∥AT−S∥2
F +ρ∥S∥0)}. (6.1)
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Table 3. Exploratory bi-factor rotation results of the proposed methods applied to the quality of life data

(loadings ≥ .20 in absolute value are bolded)

Item Orthogonal bi-factor loadings Oblique bi-factor loadings

diff .56 .64 −.01 −.08 −.04 .16 .78 −.01 .11 −.03

slo .46 .47 .07 −.03 .03 .19 .58 .08 −.03 .05

con .53 .67 .04 .07 .04 .28 .86 −.01 −.09 .04

for .44 .67 .02 .01 −.01 .17 .86 −.03 −.08 −.03

dcon .57 .61 −.00 −.01 −.02 .23 .76 −.02 .08 −.01

tired .67 .04 .52 −.02 −.06 .42 −.00 .76 .03 −.07

ener .56 −.00 .38 .01 .04 .37 −.03 .54 .02 .06

worn .66 .07 .54 −.11 .03 .35 .04 .79 −.06 .05

pep .66 −.01 .43 .21 .00 .60 −.01 .56 .03 −.03

calm .73 −.01 −.04 .41 .02 .72 .03 −.10 .45 .01

blue .83 −.04 −.10 .05 −.03 .48 −.10 −.03 .74 .05

hap .66 −.05 .09 .38 −.01 .68 −.02 .08 .34 −.03

nerv .68 .19 −.04 .01 .02 .35 .21 −.00 .40 .09

down .82 .01 −.08 −.08 −.16 .35 −.08 .05 .85 −.10

afr .69 .00 −.09 −.08 .55 .35 −.01 −.08 .08 .82

frust .69 .00 .09 .01 .42 .44 −.00 .13 .01 .60

wor .61 −.00 .00 .06 .54 .43 .02 −.03 −.10 .76

The inner minimization problem over S has an explicit solution S = S(T) ∶= H(AT,√ρ). Thus, if we let
Λ = AT, (6.1) becomes

min
T

∥AT−S(T)∥2
F +ρ∥S(T)∥0

= min
T

∑
i
∑

r
{λ2

irI(λ2
ir ≤ ρ)+ρI(λ2

ir > ρ)},

which is exactly b2Q(Λ) with the right constant CLF and ρ = b2. This equivalence has several conse-
quences. First, the desirable properties of the right constant CLF provided by Jennrich (2004) directly
apply to our method, such as the ability to recover perfect simple structure or Thurstone’s simple
structure whenever they exist. Second, it suggests choosing the tuning parameter ρ as the square of the
threshold b, such as ρ = 0.32. Finally, our method provides a natural justification and interpretation for
the right constant CLF, and we also offer a simple and convergent algorithm for the equivalent methods.

Another related method is the simplimax rotation (Kiers, 1994). Although the simplimax method
is proposed for oblique rotation, the idea can be analogously applied to the orthogonal rotation. Given
a number m, the simplimax maximizes the simplicity by minimizing the sum of m smallest squared
entries of the rotated loading matrix. It is derived from the formulation:

min
T,S

∥AT−S∥2
F,

s.t. ∥S∥0 ≤ pk−m,
(6.2)

where T is either an orthogonal or an oblique rotation matrix. Thus, the simplimax can be viewed as a
constrained version of (2.1), while (2.1) is a penalized version. The PAM algorithm is still applicable
to the constrained problem (6.2), in which (2.3) is replaced by a truncation operation that sets the

https://doi.org/10.1017/psy.2025.1 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.1


16 Wu et al.

Table 4. Classification of estimation procedures

Objective function Output

AT or A(T′)−1 S

Likelihood/squared loss/etc. Penalized estimation/CFA

approximated loss function EFA/REGL REGL

m smallest (in absolute value) entries of (ATt+1 +ηtSt)/(1+ηt) to zero. The constrained version (6.2)
is appropriate when the number of zero loadings is pre-specified, while the penalized version (2.1) is
appropriate when the threshold for small loadings is given, which is typically the case.

