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1. Introduction

Let B be the unit ball in R™ with n > 2, where dv is the normalized volume measure on
B and do is the normalized surface measure on the unit sphere S = 0B.

In [9], Krantz gave the following extension of a result of Hardy and Littlewood for
holomorphic functions on the unit disc (see also [13] and [8]).

Theorem 1.1. Let f be a harmonic function on B and 0 < a < 1. Then the following
are equivalent.

() |[Vf(z)] <O —|z|>)*~! for any = € B.
(ii) [f(x) — f(y)] < Clz —y|* for any x € B and y € B.

In light of this result, it is natural to consider the limit case a = 0.
The harmonic Bloch space B is the space of all harmonic functions on B for which

sup(1 — [[*)|V f(2)] < oo,
zeB

and the harmonic little Bloch space By consists of the functions f € B such that
lim (1 — |z|*)|Vf(z)| = 0.

|z]|—1
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The harmonic Besov space B, is the space of all harmonic functions on B for which

(éﬂgﬁﬂ%ﬂvf@w%h@)<m%
where
dr(z) = (1 — |2*) ™ du(z)

is the invariant measure on B.
Let f be a continuous function in B. If there exists a constant C' such that

(L= |22 = )2 f(2) = f(y)] < Cla —y] (1.1)

for any z,y € B, then we say that f satisfies a weighted Lipschitz condition.

The main purpose of this paper is to give some characterizations of B, By and B, by
means of a weighted Lipschitz condition. We refer to [3,4,7,10,14] for the corresponding
results in the complex unit ball for holomorphic or M-harmonic functions. See [6, 11,
15,17-19] for the various characterizations of the Bloch, little Bloch and Besov spaces
in the unit ball of C™. Our main results are the following theorems.

Theorem 1.2. Let f be a harmonic function on B. Then the following are equivalent.
(i) feB.
(ii) f satisfies the weighted Lipschitz condition.

Theorem 1.3. Let f be harmonic on B. Then f € By if and only if

lim sup{(l —z)Y2(1 - |y|2)1/2M Yy eB, y# x} = 0.

|| =1~ |z — vy

Theorem 1.4. Let p € (2(n — 1),00). For any harmonic function f on B, f € B, if

and only if
[ [a=terrea - ey (ML dr0) ary) < o

Remark 1.5. Let us remark on the validity of theorem 1.4 that if p € (1,2(n — 1)),
then the integral condition forces the function to be constant, a fact which is already
known in the complex case (p € (1,2)) (see [16]).

2. Preliminaries

We shall be using the following notation: we will write z,y € R™ in polar coordinates by
z = [z[z" and y = |yly’.
For any y, w € R™, the symmetry lemma shows that (see [2])

[lylw —y'| = [Jwly —w'l. (2.1)
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The same deduction yields
llylw — (1 = [w*)y'| = |lwly — (1 = Jw*)w'],
so that
lylPw — (1 = [w|*)y| = [yl |lwly — (1 — [w]*)w']. (2.2)

For any a € B, denote by ¢, the Mobius transformation in B. It is an involutive
automorphism of B such that ¢, (0) = lim;_,0 pa(x) = a and ¢, (a) = 0, which is of the
form (see [1])

_|lz—aPa—(1-laf’)(z—a)

valz) = 2la— a2 , a,x€B. (2.3)

From (2.2) with w = a and y = = — a, we have

|z —al
a - B 2.4
[oole)] = o0 (2.4

whence ) )
(L —|z[*)(1 —al*)

2
]‘ - |90a(x)| = ||a|$ . a/|2 . (25)

For any a € B and § € (0,1), we define
E(a,0) = {z € B: |pa(z)| <0},
B(a,0) ={z €B: |z —al < d}.
Clearly, E(a,d) = ¢.(B(0,0)).
Lemma 2.1. Let z,w € B and y € E(w,d). Then

1-6 1496
lohw = 2'| < llaly - /| < T

Proof. From (2.4) and (2.1) we have |p,(w)| = |¢w(y)|, so that y € E(w, §) is equiva-
lent to w € E(y, d). By symmetry, we only have to prove the right-hand inequality. Since
llzly — 2’| < ||z|(y — w)| + ||z|w — 2|, it is enough to show that

||z|w — 2]

2 ek — =]
1_5.177.0 X

ly —w| <

for any y € E(w,9).
Define n = ¢, (y), then y = ,,(n) and |n| < §. From (2.3), a direct computation yields

[pu(n) =l = T (1 = ).
Therefore, by the simple inequality 1 — |w| < ||z|w — 2’| we get
0 2 5 /
ly —wl =lpwn) —wl < 7510 = [wl) < —52llefw —27),
as desired. 0
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As a direct corollary, we have
Lo = 1— g2, @€ E(y,0). (2.6)

In fact, taking w = x in Lemma 2.1 we get ||z|y — 2/| ~ 1 — |y|?. The assertion now
follows from (2.1).

