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Petrie Schemes

Gordon Williams

Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups,

have been studied by geometers and group theorists since the early part of the twentieth century.

An open question is the determination of which polyhedra possess Petrie polygons that are simple

closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie

schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex

polytopes and honeycombs in Euclidean spaces, as well as all of the Grünbaum–Dress polyhedra, pos-

sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed

curves. Partial results are obtained for several other classes of less symmetric polytopes.

1 Introduction

Historically, polyhedra have been conceived of either as closed surfaces (usually topo-

logical spheres) made up of planar polygons joined edge to edge or as solids enclosed
by such a surface. In recent times, mathematicians have considered polyhedra to
be convex polytopes, simplicial spheres, or combinatorial structures such as abstract
polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of

edges of the polyhedron where any two consecutive elements of the sequence have a
vertex and face in common, but no three consecutive edges share a common face. For
the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie
polygons may be defined analogously for polytopes as well. Petrie polygons have been

very useful in the study of polyhedra and polytopes, especially regular polytopes. Our
central question is this: which polyhedra and polytopes possess Petrie polygons that
are simple closed curves? The current work will provide a partial answer. When
a Petrie polygon forms a simple closed curve, we say that it is acoptic, and when a

Petrie polygon fails to be acoptic we will say that it is self-intersecting.
As an illustration, consider the Schlegel diagram given in Figure 1. Petrie polygons

have been marked using bold lines; the Petrie polygon in (b) is self-intersecting and
the Petrie polygon in (c) is acoptic.

Normally, (e.g., [15,28]) convex polytopes appear in one of two presentations. We
define a V-polytope as the convex hull of a finite set of points in R

d, and an H-polytope

as the bounded intersection of finitely many closed half-spaces in R
d.

Two polytopes are said to belong to the same combinatorial type if their face lat-

tices (i.e., the posets of their faces, ordered under inclusion) are isomorphic. At this
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Figure 1: A Schlegel diagram for a polyhedron with a self-intersecting Petrie polygon is given

in (a). Part of the self-intersecting Petrie polygon is illustrated in (b), starting with the dashed

edges and stopping at the bold edge, which is the first retraced edge. It also possesses an acoptic

Petrie polygon shown in (c). This polygon is part of an acoptic Petrie scheme.

time, there is no known computationally feasible technique for determining in gen-
eral if a given poset corresponds to the face lattice of some convex polytope (for more
details see [15, Ch. 5], or [6]). A good example of this is the 3-sphere of McMullen

(introduced in his Ph.D. thesis): combinatorially it is highly symmetric, but it is still
not known if it is realizable as the boundary of a convex polytope, see [5, 20].

Frequently, polyhedra are defined as closed surfaces in 3-dimensional Euclidean

space composed of planar polygons meeting exactly two at an edge, often with the
additional requirement that they be acoptic, i.e., non-self intersecting. Nothing in
such a definition requires that the region bounded by a polyhedron be convex. Thus,
there is a natural description available for what constitutes a non-convex polyhedron.

Translating this notion to higher dimensional objects, however, presents difficulties
which were not present in the convex case. One natural way to extend the notion
of non-convex polyhedra to higher dimensions is to consider simplicial d-spheres.
Unfortunately, there are inconsistencies in the literature about the definition of this

term. We will follow Alexander [1]: a simplicial d-sphere is a simplicial subdivi-
sion S of a topological d-sphere such that some refinement of S is isomorphic to a
refinement of the natural simplicial subdivision of the boundary of a (d + 1)-simplex.
This definition is equivalent to another definition for a simplicial d-sphere which

is frequently seen in the literature, e.g., [2], in which the the combinatorial simpli-
cial d-sphere is defined inductively as a simplicial complex which is homeomorphic
to a d-sphere and in which the link of each vertex in the manifold is a simplicial
(d − 1)-sphere.

Another approach to developing a combinatorial abstraction of polytopes has be-
gun to receive wider attention in recent years. In his seminal paper with Ludwig
Danzer, Egon Schulte developed the notion of an incidence complex [14], and in sub-

sequent work, principally with P. McMullen [21–25] refined this purely combina-
torial structure into what is now commonly referred to as an abstract polytope. An
abstract polytope is a class of graded posets which generalize certain properties of the
face lattice of a convex polytope. Elements of these posets are referred to as faces, and
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a face F is said to be contained in a face G if F < G in the poset. A face at rank i is
an i-face. A face F is incident to a face G if either F < G or G < F. A proper face is

any face which is not a maximal or minimal face of the poset. A flag is any maximal
chain in the poset, and the length of a chain C is |C| − 1. Throughout this paper, a
flag will be represented by the list of proper faces which determine the flag, omitting
the maximal and minimal faces. Following [24] we will require that the poset P also

possess the following four properties:

P1 P contains a least face and a greatest face, denoted F−1 and Fn respectively.
P2 Every flag of P has the same length, here denoted n + 1.
P3 P is strongly connected.
P4 For each i = 0, 1, . . . , n − 1, if F and G are incident faces of P, and the ranks of F

and G are i − 1 and i + 1 respectively, then there exist precisely two i-faces H of P

such that F < H < G.

Note that an abstract polytope is connected if either n ≤ 1 or n ≥ 2 and for any
two proper faces F and G of P there exists a finite sequence of incident proper faces

J0, J1, . . . , Jn such that F = J0 and G = Jn. A polytope is strongly connected if every
section of the polytope is connected, where a section corresponding to the faces H and
K is the set H/K := {F ∈ P | H < F < K}. Some texts are more concerned with the
notion of flag connectivity. Two flags are adjacent if they differ by only a single face.

A poset is flag-connected if for each pair of flags there exists a sequence of adjacent
flags connecting them, and a poset is strongly flag-connected if this property holds for
every section of the poset. It has been shown [24] that for any poset with properties
P1 and P2, being strongly connected is equivalent to being strongly flag-connected.

1.1 Outline of Topics

Section 2 will discuss the history and structure of Petrie polygons, and will develop

a related structure, called a Petrie scheme. In addition, we will discuss the notion of
Petrial abstract polytopes, which are polytopes that possess Petrie schemes with the
minimal amount of self-intersections.

In Section 3 we will demonstrate that a broad range of geometrically regular poly-

hedra and polytopes are Petrial.
Finally, in Section 4 we will discuss some other classes of polytopes which are

known to be Petrial, and what is known about certain classes of simplicial spheres.
We will conclude with some conjectures about other classes of polytopes which the

author believes are Petrial.

2 Petrie Polygons and Petrie Schemes

2.1 History

In H. S. M. Coxeter’s classic text Regular Polyopes [10], the notion of a Petrie polygon

was used extensively in the analysis of regular polytopes, especially in the estimation
of the sizes of their symmetry groups. Later works, such as those of B. Grünbaum
[16], P. McMullen and E. Schulte [24], and S. Wilson [27], used Petrie polygons of
regular complexes to derive new complexes which are also regular; these structures
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frequently are referred to as regular maps.

Some work has also been done to generalize the notion of Petrie polygons to

higher dimensions, principally by Coxeter [10], but also by Schulte and McMullen
[24] in the context of regular abstract polytopes. In the present work, we present
a new generalization of the notion of a Petrie polygon, called a Petrie scheme. In
all of the studied examples, the Petrie polygon turns out to be a restriction of the

Petrie scheme to a single rank. It is not known whether or not this always works, in
the sense that it is conceivable that there exists an abstract polytope having a Petrie
scheme that, when restricted to a single rank, might result in retracing a single Petrie
polygon several times.