In developing the approach of exploratory bi-factor analysis, Jennrich and Bentler (2011, 2012)
proposed constructing the rotation criterion as an index that measures the departure of a loading matrix
from a bi-factor structure. If such departure is measured by the Frobenius distance to the set of bi-factor
loading matrices, one naturally derives our formulation (2.4). Formulation (3.6) measures a distance not
directly under the loading matrix scale but under the covariance matrix scale. This scale has the benefit
of balancing the estimation accuracy for the loading matrix and the factor correlation matrix, hence the
better performance shown in Figure 3.

6.2. Bridging simple structure rotation and penalized estimation
Penalized estimation is a popular technique in statistics and machine learning for incorporating prior
knowledge about parameters. When the parameters are assumed to be sparse, sparsity-promoting
penalties such as the Lasso (Tibshirani, 1996) are incorporated into the loss functions (e.g., the
likelihood function) to produce sparse estimates. This technique has been introduced to the EFA
for the estimation of sparse loadings and has been suggested as an alternative to the factor rotation
procedure because it produces sparser loadings (Hirose & Yamamoto, 2015; Scharf & Nestler, 2019).
We now show via our framework that the factor rotation procedure and the penalized estimation are
two sides of the same coin. Their relation is summarized in Table 4. In the REGL formulation (2.1),
the optimal value for S given a fixed T is H(AT,√ρ), and the optimal value for T given a fixed S is
Porth(A′S) = argmin{T∶T′T=Ik} ∥AT − S∥F. Thus, the penalized estimate S is a truncated matrix of the
rotated loading AT, and the rotated loading AT is an untruncated version of S. The difference between
the rotation procedure and penalized estimation is merely a matter of choosing the output between AT
and S.

While one may argue that our sparse estimates S in (2.1) and (3.2) are not exactly the penalized
likelihood estimations discussed in the literature, the difference is peripheral. The classic penalized
estimation minimizes a loss function (e.g., the likelihood function or the squared loss) d(Σ̂,SΦS′+Ψ2),
which represents the discrepancy between the sample covariance matrix Σ̂ and the model covariance
matrix SΦS′ +Ψ2, along with a penalty term for S. In contrast, we minimize ∥A−ST′∥2

F plus a penalty
term. The loss function d(Σ̂,SΦS′+Ψ2) can be quadratically approximated (up to constant scaling and
shifting) by ∥AA′−SΦS′∥2

F, as AA′+ Ψ̂2 is the minimizer of the loss function. Taking the “square root”
of the matrices AA′ and SΦS′ = ST′TS′, we can further approximate ∥AA′ − SΦS′∥2

F by ∥A− ST′∥2
F.

Therefore, our formulas (2.1) and (3.2) are approximated penalized loss functions, and our sparse
estimates S are approximate solutions to the standard penalized estimation. Ideally, it would be best
to solve the penalized loss function directly because the initial loading matrix A is only an intermediate
estimator. We frame the problem within the rotation paradigm partly because factor rotation procedures
have historically been central to the EFA and partly because the rotation of a given matrix presents an
algebraic problem of independent interest. Moreover, employing a penalized loss function introduces
challenges in solving the optimization problem, as our algorithm is neither practical nor necessarily
convergent when applied to it. The exploration of efficient algorithms for minimizing the penalized loss
function in factor analysis remains a topic for future research.

https://doi.org/10.1017/psy.2025.1 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.1


Psychometrika 17

We can further draw a connection with the confirmatory factor analysis (CFA). In the CFA, the
likelihood function (or a loss function in general) is minimized under the restriction where certain
loading entries are pre-specified with fixed values or subject to equality constraints. This approach
constitutes constrained estimation. Similar to the penalized formulation, our REGL framework provides
a mathematical correspondence between the rotation procedure and the constrained estimation. The
constrained estimates produced by our framework are again approximate solutions for CFA estimation
by substituting the standard loss function with ∥A−ST′∥2

F. Although the exploratory and confirmatory
factor analyses are usually considered distinct disciplines with different objectives, our framework
reveals a mathematical connection between their estimates.