Lemma 2.2. Let 0 < é < A. Then, for any points x and y in B,

1 (1_t)§—1 8)\ 1
//\dtg IA—=6"
o [tlyle —y] (A =9) |lylz — /|

Proof. Note that for any ¢t € [0,1] and =,y € B,

lyle — o' < 2ltlyle — v/ (2.7)
Indeed, from the triangle inequality we have
tlyle =31 >1 -1,
tlyle —y'| > llyle —y| = (1 = 1),

so that summing up yields (2.7).
If ||ylz — y/| = 1, then we have [t|ylz —y'| = § from (2.7). Combining this with the
inequality |ly|z — y'| < 2, we get

1 G-l A 2A—5
/ (Lt 22 1

o ltlyle —y'|A J 6 Nlyle —y' A0

Now assume that ||yl — y/| < 1 and define r = 1 — ||yl — ¢/|, then 0 < r < 1 and
1—r=|lylx —¢|. From (2.7) and (2.8) we have

L—rt=1—t+t|[ylz —y'| < 3tlylz —y'|.

It leads to
/1 L= e /1 =0y
o ltlylz—y'I* o (I—tr)*
A 1
<3
S(A—=138) (1 —r)r-9
1
<C————.
Iyl — g/ |22
This completes the proof. O

Let F be the hypergeometric function (see [5,12])
F(a,byc;s) = Z( )]E(b)k §

=0 k! C)}C

for a,b,c € R and ¢ neither zero nor a negative integer, where the Pochhammer symbol
(a)o=1and (a)y =ala+1)---(a+k —1), k € N. We need some known properties of
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hypergeometric functions:

(i) Bateman’s integral formula (see [12])

1
F(a,byc+ p;8) = ) / t7 N1 — )" F(a, by c; ts) dt (2.9)
0

with ¢, p > 0 and s € (—1,1); and

(ii) for any integer m [12, p. 69],
b)) = Ebm
Flombeh ==,
(-1)™(14+a—0c)m
(C)m

(2.10)

F(—-m,a+m;cl) =

The following identity furnishes the hypergeometric function with an integral repre-
sentation.

Lemma 2.3. Lett > 1, A€ R and r € (—1,1), then

L (] _ 2 (t=3)/2 1 1
(1—u?) - 1)r(3) s
[1 (1 —2ru+ r2)X du = (it FA 41— gt 5877). (2.11)

2
Proof. Let C),(u) be the Gegenbauer polynomials. They can be defined by the gen-
erating function

(1—2ru+7r?)~*= i C (u)r™, (2.12)

m=0
where

) = ()™ iy L),
m: (2.13)

Nm
Comr (u) = (-DM%%F(—W m+A+1;3u7).

To calculate the integral in (2.11), we apply (2.12) and (2.13). Then we deduce that it is
only needed to evaluate the integral

1
/ (1- u2)(t_3)/2F(—m,m + %; u?) du,

-1

or, rather, an integral over the interval (0,1) by the simple change of variables t = u?.

For this integral, we first use Bateman’s integral formula (2.9) with s = 1 and apply
(2.10), so that it can be represented by Pochhammer symbols. The calculation of the
integral in (2.11) then leads to a series which by definition is the desired hypergeometric
function. O
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Lemma 2.4. Let « > —1 and § € R. Then, for any x € B,
1-lz»)~%, B>0,

— ly*) 1
d N = =
[, Ty et 0= Yo e P70
1, 8 <0.
The notation a(x) &~ b(x) means that the ratio a(z)/b(z) has a positive finite limit as
|z] — 1.
Proof. Denote the above integral by J, g(z). From Stirling’s formula we need only
show that
FAn+1)I'(a+1)
Ila+in+1)

Ja,p(x) = F(i(n+a+8),22+a+8);a+ in+1;[z?).

For any continuous function f of one variable and any n € 0B, we have the formula
(see [2, p. 216])

o) = F(%”) ! — )32 £(0) du
[ HC)ao(Q) = g2 [ 0

where (-, ) denotes the inner product in R™. Taking
f(u) = (1 = 2ru + r2)~(vteth)/2

for fixed r € (0,1) and combining with Lemma 2.3 we have

/ (1= 20(C, ) + 12) - H4)/2 4 ()
OB

F(%n) 1 (1 _ u2)(n—3)/2
= 1 1 / 2\ (n+a+8)/2 du
I'(z(n—=1))I(3) (1 —=2ru+1r?)
1
2

=Fi(n+a+p),12+a+08);3n1%).