2.2 Basic Concepts and Definitions

A Petrie polygon is a purely combinatorial structure, so we will begin by defining
our more general notions in terms of the purely combinatorial setting of abstract
polytopes.

A flag of an abstract polytope is any maximal chain in the polytope; in geometric
polytopes, this is a collection of incident faces { f0, f1, . . . , fd}, where each fi is an
i-face and fi ⊂ fi+1 for each i, so that there is precisely one face from each rank in
the collection. Given a flag F, we will occasionally denote the element at rank k in the

flag as Fk.

ρ2 ρ1

ρ0

Figure 2: An illustration of how three exchange maps, taken in sequence, form a Petrie map.

An exchange map ρi is a map on the flags of the (abstract or geometric) poly-
tope sending each flag to the unique flag which differs from it only by the element
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at rank i. These exchange maps should not be confused with the reflections in geo-
metrically regular polytopes that have the same action on an individual flag, as they

act differently on the other flags of the polytope and are not sufficiently general for
use with polytopes that are not regular. A Petrie map σ of a polytope P of rank d

is any composition of the exchange maps, {ρ0, ρ1, . . . , ρd−1}, on the flags of P in
which each of these maps appears exactly once (see Figure 2). For example, the

map σ = ρd−1ρd−2 . . . ρ2ρ1ρ0 is a Petrie map. Thus, for a polyhedron, there are
three exchange maps ρ0, ρ1 and ρ2, and four distinct Petrie maps, ρ2ρ1ρ0, ρ2ρ0ρ1 ≡
ρ0ρ2ρ1, ρ1ρ2ρ0 ≡ ρ1ρ0ρ2, and ρ0ρ1ρ2.

In the language of Coxeter groups (see Section 3.1.1), a string Coxeter group W

with a string diagram with d nodes and d−1 branches marked ∞ admits a permuta-
tion representation on the set of flags of any polytope, called the flag action of W on

the polytope. The exchange maps are the permutations corresponding to the stan-
dard (or privileged) generators of W , and the Petrie maps correspond to the Coxeter
elements in W . For a description of the flag action in the context of abstract poly-
topes, see [18].

Definition 2.1 A Petrie sequence of an abstract polytope is an infinite sequence of
flags which may be written in the form (. . . , σ−1F, F, σF, σ2F, . . . ), where σ is a fixed
Petrie map and F is a fixed flag of the polytope.

Definition 2.2 A Petrie scheme is the shortest possible presentation of a Petrie se-

quence. If a Petrie sequence of an abstract polytope contains repeating cycles of
elements, then the Petrie scheme is the shortest possible cycle presentation of that
sequence. Otherwise, the Petrie scheme is the Petrie sequence. The length of the
Petrie scheme is the number of flags in its presentation.

Note that any Petrie sequence in which a flag F appears twice must have a cycle

presentation. If k is the smallest integer such that σkF = F, then up to cyclic permu-
tation, the Petrie scheme is

(

F, σF, . . . , σk−1F
)

.

A Petrie scheme in a polyhedron or a convex polytope corresponds to a Petrie
scheme of the associated abstract polytope in the natural way. A portion of a Petrie
scheme of the cube is illustrated in Figure 3. Using the indicated labeling of the
vertices, the illustrated scheme was generated using σ = ρ2ρ1ρ0 and is given by

(

{

{1}, {1, 2}, {1, 2, 6, 5}
}

,
{

{2}, {2, 6}, {2, 6, 7, 3}
}

,

{

{6}, {6, 7}, {6, 7, 8, 5}
}

,
{

{7}, {7, 8}, {7, 8, 4, 3}
}

,

{

{8}, {8, 4}, {8, 4, 1, 5}
}

,
{

{4}, {4, 1}, {4, 1, 2, 3}
}

)

.

We will refer to the sequence of faces obtained by selecting out only those elements
of a given rank i in a Petrie scheme as the rank i elements of the Petrie scheme. It is
easy to demonstrate that the rank 1 elements of a Petrie scheme correspond to the
classical notion of a Petrie polygon of a convex polytope.
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Figure 3: Six flags of a Petrie scheme of the cube illustrated in an exploded view. The Petrie

polygon associated with this scheme is indicated by bold black lines.

Definition 2.3 A Petrie scheme is acoptic if each proper face appears at most once
in the Petrie scheme. An abstract polytope is Petrial if all of its Petrie schemes are
acoptic.

The term “Petrial” has been used in other contexts, e.g., [24], for the Petrie-dual
of a polyhedron. It is important to note that most Petrie schemes (or even Petrie
polygons) are not acoptic. The Schlegel diagram of a convex polyhedron which has
a Petrie polygon that self-intersects several times before forming a repeating cycle is

given in Figure 1. Hence, the polyhedron is not Petrial. On the other hand, it is shown
in Section 3.1 that all of the regular convex polytopes possess acoptic Petrie schemes.
This leads to the following question: which polytopes (abstract or geometric) have
acoptic Petrie schemes? More generally, one may be concerned with classifying those

abstract polytopes which are nearly Petrial; i.e., which abstract polytopes of rank n

possess Petrie schemes which are acoptic for some subset S of the ranks?

Definition 2.4 A Petrie scheme of a polytope P is S-acoptic, where S is a subset of

the ranks of P, if the rank i elements are distinct for each i ∈ S. We say the polytope
is S-Petrial if all of its Petrie schemes are S-acoptic.

A polytope that has Petrie schemes which are acoptic on the rank set S = {0, 1}
possesses Petrie polygons which are simple cycles.

To analyze the Petrie schemes of a polytope, it suffices to look at the schemes
generated by a single choice of Petrie map:

Theorem 2.5 Any two Petrie maps of an abstract polytope are conjugate.

Proof Central to this argument is a consequence of property P4 of abstract poly-
topes that if | j − k| ≥ 2 then ρ jρk = ρkρ j . The proof of the theorem follows almost
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exactly the corresponding argument given in [19, p. 75] for why all Coxeter elements
are conjugate in a Coxeter group, although the argument presented there is being

applied in the somewhat narrower context of finite reflection groups.

3 Petrie Schemes of Regular Polyhedra and Polytopes

3.1 The Regular Convex Polytopes and Their Petrie Schemes

Most of the key facts necessary to demonstrate that all of the regular convex polytopes

are Petrial are covered in Humphreys’ book Reflection Groups and Coxeter Groups

[19]. First, some terminology.

Each regular polytope (or polyhedron) may be classified by its combinatorial type.
The Schläfli symbol is a way of recording the combinatorial type by a sequence of
symbols {a1, a2, . . . , ad−1}, where the first d − 2 symbols {a1, a2, . . . , ad−2} refer

to the structure of the faces and the last d − 2 symbols {a2, . . . , ad−1} refer to the
structures of the links of the vertices. In the simplest case, {k} refers to a planar,
regular k-gon, and is used to define the longer symbols inductively. For more on
Schläfli symbols, see [10, 16]. Grünbaum’s article [16] introduces the notation used

in Section 3.3 to describe more complicated embeddings of polygons necessary for
the construction of certain types of polyhedra.

3.1.1 Coxeter Groups

For consistency of notation and clarity, we include here a brief summary of the struc-
ture of a Coxeter group. A Coxeter group is any group possessing a presentation with
the conditions that:

(1) it possesses a finite set of generators {s0, s1, . . . , sn−1}, called the privileged gener-

ators;

(2) each generator is an element of order 2;
(3) for each pair (i, j) there is an integer mi, j such that (sis j)

mi, j
= (s jsi)

mi, j
= e,

where e is the identity element of the group;
(4) mi, j > 1 if i 6= j.

