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Abstract. Equations are derived which describe the propagation of strong shocks 
in the interstellar matter, without any restrictions for symmetry, in a thin layer 
approximation (2.5 dimensions). Using these equations permits to calculate the 
propagation of shock waves from nonsymmetric supernovae explosions in a medium 
with arbitrary density distribution and the formation of superbubbles in galaxies. 

1 Thin Layer Approximation 

A thin shell approximation for discription of strong shocks is based on two 
simplifications. First, it is assumed that all swept-up intercloud gas accu­
mulates into the thin shell just behind the shock front and moves with the 
velocity u. Second, the pressure distribution inside the cavity P\n(r, t) is taken 
to be uniform. The equations of mass and momentum conservation in spher­
ically symmetric case may be expressed as follows (Chernyi 1957) 

M = M0+4n[ p(r)r2dr, ^ ^ - = 4TrR2{Pin - P) + Mg, (1) 
Jo dt 

where M is the mass of the shell, M0 is the ejected mass, R is the shock 
radius and u is the gas velocity behind the shock; p(r) and P are the density 
and the pressure of the ambient gas, g is the external gravitational field. For 
the adiabatic blastwave without gravity 

_. dR 7 + 1 „. dR „ _ 1 , , o /„N 
)~dt=2~U ° r )~dT=U' E0 = Eth + -Mu2, (2) 

where E0 = const is the energy of the explosion, Eth = zh^-i) PinR3 is the 
thermal energy of the blastwave, and 7 is the adiabatic index. In (2) the 
radius R is related to the shock front in the case 1) and to a sphere inside 
a thin layer in the case 2). Equations (l)-(2) have a simple solution for the 
homogeneous case if the swept-up mass is much greater than the ejected one: 

fi = ( o P t2/5, where (Chernyi 1957, Bisnovatyi-Kogan and Blinnikov 

1982) 
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Comparison with an exact self-similar (SS) solution (Sedov 1946) shows, that 
the case 2) gives much better precision, £0 = 1-033, 1.014 1.036 for (SS), 
(1), (2) cases respectively at 7 = 1.4 (molecular cloud); and similarily £0 = 
1.15, 1.12, 1.15 for 7 = 5/3. 

2 Three-Dimensional Shocks 

Introduce, following Bisnovatyi-Kogan and Silich (1991), Silich (1992) (see 
also Palous, 1990; Bisnovatyi-Kogan and Silich, 1995) a Cartesian coordinate 
system (x,y,z). Let m be the mass, r the radius-vector, u the velocity of 
a particular Lagrangian element of the shock, p(x,y,z) = p0f(x,y,z) the 
ambient gas density, n the unity vector normal to the shock front, g the 
acceleration of the external gravitational field, V the velocity field of the 
undisturbed gas flow, E the surface area of the Lagrangian element, m = aE, 
a the surface density, and AP = Pm — P the pressure difference between the 
hot interior and warm (cold) external gas. The pressure P\n — (7 — l)Eth/fi 
of the hot tenuous gas within the cavity is a function of the thermal energy, 
Eth, of the bubble and the volume Q. To describe the expansion of the shock 
we must introduce the surface area element and define the volume of any 
closed three-dimensional region. It is well known from differential geometry 
that any surface may be specified parametrically, with Cartesian coordinates 
at any point on the surface being a function of two parameters, Ai and A2: 
x = a;(Ai,A2), y = y(\i,\2), z = z(Ai,A2). Then the element of the surface 
area may be defined by the expression (Budak and Fomin, 1965): 

dE = 5(Ai, A2)cL\idA2 

5(Ai,A2) = 
d(y,z) 
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Similar expressions can be obtained for Q and n. If parameters Ai and A2 are 
considered as the Lagrangian coordinates of the shock front, then the equa­
tions for 3-D shock propagation may be written for the mass \x — oS{\\, A2) 
per unit of Lagrangian square on the surface of parameters (Ai,A2), in a 
compact form, convenient for numerical integration 
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Fig. 1. Galactic superbubble morphology for different locations of the parent 
OB-association relative to the galactic plane. Left: the OB-association is at the 
midplane of the Galaxy. Right: the OB-association is 50pc above the Galactic plane. 
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Fig. 2. Scheme of the HI holes orientation in a spiral galaxy in the plane of view. 
Projection of the rotational axis to the plane of view is directed upward, determining 
a motion of the left side to the observer. The indicated direction of elongation of 
HI hole determines the orientation of the galaxy, shown in the figure. 
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Here function \ IS defined as follows: 

Approximating the shock front by a number N of Lagrangian elements one 
gets a system of 7N differential equations for mass and momentum conserva­
tion. This set of equations is coupled with the equation for the gas pressure 
within the cavity, and the equation of total energy Etot = Eth + Ek + Eg, 
consisting of the thermal energy of the hot bubble interior, kinetic and grav­
itational energies of the shell. The kinetic and gravitational energies of the 
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shell are determined by corresponding surface integrals. Variations of the 
total energy Etot of a remnant or a bubble throughout the adiabatic stage 
of evolution are defined by the energy input rate L(t), kinetic and thermal 
energies of the swept-up interstellar gas with temperature T(x,y,z): 

Etot = E0+ L(t) + - / ii{V2 + 3fcT/7?)dA1dA2 
JO Z J\l,min J\2,min 

at, (12) 

where EQ is the initially deposited energy and 77 is the mean mass per particle. 
Here Eg is neglected, and L{t) = 0 for SNR. During the radiative phase of 
expansion the gas behind the shock front cools so quickly that it does not add 
to the total energy of the remnant. Rarefied hot gas inside the cavity expands 
adiabatically and accelerates the surrounding dense shell. The time-derivative 
of the thermal energy of the remnant is defined then by the equation, which 
is used instead of (12): 

dEth L(t)- f l m a i f 2""aipi„u„5(A1,A2)dA1dA2, (13) 
dt 

where un is the velocity component normal to the shock front. The set of 
(77V +1) equations is solved using Adams method of 12 order. Numerical cal­
culations of supershell formation in the plane-stratified and differentially ro­
tating Galactic disk have been performed by Silich et al. (1994) and are shown 
in Fig. 1. An hourglass remnant with a noticeable degree of deformation by 
the Galactic shear has developed. Formation of elongated superbubbles due 
to differential galactic rotation gives a possibility to determine unambigu­
ously the direction of galactic rotation (Mashchenko and Silich, 1995). The 
means of this determination is shown in the Fig. 2. 
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