7. Conclusion

We have proposed a general framework to solve the rotation problem in factor analysis. The problem
is formulated as either a penalized or a constrained optimization, depending on the type of rotation
purpose. This regularized formulation can incorporate any desired assumptions about the factor
structure, and the optimization process finds the optimal rotation based on these assumptions. The
optimization problem is solved using simple and convergent algorithms. This framework is applicable
to both orthogonal and oblique rotations. We illustrate the penalized and constrained formulations
using examples of simple structure rotation and bi-factor rotation, respectively.

Simulation studies show that, for exploratory bi-factor analysis, our method performs better than
most other methods under many conditions, and mostly equally well as Bi-Quartimin, except in the
conditions ICB and ICBP, where it performs better than Bi-Quartimin. When applied to real data
sets, our method uncovers bi-factor structures that are consistent with the hypothesized theory. Our
framework also provides insight into the mathematical relationship among exploratory factor rotation,
penalized estimation, and confirmatory factor analysis.

Finally, we want to point out that we are essentially providing a numerical iterative approach to an
algebraic problem: given a matrix A, how to find its approximate factorization ST′ where S and T satisfy
certain structures or properties. This matrix factorization framework has potential applications beyond
factor analysis and could be valuable in other fields. For example, in dictionary learning (Rubinstein
et al., 2010; Zhai et al., 2020), the problem of sparse representation modeling can be approached in
a manner similar to (2.1) for orthogonal dictionaries or (3.2) for general dictionaries. The potential
connections and extensions of our algebraic framework to related problems may be explored in future
work. A reviewer raised a question regarding the performance of formulation (3.1) for the oblique
rotation problem. We have not yet identified a convergent algorithm for solving (3.1), although some
preliminary findings are presented in Appendix A.7. A comprehensive and systematic study of (3.1)
represents another promising direction for future research.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psy.2025.1.
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1. Appendix

A.1. Derivation of Algorithm 1
For the problem (2.1), the PAM algorithm (Attouch et al., 2010) reads

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Tt+1 = arg min
T′T=Ik

{∥AT−St∥2
F +ρ∥St∥0 +γt∥T−Tt∥2

F}, (A.1)

St+1 = argmin
S
{∥ATt+1 −S∥2

F +ρ∥S∥0 +ηt∥S−St∥2
F}. (A.2)
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Step (A.1) is a proximal version of Procrustes problem, and can be converted to a standard one:

arg min
T′T=Ik

∥AT−St∥2
F +ρ∥St∥0 +γt∥T−Tt∥2

F

= arg min
T′T=Ik

trace[(T′A′ −S′t)(AT−St)]+γttrace[(T′ −T′t )(T−Tt)]

= arg min
T′T=Ik

trace(−2S′t AT)+γttrace(−2T′t T)

= arg min
T′T=Ik

trace[−2(S′t A+γtT′t )T]

= arg min
T′T=Ik

∥T−(A′St +γtTt)∥2
F.

Thus Tt+1 = Porth(A′St +γtTt). Step (A.2) can be rearranged to

argmin
S
∥ATt+1 −S∥2

F +ρ∥S∥0 +ηt∥S−St∥2
F

= argmin
S
∥S− ATt+1 +ηtSt

1+ηt
∥

2

F
+ ρ

1+ηt
∥S∥0,

which can be optimized entry-wisely. In general, function (x−t)2+κ∥x∥0 is minimized at x= 0 if ∣t∣ <
√

κ and at x= t otherwise,
that is, the minimizer is x =H(t,

√
κ). Hence,

St+1 =H(
ATt+1 +ηtSt

1+ηt
,
√

ρ/(1+ηt)).