A Coxeter group acting on R
n as a reflection group is a spherical Coxeter group if it

has fixed points and an affine Coxeter group if it has no fixed points. A string Coxeter

group has the added condition mi, j = 2 whenever 0 ≤ i < j − 1 ≤ n − 2. A string
Coxeter group is irreducible if mi, j > 2 when |i− j| = 1. Given a finite spherical Cox-
eter group W and the set of generating maps s0, s1, s2, . . . , sn−1, a Coxeter element ω
is any product of those generators in which each generator appears exactly once.

3.1.2 Coxeter Groups and Regular Convex Polytopes

It is known that irreducible spherical Coxeter groups with a string diagram are the

symmetry groups of the regular convex polytopes, and that to each choice of base
flag F for a regular convex polytope P there is a corresponding set of privileged gen-
erators of the Coxeter group, called the distinguished generators of P for the flag F.
The behavior of the exchange maps of the flags of P restricted to F is the same as that
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which arises from the action of the distinguished generators of the symmetry group
of P. Thus, there is a correspondence between these two kinds of maps. Because of

the correspondence (but not identification) between the classical notion of the gen-
erating reflections of a Coxeter group with the exchange maps acting on the base flag
corresponding to the privileged generators of the Coxeter group, we will obtain the
same sequence of flags iterating under either set of generators when we start with the

base flag. On the other hand, it is worth emphasizing that the exchange maps are not
(in fact) symmetries, and they behave differently than the privileged generators off
the base flag.

In the context of regular convex polytopes, a choice of a set of elements si and

Coxeter element ω corresponds to a choice of base flag and the generating reflection
maps associated with that base flag, and ω acts on that base flag with exactly the
same effect as one of the Petrie maps. Thus, for a regular convex polytope to fail
to be Petrial, it suffices to show the existence of a choice of base flag F and Coxeter

element ω so that for some n, ωnF ∩ F 6= ∅ and ωnF 6= F. In the language of
Coxeter groups, this is the same as saying that some power of ω is non-trivial and
lies in a (standard) parabolic subgroup of W , where a parabolic subgroup of a Coxeter
group is any group generated by a proper subset of the privileged generators of the

Coxeter group. It is a consequence of some basic facts about Coxeter elements that
this cannot happen. Much of the description below benefits from correspondence
and conversations with J. Humphreys, E. Babson and W. McGovern.

To understand that no power of ω can lie in a parabolic subgroup of W if W is

an irreducible Coxter group, one needs to consider several facts. The length of an
element of a Coxeter group is the length of the shortest way of expressing it in terms
of the privileged generators of the group. It is well known that the length functions on
the Coxeter group and on any parabolic subgroup agree for elements in the subgroup,

and that if the order h of the Coxeter element is even, then ωh/2 is the longest element
in the Coxeter group [19, Ex. 2, p. 82] and its reduced expression must contain each
of the generating reflections. In fact, the longest element has a natural expression
in terms of two elements y and z which are themselves products of subsets of the

generators, where the subsets of generators used in each product commute pairwise.
This also proves that lower powers of ω do not lie in parabolic subgroups either,
since if any had been reducible there would be a shorter expression for ωh/2. The
higher powers of ω less than h have reduced expressions with the elements y and z

appearing in reverse order, and so all of the generating symmetries appear as well.
A similar argument may be performed in the case when h is odd, using a slightly
modified argument (see [7, §6, Ex. 2, p. 151]).

The proof of these facts about a Coxeter element ω involves careful scrutiny of a

plane P that is stabilized by the action of ω. The elements y and z are generating
reflections of the dihedral subgroup of the Coxeter group which stabilize P, and ω
acts as a rotation on P. The representation of ωh/2 in terms of the generators y and z

is a consequence of the geometric fact that the map taking one fundamental domain

to another is determined by the reflecting planes (the boundaries of the domains)
crossed by a path connecting the two domains, and that the reflection lines in P are
the intersections of the hyperplanes fixed by y and z with the plane P.

We may thus conclude the following results.
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Theorem 3.1 Let h be the order of a Coxeter element ω in an irreducible, spherical

Coxeter group. Then for all i < h, ωi does not lie in a parabolic subgroup.

Corollary 3.2 The regular convex polytopes are Petrial.

In a regular convex polytope the plane in the discussion above bisects each of the

edges in a Petrie polygon of the polytope. In fact, to each Petrie polygon (and scheme)
of a regular convex polytope there is associated a corresponding Coxeter element and
stabilized plane.

Unfortunately, this proof method does not seem to lend itself to an immediate
result about the star polytopes described in [10]. It is reasonable, however, to suggest
the following.

Conjecture 3.3 The regular star polytopes are Petrial.

3.2 The Regular Honeycombs Are Petrial

Throughout this section we are concerned with the regular honeycombs of Euclidean
space. For the proof below, we will use the geometric symmetries that produce the
same sequence of flags, when acting on our chosen base flag, as would be obtained
by applying the exchange maps to the chosen base flag. Given that the objects under

consideration are geometrically regular, this is sufficient to prove the desired result.
The main objective of this section is the proof of the following theorem.

Theorem 3.4 Every regular honeycomb is Petrial.

3.2.1 The Regular Honeycombs

Following [10], the six types of regular honeycomb of R
n are given in Table 1. Note

that combinatorially, the apeirogon and the cubic honeycomb of R
1 are the same, but

their geometric presentations and Schläfli symbols differ, so they are listed seperately.

Table 1: The regular honeycombs.

Name Schläfli symbol Description

Apeirogon {∞} The integer partition of R
1

Tessellation of Triangles {3, 6} Tiling of the plane by regular triangles

Tessellation of Hexagons {6, 3} Tiling of the plane by regular hexagons

Cubic Honeycomb, δn+1 {4, 3n−2, 4} Tiling of R
n by regular cubes, n ≥ 2

hδ5 {3, 3, 4, 3} Tiling of R
4 by crosspolytopes

Reciprocal of hδ5 {3, 4, 3, 3} Tiling of R
4 by 24-cells
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A key tool we will use to help us prove Theorem 3.4 will be the Coxeter groups
of the honeycombs, and so it is worth noting that the symmetry groups of regular

honeycombs are known to be affine Coxeter groups.

Proof It suffices to show for each class of regular honeycomb H and each choice of

Petrie map σ on H, given a geometrically regular realization of H, there is a line which
is stabilized by ω, the Coxeter element corresponding to the action of σ on a choice
of base flag. This stable line is analogous to the stable plane of a Coxeter element of
a regular convex polytope. To establish that the honeycomb is Petrial we also need

to show that the action of the Coxeter element on the line is a translation along that
line. To see this, note that without loss of generality we may restrict our attention to
action on the base flag F. For a Petrie scheme to fail to be acoptic, ωmF ∩ F 6= ∅ for
some m and ωmF 6= F, so (ωmF)k = Fk for some rank k. This is the same as saying

that ωm ∈ 〈s0, s2, . . . , sk−1, sk+1, . . . , sn〉, a parabolic subgroup, and ωm 6= e. Any
parabolic subgroup of an affine Coxeter group is a spherical Coxeter group (possibly
not irreducible, and possibly with fixed point p some point other than the origin).
Thus, the distance between any point x in the space and the fixed point p is fixed by

the action of the parabolic subgroup. On the other hand, if ωm acts as a translation
on points on the line, then the length ||x − p|| cannot in general be fixed (consider,
for example, the point x on the line which minimizes the distance to p). This is a
contradiction. Hence, to prove that the regular honeycombs are Petrial it suffices to

show that for each honeycomb H and Petrie map ω, that ω acts as a translation along
the stable line.

