
Canad. Math. Bull. Vol. 50 (1), 2007 pp. 123–125

Simultaneous Approximation and
Interpolation on Arakelian Sets

Nikolai Nikolov and Peter Pflug

Abstract. We extend results of P. M. Gauthier, W. Hengartner and A. A. Nersesyan on simultaneous

approximation and interpolation on Arakelian sets.

In [4], a monotonicity problem for the multipole Lempert function was solved.

The proof there was based on a simultaneous interpolation and approximation result

for a special Arakelian set of the unit disc. So it was natural to ask what is going on for

an arbitrary Arakelian set. The final result presented here turns out to be an extension

of a result due to P. M. Gauthier, W. Hengartner, and A. A. Nersesyan [2, 3].

Let us first recall the definition of an Arakelian set and the known results.

Definition 1 A relatively closed subset E of a plane domain D is called an Arakelian

set of D, if D∗ \E is connected and locally connected, where D∗ denotes the one-point

compactification of D.

For a plane domain D, let O(D) be the set of all holomorphic functions on D. If E

is a relatively closed subset of D, we denote by A(E) the set of all functions continuous

on E and holomorphic on E0, where E0 is the interior of E.

The main theorems we will need are the following ones.

Theorem 2 (Arakelian’s Theorem [1]) Let E be an Arakelian set of a plane domain

D. If f ∈ A(E) and ε > 0, then there exists g ∈ O(D) with |g(z) − f (z)| < ε, z ∈ E.

Theorem 3 (The Gauthier–Hengartner–Nersesyan Theorem [2, 3]) Let D and E be

as in Theorem 2 and let Λ be a sequence in E\E0 without limit points in D. Assume that

for any λ ∈ Λ a finite sequence (βν
λ)ν(λ)

ν=1 of complex numbers is given. Let f ∈ A(E)

and ε > 0. Then there is a g ∈ O(D) satisfying the conclusion of Theorem 2 and in

addition, g(λ) = f (λ) and g(ν)(λ) = βν
λ for any λ ∈ Λ and any ν = 1, . . . , ν(λ).

In the result presented in this note, even more specified functions g are provided.

In fact, we have the following theorem.

Theorem 4 Let D, E, Λ (Λ may be empty), βν
λ be as in Theorem 3, and let b1, . . . bk ∈

E0. Then for given f ∈ A(E), ε > 0, and m ∈ Z+, there is a g ∈ O(D) satisfying the

conclusions of Theorem 3, and in addition, g(ν)(b j) = f (ν)(b j) for any j = 1, . . . , k

and any ν = 0, . . . , m.
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Proof Obviously, we may assume that E 6= D. Now we present the proof in four

steps.

Step 1: For any j = 1, . . . , k there exists an s j ∈ O(D) that is bounded on E such

that s ′j(b j ) 6= 0, s j(b j) = 0 and s j(bq) 6= 0 for every q 6= j.1

To see this, choose a point c ∈ D \ E. Since E ∪ {c} is an Arakelian set of D,

by Theorem 2, there is an s̃ ∈ O(D) with |s̃| < 1 on E and |s̃(c) − 2| < 1. Set

ŝ j := s̃ − s̃(b j ). Since ŝ j(c) 6= 0, then ŝ j 6≡ 0. Now |ŝ j | < 2 on E implies that the

function s j ,

s j(z) :=
(z − b j)ŝ j(z)

∏k
q=1(z − bq)ordbq ŝ j

, z ∈ D,

has all the required properties. (As usual, ordλ p denotes the smallest integer q ≥ 0

with p(q)(λ) 6= 0.)

Step 2: There is a function p ∈ O(D) that is bounded on E such that p(b j) 6= 0 for

any j = 1, . . . , k and ordλ p ≥ ν(λ) + 1 for any λ ∈ Λ.

Indeed, if q = 0 on E and q(c) = 1, where c ∈ D \ E, then it is enough to apply

Theorem 3 for E ∪{c}, q, ε = 1, and βν
λ = 0, ν = 1, . . . , ν(λ) + 1, λ ∈ Λ. Hence, we

get a non–constant function p̃ ∈ O(D) such that |p̃| < 1 on E and ordλ p̃ ≥ ν(λ)+1,

λ ∈ Λ. What remains is to put

p(z) :=
p̃(z)

∏k
j=1(z − b j)

ordb j
p̃
, z ∈ D.

Step 3: Let s j be the function from Step 1, j = 1, . . . , k. For a non-negative integer

ν set

h̃ν
j :=

p

s j

k∏

q=1

sν+1
q ,

where p is the function from Step 2. Then

hν
j :=

h̃ν
j

(h̃ν
j )(ν)(b j)

is a well-defined function on D. Put

Mν := sup
E

k∑

j=1

|hν
j |.

Step 4: Finally, we are going to prove Theorem 4 by induction on m. Fix m = 0 and

let g be the function from Theorem 3 for Λ, (βν
λ)ν(λ)

ν=1 , and ε
M0+1

. Then it is easy to

check that the function

g0 := g +

k∑

j=1

( f (b j ) − g(b j))h0
j

1Observe that this step is obvious whenever D is biholomorphic to a bounded domain, in particular,
when D 6= C.
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satisfies all the required properties.

Set d := min1≤ j≤k dist(b j , C \ E0). Assume now that Theorem 4 is true for some

integer m ≥ 0 and let gm satisfy the conclusion of Theorem 4 for

ε(1 + Mm+1(m + 1)!d−m−1)−1.

By virtue of the Cauchy inequalities it follows that the function

gm+1 := gm +

k∑

j=1

( f (m+1)(b j) − g(m+1)
m (b j))hm+1

j

fulfills the conclusions of Theorem 4 for m + 1.
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