A.2. Proof of Proposition 1
This convergence result is a direct application of Theorem 3.2 in Attouch et al. (2010). In particular, Theorem 3.2 of Attouch
et al. (2010) requires that the objective function has the Kurdyka–Łojasiewicz property and that its smooth part has a Lipschitz
continuous gradient. A function f (x) is called Lipschitz continuous if there exists a constant L ≥ 0 such that ∥f (x)− f (y)∥ ≤
L∥x−y∥ for all x and y. The constant L is called the Lipschitz modulus. The function ∥AT−S∥2

F in (2.1) is a quadratic function
of T and S, so it is continuously differentiable and has a Lipschitz continuous gradient on bounded subsets. Theorem 3 in Bolte
et al. (2014) shows that semi-algebraic functions must have the Kurdyka–Łojasiewicz property (both definitions can be found
in Attouch et al., 2010 or Bolte et al., 2014). Semi-algebraic functions are ubiquitous. In particular, polynomial functions, the
Stiefel manifold (i.e., the set of orthogonal matrices), and ∥ ⋅ ∥0 are all semi-algebraic (see the Appendix in Bolte et al., 2014).
Hence, the objective function (2.1) has the Kurdyka–Łojasiewicz property.

Theorem 3.2 in Attouch et al. (2010) implies that any bounded sequence converges to a stationary point. We now show
that our sequence is bounded. The orthogonal matrix Tt is bounded. The iteration (2.3) implies that

∥St+1∥F = ∥H(
ATt+1 +ηtSt

1+ηt
,
√

ρ/(1+ηt))∥
F

≤ ∥ATt+1 +ηtSt

1+ηt
∥

F

≤ ∥ATt+1

1+ηt
∥

F
+∥ ηtSt

1+ηt
∥

F

= 1
1+ηt

∥A∥F +
ηt

1+ηt
∥St∥F

≤ 1
1+ηt

max{∥A∥F,∥St∥F}+
ηt

1+ηt
max{∥A∥F,∥St∥F}

=max{∥A∥F,∥St∥F}.

This is valid for any t. Therefore,

∥St+1∥F ≤max{∥A∥F,∥St∥F}
≤max{∥A∥F,max{∥A∥F,∥St−1∥F}}
=max{∥A∥F,∥St−1∥F}
≤ ⋯
≤max{∥A∥F,∥S0∥F}.

Hence our sequence (Tt,St) is bounded and thus converges to a stationary point.
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A.3. Projection onto bi-factor loadings
Algorithms 2 and 4 involve projecting a matrix onto the set of bi-factor loading matrices Pbi(X) = argminS∈Sbi ∥S−X∥F. To
find this projection, one needs to identify which column of S corresponds to the general factor. Suppose that the rth column
of S represents the general factor loadings; then this column is free and should be equal to the rth column of X in order to
minimize the Frobenius distance. After that, simple algebra shows that the group factor loadings in S should be identical (in
both value and location) to the largest (in absolute value) entry in each row of the remaining X sub-matrix. By letting every
column be a potential general factor loading, we obtain k candidates for the bi-factor loading matrices. The projection will be
the one with the largest Frobenius norm, because in this case ∥S−X∥2

F = ∥X∥2
F −∥S∥2

F for those candidate matrices S.

A.4. Derivation of Algorithm 3
For the minimization of H(T,S)+ f (T)+ g(S), the PALM algorithm (Bolte et al., 2014) reads

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Tt+1 = argmin
T
{⟨T−Tt,∇T H(Tt,St)⟩+

ct

2
∥T−Tt∥2

F + f (T)}, (A.3)

St+1 = argmin
S
{⟨S−St,∇SH(Tt+1,St)⟩+

dt

2
∥S−St∥2

F + g(S)}. (A.4)

In our case (3.2), H(T,S) = ∥A−ST′∥2
F, g(S) = ρ∥S∥0, and f (T) is the indicator function for the constraint diag(T′T) = Ik,

i.e., f (T) = 0 if T belongs to the constraint, and f (T) = +∞ otherwise. We have

∇T H(T,S) = −2(A′ −TS′)S, and∇SH(T,S) = −2(A−ST′)T.