To complete the proof it is necessary to exhibit in each case a geometric realiza-

tion of the honeycomb, a Petrie map on that honeycomb and to identify the line
stabilized by the Petrie map. This is relatively straightforward for the honeycomb
classes other than the cubic honeycomb, and so for the sake of brevity we include
only the argument for the hexagonal tiling as an example and the argument for the

cubic honeycombs.

The tessellation by hexagons: Consider the tiling of the plane by regular hexagons
possessing a hexagon with vertices

{

(1, 0),
( 1

2
,

√
3

2

)

,
(

−1

2
,

√
3

2

)

, (−1, 0),
(

−1

2
,−

√
3

2

)

,
( 1

2
,−

√
3

2

)}

.

We will consider the generating set of reflections to be given by:

s0 : x 7→
[

−1 0
0 1

]

x s1 : x 7→
[

− 1
2

√
3

2√
3

2
1
2

]

x

s2 : x 7→
[

1 0
0 −1

](

x −
[

0

−
√

3
2

] )

+

[

0

−
√

3
2

]

and the line l(t) =

(

0,−
√

3
2

)

+ t
(

3
4
,
√

3
4

)

.
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-1

1

2

Figure 4: A portion of the tessellation of the plane by regular hexagons with a Petrie polygon

indicated in bold lines and its associated stable line indicated by a dashed line.

The base flag corresponding to our choice of generating maps is given by

{

{(

−1

2
,−

√
3

2

)}

,
{(

−1

2
,−

√
3

2

)

,
( 1

2
,−

√
3

2

)}

,

{

(1, 0),
( 1

2
,

√
3

2

)

,
(

−1

2
,

√
3

2

)

, (−1, 0),
(

−1

2
,−

√
3

2

)

,
( 1

2
,−

√
3

2

)}

}

;

the Petrie map σ is given by σ = ρ2ρ1ρ0 with corresponding geometric map on the
base flag ω = s2s1s0. Furthermore, ω (l (t)) = l (t + 1). The action of ω is illustrated

in Figure 4.

The cubic honeycombs, δn+1: Here we are defining the cubical tiling of R
n to be by

cubes with edges of length 2, one of which is centered on the origin, with corners
at integer points (e.g., (−1,−1, . . . ,−1), (1, 1, . . . , 1), . . . ) and n ≥ 2. The Petrie

polygon and stable line discussed below are illustrated in Figure 5 for the case n = 3.

Our proof uses the canonical presentation of the Coxeter group of the n-cube from
[19]. Specifically, the normals to the generating reflections of the group are given by

αi = ei − ei+1 for i = 1, . . . , n − 1 and αn = 2en, where ei is the i-th standard basis
vector. Let si−1 be the matrix presentation of the reflection associated with αi . For
i = 1, . . . , n−1 the matrix si−1 is the permutation matrix of the permutation (i, i+1).
Similarly, sn−1 is the map taking (x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn−1,−xn). The facet

(or maximal cube) exchange map is defined to be snx = (x−e1)−2((x−e1)·e1)e1+e1;
in other words,

sn : x 7→ (−x1 + 2, x2, . . . , xn).

Note that si exchanges two flags differing only at rank i. We may define a Petrie map
ω = sns0 · · · sn−1, so ωx = (xn + 2, x1, x2, . . . , xn−1).
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Now consider the line l(t) =
1
n (n − 1, n − 3, . . . , 3 − n, 1 − n) + t

n
(1, 1, . . . , 1).

Since the action of ω on R
n is faithful and discrete, and since it is straightforward to

show ωl(t) = l(t + 2), l(t) is stabilized by ω, so δn+1 is Petrial.

Figure 5: Two stereograms of a portion of the tessellation of 3-space by cubes, with a Petrie

polygon indicated in bold lines and its associated stable line indicated by a dashed line.

3.3 The Regular Polyhedra

In 1977 [16], Grünbaum proposed a new and more comprehensive approach for
defining regular polyhedra. Central to this was a consistent way of defining polygons
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that took into account both non-planar polygons and non-finite polygons. These
polyhedra are now known collectively as the Grünbaum–Dress polyhedra.

A finite polygon or n-gon p = [V1,V2, . . . ,Vn] in Euclidean space R
d is a collection

of vertices Vi which are distinct points in R
d, and edges which are the line segments

determined by the vertices of the polygon in consecutive pairs {Vi,Vi+1}, where the
indices are taken modulo n. An infinite polygon p = [. . . ,V0,V1,V2, . . .] has vertices
Vi which are distinct points in R

d and edges that are line segements with endpoints

{Vi ,Vi+1}. The edge set is assumed to be locally finite, so that every compact set in
R

d intersects at most a finite number of edges. A polygon p is regular if its symmetry
group acts transitively on the flags of p.

A polyhedron P is any family of polygons in R
3 which satisfy the following proper-

ties:

(1) each edge of a face is an edge of just one other face;

(2) the family of polygons is connected (in the sense of abstract polytopes);
(3) each compact set meets only finitely many faces.

Any such polyhedron satisfies the criteria for being an abstract polytope when
considered as a poset. A polyhedron is regular if its symmetry group acts transitively
on its flags.

One useful fact appears in S. Wilson’s thesis [27] and is summarized by Lemma
3.5; note that πP is the polyhedron which has the same edges and vertices as P, but

whose polygonal faces are the Petrie polygons of P. It will be referred to as the Petrie

dual of P.

Lemma 3.5 If P is a regular polyhedron, then so is πP; moreover, ππP = P.

The dual of a Petrie scheme is the same sequence of flags with the partial order on
P reversed.

Lemma 3.6 If P is an abstract polytope, then the Petrie schemes of the dual polytope

P∗ are the duals of the Petrie schemes of P. Thus, if P is Petrial, so is P∗.

Proof To prove this, observe that both σ1 = ρn−1ρn−2 · · · ρ0 and σ2 = ρ0ρ1 · · · ρn−1

are Petrie maps of P and P∗. In other words, inverting the ranks of the elements in a
Petrie scheme will yield a Petrie scheme for the dual polytope with a correspondingly
inverted sequence of exchange maps in the Petrie map.

Lemma 3.7 If P is a Petrial polyhedron, then so is πP.

Proof Recall that the Petrie polygons of πP are the polygons of P, so in particular,
πP is {0, 1}-Petrial. Fix a Petrie polygon of πP (i.e., a polygon p of P). P is assumed
to be Petrial, so p appears at most once in any Petrie scheme of P. In particular, if p̃

is a face of πP, then it shares either 0 edges with p or precisely 2 consecutive edges.
Suppose {v1, {v1, v2}, p̃1} is a starting flag in πP, σ = ρ2ρ1ρ0 is the Petrie map on
πP, and p is the polygon of P whose edges are the rank 1 elements generated by this
map. The next flag must be {v2, {v2, v3}, p̃2}, where v3 is the unique vertex of p
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sharing an edge with v2 distinct from v1, and p̃2 is the unique Petrie polygon of P

distinct from p̃1 containing the edge {v2, v3}. No other edges of p̃1 occur in p, so

p̃1 appears exactly once in the Petrie scheme generated using the map σ and starting
flag {v1, {v1, v2}, p̃1}. This argument holds for any choice of starting flag, so πP is
Petrial.