Consequently, from the polar coordinates formula we get
agta) =n [ 1 e J 0= 2rlalla’s )+ 12faf?) 2 (0
_0/ {A=r) PG+ atf), 32+ a+ f)ignirilal’) dr
The assertion now follows from Bateman’s integral formula (2.9). g

3. Bloch space

In this section we give the proof of Theorems 1.2 and 1.3. Theorem 1.2 can be rewritten
in the following form.
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Theorem 3.1. For any harmonic function f on B, f € B if and only if

su )2 — 21/2|f($)_f(?/>|_$ T 50
R L IR

Proof. Assume that f € B. For any x,y € B, we have

fla) = 50) = [ Gtta s (1=t

S =) [ Gitat (-

k=1

By the Cauchy—Schwarz inequality and the simple inequality

of
L < |Vl
we have
n n 1 8 2
@)= 1 < | el [ S( [ agj;(m(l—t)y)]dt)

k=1 k=1
<le—ulva [ (9A)(t + (1= 0yl

Since (1 — [tz + (1 — )y|>)|(Vf)(tz + (1 — t)y)| < || f|5, it follows that

@)~ ) : |
o VeIl [ e

t.

Now, by the triangle inequality |tz + (1 —t)y| < t|z| 4+ (1 — t)|y|, we have

1=tz + (1 =t)y[ = (1 —t)(1 - |x])

and
1 — [tz 4 (1 =t)y| = t(1 - |y|),
so that
/1 1 dt < /1 ! ! dt
o 1=t + (1 1)yl o (A= 01— [y} {t(1 — [2)}/?
1
A ) (1 )
Thus
(1= o221 = o) 2 HD =L < o . (3.2

This proves the necessity.
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Conversely, suppose that f is harmonic and that (3.1) is satisfied. We will show that

feB.
Fix § € (0,1). Since f is harmonic, combining the result in [11, p. 504] with (2.7) we
get

(1— [22)|Vf(z)| < C / £ dr(y).

E(z,0)

Fixing « € B and replacing f by f — f(z), we have
A= PIvs@I<e [ 1 - )i (33)
Therefore,
(1= [2[*)|VF(2)] < Csup{|f(y) — f(z)] : w € E(x,6)}.
Note that for any y € E(x,d) we have |p,(y)| < J, and thus

1 — | (y)|?

> C.
|0z (y)]
It follows from Lemma 2.1 that
(1 —[a)2(1 = [y»)/2

ly — x|

>0, ye E(x0). (3.4)

Consequently,

(1— |z)'/2(1 — [y|*)"/?
ly — |

(1 - o)V i) < csup{ ) — 1) sy e E(z,6>}, (3.5)

in which the right-hand side can be controlled by the condition in (3.1). This implies
f € B and completes the proof of Theorem 3.1. O

Theorem 3.2. For any harmonic function f on B, f € By if and only if

12 1f (@) = f(y)

lim s 1 — 212)12(1 — 1yl2
i sup{ (1= 2200 = L=

||

:yEIB%,y;éx}:O. (3.6)

Proof. Assume that f € By. Let fi(x) = f(tz), t € (0,1). By (3.1), we have

(1 o |£L’|2)1/2(1 _ ‘y|2)1/2|(f - ft)(:r) _ ({ — ft)(y)| < CHf _ ftHB
-y

and

(1 [e)2(1 - |y|2>1/2|ﬂ<5|6>—ft|<y>|
r—y

(1 - |1'|2)1/2(1 - ‘y|2)1/2 (1 _ |t1’|2)1/2(1 _ |ty\2)1/2 |f(t£L’) — f(ty)|

(1 — [tz]2)1/2(1 — [ty|?)1/2 |tz — ty|
t
< Cm(l — |22 fll.
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By the triangle inequality, we obtain

sup{ (1 Jaf /21— ey =IO ey )

<ot

1—1¢2

(=121 flls + 1f = fells.

In the above inequality, t — 0 as |z| — 1~ the first term on the right-hand side converges
to 0, and afterwards if ¢ — 17, then the second term on the right-hand side also converges
to 0, which is similar to the case n = 2 which can be found in [20].

Now suppose that f is harmonic and (3.6) is satisfied. We will show that f € By.

We remind the reader that (the invariant gradient) |V f(z)| is defined as

V(@) = (1~ |z*)|V ()]
From (3.3) and (3.4) we have

i@l < o [ a-lepya - HE =0 g,

E(xz,r) “T - y|
By the assumption (3.6), for any given € > 0 there exists § € (0,1) such that
sup{ (1= 217201 = IOy ey 2 <

whenever |z| > §. Since

§
/ dr = 7(E(a,0)) = 7(B(0,6)) = n/ 11— £2) d,
E(x,r) 0

we have .
[V f(z)] < Ce

for any |z| > &, which means that |V f(z)| — 0 as |z| — 1~. This completes the proof. [J

4. Besov spaces

In this section, we give a higher-dimensional form of the Holland—Walsh characterization
for Besov spaces. When p — oo, it also reveals the weighted Lipschitz characterization
of the Bloch space.