For these functions,

∥∇T H(T1,S)−∇T H(T2,S)∥F = ∥2(T1 −T2)S′S∥F ≤ 2∥T1 −T2∥F∥S′S∥F

and

∥∇SH(T,S1)−∇SH(T,S2)∥F = ∥2(S1 −S2)T′T∥F ≤ 2∥S1 −S2∥F∥T′T∥F,

so they are Lipschitz continuous with moduli L1(S) = 2∥S′S∥F and L2(T) = 2∥T′T∥F, respectively. The PALM algorithm
requires that ct = γL1(St) and dt = ηL2(Tt+1) for some γ > 1,η > 1. Thus, (A.3) becomes

arg min
diag(T′T)=Ik

⟨T−Tt, −2(A′ −TtS′t)St⟩+γ∥S′t St∥F∥T−Tt∥2
F

= arg min
diag(T′T)=Ik

∥T−Tt −
(A′ −TtS′t)St

γ∥S′t St∥F
∥

2

F
.

Therefore,

Tt+1 = Poblq(Tt +
(A′ −TtS′t)St

γ∥S′t St∥F
).

Step (A.4) becomes

argmin
S
⟨S−St, −2(A−StT′t+1)Tt+1⟩+η∥T′t+1Tt+1∥F∥S−St∥2

F +ρ∥S∥0

= argmin
S
∥S−St −

(A−StT′t+1)Tt+1

η∥T′t+1Tt+1∥F
∥

2

F
+ ρ

η∥T′t+1Tt+1∥F
∥S∥0.

Hence

St+1 =H(St +
(A−StT′t+1)Tt+1

η∥T′t+1Tt+1∥F
,
√

ρ/(η∥T′t+1Tt+1∥F)).

A.5. Proof of Proposition 2
This convergence result is a direct application of Theorem 1 in Bolte et al. (2014). Specifically, the constraint diag(T′T) = Ik
is defined by a series of polynomial equations, so it is semi-algebraic by definition. Similar to the proof of Proposition 1, the
other terms in (3.2) are also semi-algebraic. Therefore, (3.2) has the Kurdyka–Łojasiewicz property. The Assumptions 1 and
2 required in Bolte et al. (2014) can be easily verified to be true for (3.2). Thus, the bounded iterates (Tt,St) converge to a
stationary point.
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Figure A.1. Boxplot of the estimation error for loading matrix under factor models with perfect simple structure.

A.6. Simulation on simple structure rotation
This section provides the simulation results of the proposed method and existing methods for recovering simple structure
in EFA. The simulation setting is very similar to that of the bi-factor rotation simulation in Section 4. There are a total of
22 items, and they admit a factor model with a perfect simple structure. There are four latent common factors, and these
common factors have nonzero loadings on four, five, six, and seven items, respectively. The nonzero loadings are randomly
selected from the intervals [0.3,0.6] or [0.6,0.9], and then each entry is randomly assigned a positive or negative sign. The
population correlation matrix is generated as

R = ΛΦΛ′ +Ψ2,

where Φ is the factor correlation matrix and Ψ2 is a diagonal matrix of uniqueness, chosen to constrain the diagonal elements
of R to one. In the orthogonal model, Φ will be an identity matrix. In the oblique model, the correlations among common
factors are randomly selected from the interval [0.2,0.6]. If the generated correlation matrix is not positive definite, we re-
generate a new one until it is positive definite. The final step generates the data from a multivariate normal distribution with
zero mean and covariance matrix R, with a sample size N ∈ {200,500,2000}. The simulation is replicated 50 times for each
scenario. The estimation accuracy is evaluated by the RMSE (4.1).