3.4 The Eight Classes of Grünbaum–Dress Polyhedra

Table 2: The list of the geometric regular polyhedra, where a polyhedron P is

listed with its dual polyhedron P∗ and its Petrie dual πP.

Class No. Description of P Schläfli Type M-S P∗ πP

1 Platonic polyhedra

1 tetrahedron {3, 3} {3, 3} 1 16

2 octahedron {3, 4} {3, 4} 3 17

3 cube {4, 3} {4, 3} 2 18

4 icosahedron {3, 5} {3, 5} 5 19

5 dodecahedron {5, 3} {5, 3} 4 23

2 Classical planar tessellations

6 {4, 4} {4, 4} 6 31 with

α =
π
2

7 {3, 6} {3, 6} 8 33 with

α =
π
3

8 {6, 3} {6, 3} 7 32 with

α =
2π
3

3 Kepler-Poinsot polyhedra

9 great dodeca-

hedron

{5, 5

2
} {5, 5

2
} 11 21

10 great icosahedron {3, 5

2
} {3, 5

2
} 12 22

11 small stellated

dodecahedron

{ 5

2
, 5} { 5

2
, 5} 9 20

12 great stellated

dodecahedron

{ 5

2
, 3} { 5

2
, 3} 10 24

4 Coxeter-Petrie polyhedra

13 {4, 6
π
3 /1} {4, 6|4} 40

14 {6, 448◦12′

/1} {6, 4|4} 42

15 {6, 633◦33′

/1} {6, 6|3} 41

5 Finite regular polyhedra with finite skew polygons as faces

16 {4
π
3 /1, 3} {4, 3}3 1

17 {6
π
3 /1, 4} {6, 4}3 2

Continued on next page
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Class No. Description of P Schläfli Type M-S P∗ πP

18 {6
π
2 /1, 4} {6, 3}4 3

19 {10
π
3 /1, 5} {10, 5} 4

20 {6
π
5 /1, 5} {6, 5} 11

21 {6
3π
5 /1, 5

2
} {6, 5

2
} 9

22 {10
π
3 /3, 5

2
} { 10

3
, 5

2
} 10

23 {10
3π
5 /1, 3} {10, 3} 5

24 {10
π
5 /3, 3} { 10

3
, 3} 12

6 Infinite polyhedra with finite skew polygons as faces

25 {4α/1, 4} {4, 4}#{} 31

26 {6α/1, 3} {6, 3}#{} 32

27 {2.3α/1, 6} {3, 6}#{} 33

28 {6
π
3 /1, 6} {6, 6}4 29

29 {4
π
3 /1, 6} {4, 6}6 28

30 {6
π
2 /1, 4} {6, 4}6 30

7 Regular polyhedra with zig-zag polygons as faces

31 {∞α, 4} {∞, 4}4#{}† 25

32 {∞α, 3} {∞, 3}6#{}†† 26

33 {∞α, 6} {∞, 6}3#{}‡ 27

34 {∞α(b), 4α∗(b)/1}, b 6= 0 {∞, 4}4#{∞} 37

35 {∞γ(b), 6γ∗(b)/1}, b 6= 0 {∞, 6}3#{∞} 38

36 {∞δ(b), 2.3δ∗(b)/1}, b 6= 0 {∞, 3}6#{∞} 39

8 Polyhedra with helical polygons as faces

37 {∞α(b), π
2 , 4α∗(b)/1}, b 6= 0 {4, 4}#{∞} 34

38 {∞γ(b), 2π
3 , 6γ∗(b)/1}, b 6= 0 {3, 6}#{∞} 35

39 {∞δ(b), π
3 , 2.3δ∗(b)/1}, b 6= 0 {6, 3}#{∞} 36

40 {∞
π
2
, 2π

3 , 6
π
3 /1} {∞, 6}4,4 13

41 {∞
2π
3

, π
2 , 633◦33′

/1} {∞, 6}6,3 15

42 {∞
2π
3

, 2π
3 , 4

π
3 /1} {∞, 4}6,4 14

43 {∞
2π
3

, π
2 , 3} {∞, 3}(b) 44

44 {∞
2π
3

, 2π
3 , 3} {∞, 3}(a) 43

45 {∞
π
2
, 2π

3 , 4} {∞, 4}·,∗3 45

Following [12, 13, 16], we will organize the regular polyhedra into eight classes. Al-

ternate constructions for these polyhedra and related objects are also available in
[24, §7E]. In Table 2, the polyhedra are listed by Schläfli type using the notation
from [12, 13, 16]; for more details on the Schläfli notation used, see [16]. For the

†When α = π/2 this is {∞, 4}4.
††When α = 2π/3 this is {∞, 3}6.
‡When α = π/3 this is {∞, 6}3.
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convenience of the reader, the column labeled M-S indicates the corresponding gen-
eralizations of the Schläfli symbols used in [24, §7E]. For a specific polyhedron P,

the number corresponding to its dual polyhedron P∗ and its Petrie dual πP are also
listed. What follows is a description of each of these classes.

Class 1: Platonic polyhedra These are the surfaces of the five well known regular con-

vex 3-dimensional polytopes.
Class 2: Classical planar tessellations There are precisely three of these tessellations (or

tilings) of the plane, one each of squares, triangles and hexagons.
Class 3: Kepler–Poinsot polyhedra These polyhedra are the finite polyhedra in which

the faces are convex polygons and the vertex figures are star polygons, or vice
versa. Two of them were known to Kepler; all four were independently discovered
by Poinsot.

Class 4: Coxeter–Petrie polyhedra In 1937, Coxeter introduced three regular polyhedra

that he and his friend J. F. Petrie had recently discovered, see [9, 11, 16]. They
are the infinite regular polyhedra with convex polygons as faces and antipris-
matic polygons as vertex figures. Antiprismatic polygons are the ziz-zag sequences
of edges obtained from the intersections of the triangles in an antiprism. Each

of the Coxeter–Petrie polyhedra is a two-dimensional subcomplex of Euclidean
3-space. Their Schläfli symbols are {4, 6π/3/1}, {6, 433◦33 ′

/1} and {6, 448◦12 ′}
(also denoted in [9] as {4, 6|4}, {6, 6|3}, and {6, 4|4} respectively).

Class 5: Finite regular polyhedra with finite skew polygons as faces There are nine poly-

hedra in this class, and they are the Petrie polyhedra of the Platonic or Kep-
ler–Poinsot polyhedra. These make their first known appearance in [16], as do
the remaining three classes, except one of the polyhedra in the eighth class did not
appear in [16] but was instead discovered in [13].

Class 6: Infinite regular polyhedra with finite skew polygons as faces These polyhedra
are related to the three regular tessellations and are obtained by deforming the
faces of these tessellations into skew polygons by connecting the vertices of two
copies of these tessellations in parallel planes, or by constructing finite skew poly-

gons in the tessellation of Euclidean 3-space by cubes.
Class 7: Regular polyhedra with zigzag polygons These appear either as Petrie polyhe-

dra of the classical planar tessellations, or as Petrie polyhedra of the polyhedra in
Class 8.