Theorem 4.1. Let p € (2(n—1),00) and let f be harmonic on B. Then f € B, if and

only if
[/ <1—:c|2>p/2<1—|y|2>p/2('f (@) =1 (y)') dr(e)dr(y) < oo (41)
BJB

|z =yl
To prove Theorem 4.1, we need the following lemma.
For this lemma we remind the reader that for x € B we have

Vf(x) = V(foe:)0).
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Lemma 4.2. Let p > 1 and let f be harmonic on B. Then

/(/ llvf(f|?||dt) dva(a) <C / |V £(a)? dva(a), (4.2)

where dv,(a) = (1 — |a|*)*dv(a), a > —1.

For the proof we remind the reader that the Hardy—Littlewood integral means that
My (r,|f]) is defined as

My(r, |f]) = /a QP do(0).

Proof of Lemma 4.2. Fix ¢ € (0,1). Let ¢t € [0,1], a € B. If at least one of ¢ and |a
is less than €, then |ta| = t|a| < €, so
1 1
< .
1—tla] ~1—¢

and the left-hand side of (4.2) can be controlled by

/B\GB </€1 Y{(;aﬂ dt) dvg(a) + C’j&% IV ()P

Denote the first summand above by I. From the polar coordinates integral formula and
Minkowski’s inequality we have

Ifn/ /m(/ |Vlf_tj<)|dt) do(¢)s" (1 — s2)*ds
c/( Mlts_‘zﬂ dt) “1(1 - s?)%ds

< c/ﬁ (/ h(p)dp) (1—52)*ds,

P DM, (p, IV £])
1—0p '

where

h(p) =

Applying Hardy’s inequality

/01 (/03 h(p) dp)”(l —5)ds < 0/01 RP()(1 — 1)+ dt,

which follows from Hélder’s inequality and Fubini’s theorem, we have

I<C/1</sh(p)dp>p(l—s)o‘ds

c/ 11— )M, [V F) dt
e / 19 £ (@) dva(a).
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It remains to show that

sup [V /()P < € / 19 £ (@) dva(a). (4.3)

z€B

The starting point to prove this is the following inequality:

lg(x)| < C lg(w)| dT(w),
E(z,5)

which holds for any harmonic function g. Since each partial derivative of a harmonic
function remains harmonic, we have

IVf(x)l < C IV f(w)]dr(w).
E(x,0)

Recall that |V f(z)| = (1 — |z|?)|Vf(z)| and 1 — |w| ~ 1 — |z| for any w € E(z,4) and
a € B, hence we have

¥f@)<C [E ) [FHwldr)

Because 1 —|w| ~ 1—|z| ~ 1 for any w € E(z,d) and = € B, applying Holder’s inequality

we get
Vi) <C IV f(w)P dr(w)
E(z,0)
<C IV f(w)[P dvg (w).
E(z,0)
The assertion (4.3) now follows. This finishes the proof of Lemma 4.2. O

Proof of Theorem 4.1. Assume that f € C*°(B). For any a € B, we have

@ FO [ [ ot U f(ta)
] “/ovf(”a|dt’</o T dla) Y

It follows from Lemma 4.2 that

A <o ([ 2 i

< C/B\Wm)wdua(a).
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Replacing f with f o, integrating with respect to dr(x), taking y = ¢, (a), and setting
a =p/2 —n, we have

| IR - oy arwyar)
<c [ [1950)Pa = leay* ara) drty)
<c [ 19r@Par) [ (- lePr? ar)
<c [ 19srar.
In the last step, we used the estimate
[ =letoPyara) < ¢
for p > 2(n — 1), which follows from (2.5) and Lemma 2.4. Since

(1= lea@)?)P? (A= [a?)P2(0 = |y*)P/?

Iz (y)|P |z —y|P

b

we get (4.1).
Conversely, suppose that f is harmonic and that it satisfies (4.1), we will show that
f € By,. For any fixed ¢ € (0,1),

V(@) <C |f(x) = f(y) dr(y).

E(z,6)

Then, by applying Holder’s inequality and (3.4) we obtain

Vi@ <C |f () = f(y)P dr(y)
E(z,5)
(L — [P — Jy*)P"?
< @)= fy)l? dr(y).
L., i@ swl e )
Thus, (4.1) implies f € B,. This completes the proof. d
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