We compare our proposed methods with the conventional rotation methods, namely, the Varimax for orthogonal rotation
and the oblimin for oblique rotation. The results are shown in Figures A.1 and A.2. The oracle method rotates the initial loading
matrix toward the true loading matrix, so it is optimal in the sense of minimizing the RMSE of loading matrix estimation.
Under the orthogonal model, all the methods achieve nearly optimal performance. Under the oblique model, these oblique
methods (REGL.oblq and oblimin) are as good as the oracle method. Nonetheless, as shown in Figure A.2, our method has
better performance in estimating the factor correlations. Our method exhibits outliers in Figures A.1 and A.2 because it gets
trapped in local minima in these cases.

A.7. Comparing two formulations of oblique rotation
This section investigates the performance of two different formulations of the oblique rotation problem through simulations.
The simulation settings are exactly the same as those in Section 4. The two formulations are
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Figure A.2. Boxplot of the estimation error for factor correlation matrix under oblique factor models with perfect simple structure.

min
T,S
∥A(T′)−1 −S∥2

F,

s.t. diag(T′T) = Ik, S ∈ Sbi,
(A.5)

and

min
T,S
∥A−ST′∥2

F,

s.t. diag(T′T) = Ik, S ∈ Sbi.
(A.6)

(A.5) is solved by the alternating minimization algorithm and the updating of T given a fixed S is achieved by Jennrich (2002)’s
gradient projection algorithm. (A.6) is solved by Algorithm 4. Both solutions are partially orthogonalized to the semi-oblique
bi-factor results. The two corresponding oracle methods are

min
T
∥A(T′)−1 −Λ∥2

F,

s.t. diag(T′T) = Ik,
(A.7)

and

min
T
∥A−ΛT′∥2

F,

s.t. diag(T′T) = Ik,
(A.8)

where Λ is the true loading matrix. (A.7) and (A.8) are solved by the gradient projection algorithm.
The results of the four methods in estimating the loading matrix and factor correlation matrix are shown in Figures A.3

and A.4. The LoadingOracle (A.7) always has the optimal loading matrix estimation, as it minimizes the loading matrix RMSE
(4.1). The CovOracle (A.8) produces comparable results for loading matrix estimation when the loadings are high but performs
slightly worse when the loadings are low. The extremely poor results of CovOracle under ICP and ICBP conditions arises from
a nearly singular estimate of the matrix T, with which A(T′)−1 will be extremely biased. A reversed trend is observed for the
estimation of the factor correlation matrix. While LoadingOracle and CovOracle yield similar results when the loadings are
high, CovOracle demonstrates superior estimation of the factor correlation matrix when the loadings are low. This outcome
highlights the benefit of minimizing the covariance distance, even though it sacrifices some accuracy in the loading matrix
estimation.

The pattern follows for the two practical methods, CovREGL (A.6) and LoadingREGL (A.5). These methods perform
comparably in estimating the loading matrix when the loadings are high, but CovREGL shows slightly worse performance
when the loadings are low. For factor correlation matrix estimation, the two methods are comparable when the loadings
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Figure A.3. Boxplot of the estimation error for loading matrix under semi-oblique bi-factor models.
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Figure A.4. Boxplot of the estimation error for factor correlation matrix under semi-oblique bi-factor models.
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are high, but CovREGL outperforms LoadingREGL when the loadings are low, particularly under IC and ICP conditions.
However, under ICB and ICBP conditions, the advantage of CovREGL over LoadingREGL in estimating the correlation
matrix diminishes. This deterioration is likely due to model misspecification, as Λ /∈ Sbi under these conditions. Surprisingly,
CovREGL occasionally outperforms its oracle counterpart under IC and ICP conditions. In particular, the issue of extreme
bias observed with CovOracle is no longer present with CovREGL.

Cite this article: Wu, Y., Liao, X. and Li, Q. (2025). A Generalized Factor Rotation Framework with Customized Regularization.
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