Class 8: Regular polyhedra with helical faces A helical polygon requires two angles be
specified to determine its geometric embedding, and so the Schläfli symbol for a
helical polygon will be of the form {∞α,β} where α and β are the requisite angles.
For more details on this notation see [16]. These polyhedra, with three exceptions,

arise as the Petrie polyhedra of polyhedra in classes 4 and 7. The three remaining
polyhedra are labeled as 43, 44 and 45 in Table 2. Type 43 may be built up out
of one-eighth of the cubical stacks in the cubic tessellation {4, 3, 4}, staggered, in
each of the three canonical directions, with one helix per stack. Type 44 is the

Petrie dual of type 43. The remaining type was discovered by Dress (the reader
should note that there appears to be an error in Dress’ description of his map α0),
and may be thought of as being a construction similar to that of cases 43 and 44,
with the helices being triangular when projected along one of the helical axes. The
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helices which share that axial direction project to one-sixth of the triangles in the
tiling {3, 6}.

3.4.1 The Petrial Regular Polyhedra

We will now determine which of the Grünbaum–Dress polyhedra are Petrial. We
summarize our findings with the following theorem.

Table 3: Table of implications necessary for the proof of Theorem 3.8

• 1
π⇐⇒ 16

• 2
∗⇐⇒ 3

π⇐⇒ 18 and 2
π⇐⇒ 17

• 4
∗⇐⇒ 5

π⇐⇒ 23, 4
π⇐⇒ 19, 4

∼
=⇐⇒ 10

∗⇐⇒ 12
π⇐⇒ 24 and 10

π⇐⇒ 22

• 6
∼
=⇐⇒ 25

π⇐⇒ 31

• 7
∗⇐⇒ 8

∼
=⇐⇒ 26

π⇐⇒ 32 and 27
∼
=⇐⇒ 7

π⇐⇒ 33

• 9
∗⇐⇒ 11

π⇐⇒ 20 and 9
π⇐⇒ 21

• 13
π⇐⇒ 40 • 37

π⇐⇒ 34

• 14
π⇐⇒ 42 • 38

π⇐⇒ 35

• 15
π⇐⇒ 41 • 39

π⇐⇒ 36

• 28
π⇐⇒ 29 • 43

π⇐⇒ 44

• 30 • 45

Theorem 3.8 All of the Grünbaum–Dress polyhedra are Petrial.

Proof A certain amount of case analysis is necessary for this argument. In Table 3
is a list of cases which, if known to be Petrial, are sufficient to complete the proof,

and indications of which other cases are consequences of dualization ( ∗, Lemma 3.6)
and construction of the Petrie dual (π, Lemma 3.7) with the implication symbols
marked with the map which causes the implication. Note that 25–27 are combinato-
rially equivalent to 6–8, and since being Petrial is essentially a combinatorial property,

we have also indicated those implications which may be obtained by combinatorial
equivalence with the congruence symbol (∼=).

Thus, establishing that 1, 2, 4, 6, 7, 9, 13, 14, 15, 28, 30, 37, 38, 39, 43 and 45 are
Petrial, along with Lemmas 3.6 and 3.7, implies that all of the Grünbaum–Dress poly-
hedra are Petrial. The Platonic polyhedra 1, 2, and 4 are Petrial as a consequence of
Theorem 3.2 (or by inspection). The planar tessellations 6 and 7 were established to

be Petrial in Theorem 3.4. Thus, it remains to show that the great dodecahedron (10),
the Coxeter–Petrie polyhedra (13, 14 and 15), the infinite polyhedra that have finite
skew polygons as faces (28 and 30), and the polyhedra with helical polygons as faces
(37, 38, 39, 43 and 45) are Petrial. The great dodecahedron will be addressed using a
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(mostly) combinatorial argument, and the remaining cases all depend on geometric
arguments similar to those used to provide proofs for the regular honeycombs.

3.4.2 The Great Dodecahedron

We will start by labeling the vertices as indicated in Figure 6: the pentagonal faces are

given by

{

{1, 2, 7, 8, 4}, {9, 5, 1, 3, 8}, {1, 4, 9, 10, 6}, {5, 1, 2, 11, 10},

{1, 6, 11, 7, 3}, {2, 3, 4, 5, 6}, {2, 7, 12, 10, 6}, {12, 8, 3, 2, 11},

{7, 8, 9, 10, 11}, {7, 12, 9, 4, 3}, {12, 10, 5, 4, 8}, {12, 9, 5, 6, 11}
}

.

If we choose our base flag to be {{1}, {1, 2}, {1, 2, 7, 8, 4}} and apply the Petrie map

σ = ρ2ρ1ρ0, where ρi is the exchange map on rank i, we obtain the Petrie scheme

(

{

{1}, {1, 2}, {1, 2, 7, 8, 4}
}

,
{

{2}, {2, 7}, {2, 7, 12, 10, 6}
}

,

{

{7}, {7, 12}, {7, 12, 9, 4, 3}
}

,
{

{12}, {12, 9}, {12, 9, 5, 6, 11}
}

,

{

{9}, {9, 5}, {9, 5, 1, 3, 8}
}

,
{

{5}, {5, 1}, {5, 1, 2, 11, 10}
}

)

.

Inspection shows that the above scheme is acoptic. Since the great dodecahedron is a
regular polyhedron, the combinatorial properties of the Petrie scheme are indepen-
dent of the choice of base flag.

Figure 6: The great dodecahedron {5, 5

2
}. Visible vertices are labeled, and the hidden vertices

are 12 (opposite 1), 8 (opposite 6), and 9 (opposite 2).
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Figure 7: Stereogram of several skew hexagons of the polyhedron {6π/3/1, 6} intersecting a

Petrie polygon in bold dashed lines. Observe that the plane which passes through the mid-

points of the Petrie polygon is stabilized by the action of ω.

3.4.3 The Infinite Polyhedra 28 and 30 With Finite Skew Polygons as Faces

Type 28 is the polyhedron {6π/3/1, 6} whose faces are one half of the vertex fig-

ures of the Coxeter–Petrie polyhedron with square faces which met six at a vertex,
{4, 6π/3/1}. We will work with the embedding that has a polygonal face with vertices
{(1,−1, 1) , (1, 1, 3) , (−1, 1, 1) , (1, 3, 1) , (1, 1,−1) , (3, 1, 1)}, taken in that order
to form a cycle. Our base flag consists of the vertex (1,−1, 1), the edge

{(1,−1, 1) , (1, 1, 3)}

and the aforementioned face. The Petrie schemes in this instance are finite, and so
we are forced to inspect the actual schemes directly. The generating isometries for
this base flag are quite simple, namely s0(x, y, z) = (2 − x, 2 − z, 2 − y), s1(x, y, z) =

(z, y, x) and s2(x, y, z) = (2 − x,−2 + z, 2 + y). The Petrie scheme obtained by the
application of ω = s2s1s0 to the base flag has only four elements (shown in Figure 7)
and when computed is easily seen to be acoptic.

Type 30 is determined by its Schläfli type, {6π/2/1, 4}, and may be obtained by

taking one Petrie polygon in each of one half of the cubes that form the cubical tiling
of R

3, {4, 3, 4}. This polyhedron is self-Petrie, in the sense that the Petrie dual is
of the same combinatorial type, so we need only check that the Petrie schemes are
acoptic on rank 2. To do this, consider the embedding in which there is a polygon

with vertices

{(−1,−1, 1) , (1,−1, 1) , (1,−1,−1) , (1, 1,−1) , (−1, 1,−1) , (−1, 1, 1)}

and a base flag consisting of the vertex (−1,−1, 1), the edge {(−1,−1, 1), (1,−1, 1)}
and the aforementioned polygon. The geometric generating maps are s0(x, y, z) =

(−x,−z,−y), s1(x, y, z) = (y, x, z) and s2(x, y, z) = (x,−2 − y, 2 − z). Without loss

of generality, choose the Petrie map to be ω = s2s1s0. The orbit of ω on the given
polygon is the same size as the length of the Petrie scheme, completing the proof. A
Petrie polygon of the polyhedron {6π/2/1, 4} and its surrounding faces is illustrated
in Figure 8.
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Figure 8: Stereogram of several skew hexagons of the polyhedron {6π/2/1, 4} intersecting a

Petrie polygon in bold dashed lines. Again, the plane which passes through the midpoints of

the Petrie polygon is stabilized by the action of ω.

3.4.4 The Coxeter–Petrie Polyhedra and the Polyhedra 37, 38, 39, 43 and 45
Which Have Helical Polygons as Faces

The arguments for the Coxeter–Petrie polyhedra and for polyhedra 37, 38, 39, 43
and 45 are very similar to those used for the regular honeycombs: we establish that
there is a line stabilized by the action of a given Petrie map, we show the Petrie map

acts as a translation along the line, and we show that no subgroup generated by a
subset of the generators of the polyhedron also stabilizes the line. Note that the gen-
erating maps and either a single vertex or a choice of base flag determine the geomet-
ric realization completely, and for those types which come in a continuous family, it

suffices to demonstrate that the polyhedron is Petrial for a single example, since all
polyhedra in the continuous family are of the same combinatorial type. We provide
only the argument for type 38, since the remaining cases differ only in computational
details.

Type 38

This is the polyhedron with Schläfli symbol {∞γ(b),2π/3, 6γ∗(b)/1} with b 6= 0, where

the angle functions are γ(b) = arccos
(

1−2b2

2+2b2

)

and γ∗(b) = arccos
(

8b2−1
8b2+2

)

. The
embedding is determined by our choice of base vertex (0, 0, 0), connected by an edge

to
(

− 3
2
,
√

3
2

, 1√
2

)

, lying in the polygon parameterized by

(

cos
(

2π/3t
)

− 1, sin
(

2π/3t
)

, t

√

3
2

)

.

The generating maps are s0(x, y, z) =

( −3−x+
√

3 y
2

,
√

3 (1+x)+y
2

, 1√
2
− z

)

, s1(x, y, z) =

(x,−y,−z) and s2(x, y, z) =

( x−
√

3 y
2

, −
√

3 x−y
2

, z
)

. The stabilized line is parameter-
ized by

l(t) =

(

−3

8
+

3 t

2
√

5
,

3
√

3

8
+

√

3

20
t,−

√

2

5
t
)

.
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The Petrie map is ω = s2s1s0. All of the subgroups generated by subsets of {s0, s1, s2}
have fixed points except for the subgroup generated by s0 and s1. However, (s1s0)3 is

translation in the z direction, and (s0s1)i stabilizes no point of l(t) for i = 1, 2 and 3.

4 Petrie Schemes of Other Polytopes and Polyhedra

4.1 Petrie Schemes of Products of Regular Polytopes

We define the product of two convex polytopes P and Q as the convex hull of the
set P × Q of points

(

x1, x2, . . . , xd, y1, y2, . . . , yk

)

where (x1, x2, . . . , xd) ∈ P and
(

y1, y2, . . . , yk

)

∈ Q. The product of two abstract polytopes P and Q is the poset
P × Q of pairs f × g where f is a non-empty face of P and g is a non-empty face

of Q, and one additional element ∅. The order relation on this poset is defined as
f × g < f ′ × g ′ if f < f ′ and g < g ′, and ∅ < f × g for all choices of f and g.
The rank of an element f × g in P × Q is the sum of the rank of f and the rank of g,
and the rank of the element ∅ is −1. The vertices, an edge, and a face of the product

of a line segment and a triangle are illustrated in Figure 9. One of the real surprises
of the current work is that in some cases products of regular polytopes are Petrial. In
other cases, products of regular polytopes are S-Petrial for some subset S of the ranks
(possessing, for example, acoptic Petrie polygons). This section aims to present what

is known about these cases and to suggest directions of future exploration in this area.

=X

1 2

3

1

2

1x1 2x1

3x1

1x2 2x2

3x2

13x1

123x2

Figure 9: The product of a triangle with a line segment, with various features labeled.

4.1.1 The 4k × 4k Case

We consider here the Petrie schemes in the product of two polygons P and Q which
have p and q edges respectively. If P and Q are convex plane polygons then the prod-
uct P × Q has a natural description in R

4. We have the following theorem.
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Theorem 4.1 If p and q are even, with p, q ≥ 4, then the Petrie polygons of the ab-

stract polytope P × Q form edge disjoint circuits. If p and q are divisible by 4, then the

Petrie polygons of P × Q will also form vertex disjoint circuits. Finally, if p = q and is

divisible by 4, then P × Q is Petrial.

Proof Let P and Q be polytopes with p and q edges respectively. Denote the vertices

of the polygons as P = {0, 1, 2, 3, . . . , p − 1} and Q = {0, 1, 2, . . . , q − 1}; then the
vertices of P × Q may be denoted by the pairs which generate them (e.g., 1 × 1 and
1 × 2 which are obtained from vertex 1 of P and vertices 1 and 2 of Q). Likewise we
will denote edges in P × Q by their endpoints (e.g., 1 × 12 denotes the edge obtained

by taking the product of vertex 1 ∈ P and the edge 12 ∈ Q) and other faces by the
products which generate them. Note that every facet of P × Q is a prism over P or Q.
A maximal chain will be listed with elements in order of increasing rank separated by
commas, omitting the empty set and the polytope.

In any product of polygons, every edge has precisely twelve maximal chains con-
taining that edge, and since the polytope is isogonal and we may interchange the roles
of P and Q in the argument, we may reduce the combinatorial types of the maximal
chains to three. Without loss of generality, they are as follows.

{0 × 0, 01 × 0, 01 × 01, P × 01}(1)

{0 × 0, 01 × 0, 01 × 01, 01 × Q}(2)

{0 × 0, 01 × 0, P × 0, P × 01}(3)

The Petrie map σ is the composition of the exchange maps ρi given by σ =

ρ3ρ2ρ1ρ0. We need only consider the sequence of maximal chains produced by it-
erating the Petrie map on the chains (1), (2) and (3).

In the case of chain (1), we obtain the sequence given in Table 4. The important
fact here is that the labelings mod 4 on the entry {4 × 4, 45 × 4, 45 × 45, P × 45} in

the table are {0 × 0, 0 × 01, 01 × 01, P × 01}. Thus, the edges of P × Q may be
thought of as a rectangular grid on the torus, of size p × q. If p and q are divisible
by 4, then there exist integers m and n such that m = p/4 and n = q/4. The grid may
be divided into 4×4 blocks arranged in an m×n array. Every time the Petrie scheme

leaves a 4 × 4 block (i, j) it will enter block (i + 1, j + 1) (mod m and n respectively)
with the same relative maximal chain in the new block as we started with in the (i, j)
block. The Petrie polygon will repeat without self intersection until re-entering the
maximal chain {0 × 0, 01 × 0, 01 × 01, P × 01} in the original block. The same

logic applies to each of the other two cases, using the sequences given in Table 5. This
is enough to complete our argument. If p = 4k + 2 and q = 4 j, then while the first
of the three classes of schemes is vertex and edge disjoint, the latter two are merely
edge disjoint. If p = 4k + 2 and q = 4 j + 2, none of the Petrie schemes is vertex

disjoint, but they are edge disjoint. If p = 4k and q = 4 j where k < j then while
the schemes remain vertex and edge disjoint, the element P × 01, for example, will
reappear LCM(k, j)/ j times in the first scheme. Similar obstructions appear in the
other schemes. If p = q = 4k then the Petrie schemes are acoptic, for if we take
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Table 4: The sequence of maximal chains for {0 × 0, 01 × 0, 01 × 01, P × 01} obtained by

iterating σ.

(

. . . ,{0 × 0, 01 × 0, 01 × 01, P × 01},

{1 × 0, 1 × 01, 12 × 01, 12 × Q},
{1 × 1, 12 × 1, 12 × 12, P × 12},
{2 × 1, 2 × 12, 23 × 12, 23 × Q},
{2 × 2, 23 × 2, 23 × 23, P × 23},
{3 × 2, 3 × 23, 34 × 23, 34 × Q},
{3 × 3, 34 × 3, 34 × 34, P × 34},
{4 × 3, 4 × 34, 45 × 34, 45 × Q},

{4 × 4, 45 × 4, 45 × 45, P × 45}, . . .
)

the final row of each of these schemes modulo 4 there is no self-intersection within a
4 × 4 block, and all of the blocks have independent indices.

4.1.2 Products of Cubes and Crosspolytopes

Polytopes that show a great deal of promise for being Petrial are the products of cubes

and crosspolytopes. Working in a purely combinatorial setting, computer based anal-
ysis of the structure of the Petrie schemes (which come in several types, as in the case
of polygonal products) indicate that a significant number of the products of cubes
and crosspolytopes are Petrial when the dimension of the product polytope is less

than or equal to six. The known results are listed in Table 6. In the table, rank refers
to the rank of the polytope as an abstract polytope; this number corresponds to the
geometric dimension of the polytope. Clearly the product of two cubes is Petrial,
since such a product is also a cube, but the cases which involve crosspolytopes are

more subtle, and suggest the following.

Conjecture 4.2 The product of any two crosspolytopes is Petrial.

Conjecture 4.3 Every product of a combinatorial d-cube and an n-crosspolytope is Pe-

trial.
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Table 5: The remaining sequences of maximal chains in P × Q.

Scheme of flag (2)
(

. . . ,

{0 × 0, 10 × 0, 01 × 01, 01 × Q},
{1 × 0, 1 × 01, 1 × Q, 12 × Q},
{1 × 1, 1 × 12, 12 × 12, P × 12},
{1 × 2, 12 × 2, P × 2, P × 23},
{2 × 2, 23 × 2, 23 × 23, 23 × Q},
{3 × 2, 3 × 23, 3 × Q, 34 × Q},
{3 × 3, 3 × 34, 34 × 34, P × 34},
{3 × 4, 34 × 4, P × 4, P × 45},

{4 × 4, 45 × 4, 45 × 45, 45 × Q}, . . .
)

Scheme of flag (3)
(

. . . ,

{0 × 0, 01 × 0, P × 0, P × 01},
{1 × 0, 12 × 0, 12 × 01, 12 × Q},
{2 × 0, 2 × 01, 2 × Q, 23 × Q},
{2 × 1, 2 × 12, 23 × 12, P × 12},
{2 × 2, 23 × 2, P × 2, P × 23},
{3 × 2, 34 × 2, 34 × 23, 34 × Q},
{4 × 2, 4 × 23, 4 × Q, 45 × Q},
{4 × 3, 4 × 34, 45 × 34, P × 34},

{4 × 4, 45 × 4, P × 4, P × 45}, . . .
)

Table 6: Known cases of Petrial products of cubes and crosspolytopes.

Polytope Polytope Rank

line segement octahedron 4

square octahedron 5

3-cube octahedron 6

octahedron octahedron 6

line segment 4-crosspolytope 5

square 4-crosspolytope 6

d-cube n-cube d + n

4.1.3 Products of Regular Polytopes That Are Not Petrial

Computations were performed on other products of regular polytopes with limited
success. Of particular interest was the fact that other products of pairs of dual poly-
hedra were not Petrial. The results of these computations are listed in Table 7.

There are several items of note in the current data which suggest further avenues
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Table 7: Products of regular polytopes which fail to be Petrial.

Polytope Polytope Acoptic ranks Rank

triangle square ∅ 4

triangle tetrahedron ∅ 5

line segment icosahedron ∅ 4

triangle icosahedron ∅ 5

square icosahedron {2} 5

pentagon icosahedron {0, 1, 2} 5

hexagon icosahedron ∅ 5

heptagon icosahedron ∅ 5

tetrahedron icosahedron {5} 6

dodecahedron icosahedron ∅ 6

dodecahedron dodecahedron ∅ 6

icosahedron icosahedron ∅ 6

triangle 3-cube ∅ 5

pentagon 3-cube ∅ 5

hexagon 3-cube {1} 5

heptagon 3-cube ∅ 5

octagon 3-cube {0, 1} 5

enneagon 3-cube ∅ 5

decagon 3-cube {1} 5

triangle octahedron ∅ 5

pentagon octahedron ∅ 5

hexagon octahedron {1} 5

heptagon octahedron ∅ 5

octagon octahedron {0, 1} 5

enneagon octahedron ∅ 5

decagon octahedron {1} 5

of research. In particular, more investigation of the products of 2k-gons and 4k-gons

with cubes or crosspolytopes seems to be in order. Does the product of a 4k-gon
and a cube or crosspolytope always have acoptic Petrie polygons? Is the product of a
2k-gon and a cube or crosspolytope always {1}-Petrial? The instances involving the
icosahedron, where the schemes are acoptic at a single rank, are puzzling as well.
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Another issue of great interest is which of the uniform polytopes are Petrial? This
is not a trivial question, since the prisms and antiprisms are not, in general, Petrial.

4.2 Petrie Schemes of the Simplicial 4-Polytopes With 7 Or 8 Vertices

In 1967, Grünbaum and Sreedharan [17] published a complete enumeration of the
simplicial 4-polytopes with 8 vertices. Also included in their list was the simplicial
3-sphere M, which was the first known instance of a simplicial 3-sphere which did

not possess a geometric realization as the boundary of a 4-polytope. A second, and
final, example of this type, M ′, was discovered by Barnette [3] a few years later, and
he later showed that this list of simplicial 3-spheres with 8 vertices is complete [4].

Before investigating the simplicial 4-polytopes with 8 vertices, the simplicial
4-polytopes with 7 vertices were examined. Following the notation of [17], we in-
vestigated the simplicial 3-spheres, denoted Pi

7. Analysis of the Petrie schemes was
performed in Mathematicatm [26], treating these objects as abstract polytopes. There

are exactly five combinatorial types to consider, and it turns out none of them are
S-acoptic for any subset S of the ranks.

Analysis of the simplicial polytopes with 8 vertices was carried out in a similar

manner. In the notation of [17], the simplicial polytopes with 8 vertices are given
symbols of the form P8

i and the combinatorial types of the corresponding simple
polytopes are denoted Pi

8. The only cases which were acoptic at any rank were P8
34

(the 4-crosspolytope) and P8
35, which is the cyclic polytope with 8 vertices in R

4 and

is not combinatorially equivalent to a regular polytope. It is acoptic only at rank 4.
Neither M nor M ′ is Petrial on any subset of the ranks.
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